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Perturbation symbolique qualitative:
deux applications d’une nouvelle méthode de perturbation

basée géométrie
Résumé : Avec les méthodes de perturbations symboliques classiques, les dégénérescences sont
résolues en substituant certains polynômes en ε aux entrées du prédicat. Au lieu d’une seule
perturbation compliquée, nous proposons d’utiliser une suite de perturbation plus simple. Et
nous regardons les effets de ces perturbations géométriquement plutôt qu’algébriquement ce qui
permet de traiter des cas inatteignables par les méthodes algébriques classiques.

Mots-clés : Dégénérescences, robustesse algorithmique, Diagramme d’Apollonius, carte des
trapèzes
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1 Introduction
In earlier computational geometry papers, the treatment of degenerate configurations was mainly
ignored. However, degenerate situations actually do occur in practice. When data are highly
degenerate by nature, a direct handling of special cases in a particular algorithm can be efficient
[4]. But in many situations, degeneracies happen only occasionally, and perturbation schemes are
an easy and efficient generic solution. Controlled perturbations [16] combine increasing arithmetic
precision together with actual displacement of the data, and eventually compute a non-degenerate
configuration. On the other hand, the use of a symbolic perturbation allows a geometric algorithm
or data structure that was originally designed without addressing degeneracies, to still operate on
degenerate cases, without concretely modifying the input [8, 19, 20]. Actually, similar strategies
were often used by earlier implementors of simple geometric algorithms, without identifying them
as symbolic perturbations: for instance when incrementally computing a convex hull, when the
new inserted point was lying on a facet of the convex hull, the point was decided to be inside the
convex hull.

LetG(u) be a geometric structure defined when the input data u satisfies some non-degeneracy
assumptions, and let u0 be some input that is degenerate for G. A symbolic perturbation consists
in using, as input u for G, a continuous function π(u0, ε) of a parameter ε. This is done in such
a way that, for ε = 0 π(u0, 0) is equal to u0, and π(u0, ε) is non-degenerate for G for sufficiently
small positive values of ε. In that case the structure G(u0) is defined as the limit of G(π(u0, ε))
when ε→ 0+.

A symbolic perturbation allows an algorithm that computes G(u) in generic situations to
compute G(u0) for the degenerate input u0. Most decisions made by the algorithm are usually
made by looking at geometric predicates, which are combination of elementary predicates. An
elementary predicate is the sign of a continuous real function of the input. The original algorithm
assumes that such a function p never returns 0. When applying a symbolic perturbation, a
predicate sign(p(u)) evaluated at u0 returns the limit of sign(p(π(u0, ε))) as ε → 0+. The sign
of p(u0) can thus be evaluated, provided that p(π(u0, ε)) is not identically equal to 0 in a (right)
neighborhood of ε = 0. A perturbation scheme is said to be effective for a predicate sign(p(u)) if
for any u0 the function p(π(u0, ε)) is never the null function in a neighborhood of the origin. The
main difficulty when designing a perturbation scheme for G(u) is to find a function π(u0, ε), such
that the perturbation scheme can be proved to be effective for all relevant functions p(u), and
the perturbed predicates are easy to evaluate, e.g., using as few as possible arithmetic operations.
The work of designing and proving the effectiveness of a perturbation for G is typically tailored
to a specific algorithm for computing the geometric structure G.

In previous works [1, 7, 8, 9, 17], a predicate is the sign of a polynomial P in some input u ∈
Rm. The input u is perturbed as an element π(u0, ε) of Rm whose coordinates are polynomials
in u0 and ε, such that π(u0, ε) goes to u0 when ε → 0+, and the perturbed predicate needs
to evaluate somehow the limit limε→0+ sign(P (π(u0, ε))). Since P is a polynomial, P (π(u0, ε))
can be rewritten as a polynomial in ε whose monomials in ε are ordered in terms of increasing
degree. The constant monomial is actually P (u0), and the signs of the following coefficients
can be viewed as secondary predicates on u0. The coefficients of P (π(u0, ε)) are evaluated in
increasing degrees in ε, until a non-vanishing coefficient is found. The sign of this coefficient is
then returned as the value of the predicate sign(P (u0)).

Contribution In this paper we propose QSP (Qualitative Symbolic Perturbation), a new
framework for resolving degenerate configurations in geometric computing. Unlike classical sym-
bolic perturbation techniques, QSP resolves degeneracies in a purely geometric manner, and
independently of a specific algebraic formulation of the predicate. So, the technique is particu-
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4 O. Devillers, M. Karavelas & M. Teillaud

larly suitable for predicates whose algebraic description is not unique or too complicated, such
as the ones treated in this paper. In fact, QSP can even handle predicates that are signs of
non-polynomial functions.

In addition, instead of having a single perturbation parameter that governs the way the input
objects and/or predicates are modified, QSP allows for a sequence of perturbation parameters:
conceptually, we symbolically perturb the input objects one-by-one, using a well-defined canonical
ordering that corresponds to considering first the object that is perturbed most. To achieve
termination, we must devise an appropriate sequence of perturbations which guarantees that
eventually, i.e., after having perturbed sufficiently many input objects, the degenerate predicate
is resolved in a non-degenerate manner. The number of objects that need to be perturbed
depends on the specific predicate that we analyze. For example in the 2D Apollonius diagram,
for a given predicate, perturbing a single object always suffices, whereas in its 3D counterpart,
we may need to perturb two input objects.

Standard algebraic symbolic perturbation schemes [8, 9, 17] automatically provide us with
the auxiliary predicates that we need to evaluate. These predicates are, by design, of at most
the same algebraic degree as the original predicate, but evaluating them in an efficient manner
(e.g., by factorizing the predicate) is far from being an obvious task. QSP schemes cannot
guarantee that the auxiliary predicates are not more complicated algebraically (i.e., are of lower
algebraic degree) from the original predicate; however, in principle, the auxiliary predicates that
we have to deal with are expected to be more tractable, since their analysis is based on geometric
considerations.

As for any perturbation scheme, QSP assumes exact arithmetic to detect degeneracies.
Degeneracies are rare enough to allow high efficiency using the exact geometric computing
paradigm [21].

In the next section of the paper we formally define the QSP framework. In Section 3 and 4 we
describe QSP schemes for the main predicates of two geometric structures: (1) the 2D arrange-
ment of circular arcs and (2) the 2D/3D Apollonius diagram. We end with Section 5, where we
discuss the advantages and disadvantages of our framework, and indicate directions for future
research.

2 General framework
Let us start with two easy observations about the limit of the sign of a function of two variables.

2.1 Preliminary observations
The first observation allows us to swap the order of evaluation of limits:

Observation 1. Let f be a continuous fonction of two variables (a, b) defined in a neighborhood
of the origin. Let limb→0+ signf(0, b) be denoted as s. If s 6= 0 then

lim
b→0+

lim
a→0+

signf(a, b) = s.

Proof. Let us assume that s 6= 0. There exists δ > 0 such that ∀b ∈ (0, δ], signf(0, b) =
s. For any b fixed in (0, δ] the function f(a, b) is a continuous function in variable a, thus
lima→0+ f(a, b) = f(0, b) and, since s 6= 0, f does not vanish when a is in a neighborhood of 0.
We have lima→0+ signf(a, b) = signf(0, b) = s. For any b ∈ (0, δ] the function lima→0+ signf(a, b)
is the constant function of value s. So its limit is s when b→ 0+.

The second observation formalizes a situation that is in fact trivial.

Inria



Qualitative Symbolic Perturbation 5

Observation 2. Let f be a continuous fonction in two variables (a, b) defined in a neighborhood
of the origin. Assume that ∀b, b′ ≥ 0, signf(a, b) = signf(a, b′). Then

lim
b→0+

lim
a→0+

signf(a, b) = lim
a→0+

signf(a, 0).

Proof. Let s = lima→0+ signf(a, 0). There exists δ > 0 such that ∀a ∈ (0, δ], signf(a, 0) = s. By
the hypothesis in the observation we have ∀a ∈ (0, δ], ∀b ≥ 0, signf(a, 0) = signf(a, b) = s. The
function has constant sign s on (0, δ]× (0,∞) so the limit is s.

2.2 The QSP scheme
Let G(u) be a geometric structure whose computation depends on a predicate sign(p(u)), where
p is a continuous real function. In this formal presentation, p appears as a function of the whole
input u; however, in practice, a predicate depends only on a constant size subset of u.

We design the perturbation scheme π as a sequence of successive perturbations πi, 0 ≤ i < N ,
with

π(u, ε) = π0(π1(π2(. . . πN−1(u, εN−1) . . . , ε2), ε1), ε0),

where ε = (ε0, ε1, ε2, . . . , εN−1) ∈ RN . The number of perturbations N is part of the perturbation
scheme and usually depends on the input size. The perturbations are numbered by increasing
order of magnitude, i.e., εi is considered much bigger than εj if i > j. Since ε is no longer a
single real number, we have to determine how the limit is taken; we thus define G(u) to be the
limit:

G(u) = lim
εN−1→0+

lim
εN−2→0+

· · · lim
ε1→0+

lim
ε0→0+

G(π(u, ε)).

QSP implies an evaluation strategy of this limit, as follows. The perturbed predicate

lim
εN−1→0+

lim
εN−2→0+

· · · lim
ε1→0+

lim
ε0→0+

sign(p(π(u, ε)))

is evaluated by first computing p(π(u, (0, 0, . . . , 0)))) = p(u), and returning its sign if it is non-
zero. If p(u) = 0, we look at the function p(π(u, (0, 0, . . . , εN−1))) = p(πN−1(u, εN−1)); if this
function is not vanishing when εN−1 lies in a sufficiently small neighborhood to the right of 0, its
sign can be returned. More formally, we compute the limit

`1 = lim
εN−1→0+

sign(p(πN−1(u, εN−1))). (1)

If `1 is non-zero, using Observation 1, it is returned as the value of the predicate sign(p(u)).
Otherwise, we have to further perturb our geometric input; we examine the limit

`2 = lim
εN−1→0+

lim
εN−2→0+

sign(p(πN−2(πN−1(u, εN−1), εN−2))). (2)

The expression in Eq.(2) can be simplified in cases that actually often occur in applications: if
p(πN−1(u, εN−1))) is zero on [0, η), it is often because the sign of p(πN−2(πN−1(u, εN−1), εN−2))
does not depend on εN−1 in [0, η). In such a case, and provided that this function is not also
zero, we can evaluate its sign using Observation 2: by taking εN−1 = 0, Eq.(2) boils down to

`2 = lim
εN−2→0+

sign(p(πN−2(u, εN−2))). (3)
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6 O. Devillers, M. Karavelas & M. Teillaud

The process is iterated until a non-zero limit is found. In very degenerate situations, when the
µ − 1 first limits evaluate to 0, i.e., `1 = `2 = . . . = `µ−1 = 0, we need to evaluate `µ. Its
definition is

`µ = lim
εN−1→0+

lim
εN−2→0+

. . . lim
εN−µ→0+

sign(p(π(u, (0, 0, . . . , 0, εN−µ, εN−µ+1, . . . , εN−1)))).

Similarly to what we described for `2 above, it is frequently the case that the sign of

p(π(u, (0, 0, . . . , 0, εN−µ+1, . . . , εN−1)))

does not depend on εN−µ+1, . . . , εN−1 in a neighborhood of 0 in Rµ−1; then the simplified evalu-
ation allowed by Observation 2 gives:

`µ = lim
εN−µ→0+

sign(p(π(u, (0, 0, . . . , 0, εN−µ, εN−µ+1, . . . , εN−1)))).

To assert that the perturbation scheme π is effective, we need to prove that one of these limits
is indeed non-zero.

When the predicate is a polynomial, we get a sequence of successive evaluations as in algebraic
symbolic perturbations; however, the expressions that need to be evaluated have been obtained
in a different way and are a priori different. The main advantage of this approach is that we may
use a very simple perturbation πν , since we do not need each perturbation πν to be effective,
but rather the composed perturbation π. For geometric problems, the simplicity of πν allows us
to look at the limit in a geometric manner, instead of algebraically computing some appropriate
coefficient of p(π(u, ε)).

2.3 Toy examples
We illustrate these principles by four toy examples. In all examples, we set u = (q, q′) =
((x0, x1), (x2, x3)), a pair of two 2D points and πi(u, εi) = u + εiei where e0 = ((1, 0), (0, 0)),
e1 = ((0, 1), (0, 0)), e2 = ((0, 0), (1, 0)), and e3 = ((0, 0), (0, 1)) form the canonical basis of (R2)2.
The differences between the examples below lie in the evaluated predicate sign(p(u)) and the
degenerate position u0.

First example: orientation of a flat triangle
p(u) = x0x3 − x1x2 and u0 = (q, q′) = ((1, 1), (2, 2)).
QSP defines the result for sign(p(u0)), the orientation of Oqq′, as

q′∗

q′

q

O

sign(p(u0)) = lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

lim
ε0→0+

sign((1 + ε0)(2 + ε3)− (2 + ε1)(1 + ε2)).

A standard evaluation of this expression would consist in taking the limits in order:

sign(p(u0)) = lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

sign((2 + ε3)− (2 + ε1)(1 + ε2))

= lim
ε3→0+

lim
ε2→0+

sign((2 + ε3)− 2(1 + ε2))

= lim
ε3→0+

sign(ε3) = 1.

Inria



Qualitative Symbolic Perturbation 7

Following the QSP evaluation strategy instead, in such a case, the biggest perturbation, i.e., the
perturbation on x3, allows to quickly conclude. The only computed limit is the one in Eq. (1):

`1 = lim
ε3→0+

sign(p((1, 1), (2, 2 + ε3))) = lim
ε3→0+

sign((2 + ε3)− 2) = lim
ε3→0+

sign(ε3) = 1,

The geometric interpretation is that we get the orientation of a triangle Oqq′∗ for a point q′∗
slightly above q′.

Second example: orientation of a vertical flat triangle
p(u) = x0x3 − x1x2 and u0 = (q, q′) = ((0, 1), (0, 2)).
QSP defines the result for sign(p(u0)), the orientation of Oqq′, as

q′∗

q′

q

O

sign(p(u0)) = lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

lim
ε0→0+

sign((0 + ε0)(2 + ε3)− (1 + ε1)(0 + ε2)).

Taking the limits in order leads to:

sign(p(u0)) = lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

sign(−(1 + ε1)ε2)

= lim
ε3→0+

lim
ε2→0+

sign(−ε2))

= lim
ε3→0+

sign(−1) = −1.

In this case, the QSP evaluation strategy is to first compute

`1 = lim
ε3→0+

sign(p((0, 1), (0, 2 + ε3))) = lim
ε3→0+

0 = 0,

which does not allow us to resolve the degeneracy. Then we observe that

sign(p((0, 1), (x2, x3))) = sign(−x2)

does not depend on x3, thus we can evaluate `2 using Eq. (3):

`2 = lim
ε2→0+

sign(p((0, 1), (ε2, 2))) = lim
ε2→0+

sign(−ε2) = −1.

Two perturbations π3 and π2 must be used, but the simplified evaluation of `2 suffices.
The geometric interpretation is that we look at the orientation of a triangle Oqq′∗ for a moved

point q′∗. Since moving q′∗ slightly above q′ doesn’t change anything to the degeneracy, the point
is moved to the right, which resolves the degeneracy.

Third example: points and quadratic form
p(u) = x0(x1−1)−x20−x2(x3−1)+x22 and u0 = (q, q′) = ((0, 2), (0, 1)).
The predicate p stands for the difference of a degenerate quadratic form
evaluated at q and q′. QSP defines the result for sign(p(u0)) as

q′∗

q

q′

O
−

+

+

−

sign(p(u0)) = lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

lim
ε0→0+

sign
(
ε0(1− 2 + ε1)− ε20 − ε2(1− 1 + ε3) + ε22

)
,

RR n° 8153



8 O. Devillers, M. Karavelas & M. Teillaud

which could be evaluated as follows:

sign(p(u0)) = lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

sign
(
−ε2ε3 + ε22

)
= lim

ε3→0+
lim

ε2→0+
sign (ε2(ε2 − ε3))

= lim
ε3→0+

sign(−ε3) = −1.

Again the evaluation strategy first computes

`1 = lim
ε3→0+

sign(p((0, 2), (0, 1 + ε3))) = lim
ε3→0+

0 = 0,

which does not allow us to resolve the degeneracy.
Then we observe that sign(p((0, 2), (x2, x3))) = sign(x2(x3− 1) +x22) actually depends on x3,

thus we must evaluate `2 using Eq. (2):

`2 = lim
ε3→0+

lim
ε2→0+

sign(p((0, 2), (ε2, 1 + ε3)))

= lim
ε3→0+

lim
ε2→0+

sign (ε2(ε2 − ε3))

= lim
ε2→0+

sign(−ε3) = −1.

Notice that since sign(p((2, 0), (x2, x3))) depends on x3, the simplified evaluation of Eq. (3)
would have given a wrong result:

`2 6= lim
ε2→0+

sign(p((2, 0), (ε2, 1))) = lim
ε2→0+

sign(ε22) = 1.

The geometric interpretation is that q and q′ are both on one of the two lines defined by the
quadratic equation x(y−1)−x2 = 0. Point q′ is first slightly moved above but this motion leaves
it on that same line, then it is moved to the right, and the sign of the quadratic form depends
on the vertical position of q′ with respect to the other line.

Fourth example: side of a sinusoid
p(u) = (x1 − sinx0)(x3 − sinx2) and u0 = (q, q′) = ((3, 0), (0, 0)).
QSP works even if the predicate is non-polynomial. This predicate is
positive if q and q′ are on the same side of the sinusoid. QSP defines the
result for sign(p(u0)) as q′∗

qq′

−
+

sign(p(u0)) = lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

lim
ε0→0+

sign(((ε1 − sin(3 + ε0))(ε3 − sin ε2))

= lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

sign((ε1 − sin 3)(ε3 − sin ε2))

= lim
ε3→0+

lim
ε2→0+

sign(−(sin 3)(ε3 − sin ε2))

= lim
ε3→0+

sign(−(sin 3)ε3) = −1

In this case, the QSP evaluation strategy first computes

`1 = lim
ε3→0+

sign(p((3, 0), (0, ε3))) = sign(−(sin 3)ε3) = −1

and it allows us to resolve the degeneracy.
The geometric interpretation is that q′∗ is moved slightly above q′, so on the side of the

sinusoid opposite to q.

Inria
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2.4 Discussion
Multiple epsilons The idea of utilizing multiple perturbation parameters is already present
in Yap’s scheme [19], or very recently in Irving and Green’s work [12], but without the geometric
interpretation allowed by QSP. In other previous works, such as SoS [8], the algebraic symbolic
perturbation framework was proved to be effective by a careful choice of the exponents for ε,
depending on the choice of G(u), so as to make some terms negligible. QSP can be forced to fit
in such a traditional framework, with a single epsilon, by making all the variables εν dependent
on a single parameter κ that plays the traditional role of ε. For polynomial predicates, it is
enough to take εν exponentially increasing with respect to ν. For example one such choice can
be to set εN−1 = κ, and εν =

Ä
exp
Ä

1
εν+1

ää−1
, for 0 ≤ ν < N−1. The interest of QSP, however, is

not to use this traditional view, but rather make the variables εν independent.

Efficiency The aim of a perturbation scheme is to solve degeneracies, and a common assump-
tion is that such degeneracies are rare enough so that some extra time can be spent to make a
reliable decision when a degeneracy happens. Another implicit assumption is that degeneracies
are actually detected, that is, it is implicitly assumed that the original predicates are computed
exactly, possibly with some filtering mechanism to ensure efficiency [21].

Nevertheless, the actual additional complexity in case of degeneracy must be addressed. Since
QSP is geometrically defined and addresses very general problems, such a complexity analysis
cannot be done at the general level. For the two applications described in this paper, the extra
predicates needed to resolve the degeneracy have the same complexity as the original ones, while
the number of epsilons used to perturb is not bigger than two.

QSP, as many other perturbation schemes, relies on an indexing of the input. However, as
mentioned earlier, a given predicate usually depends on a constant number of input objects. It
is important to keep in mind that the comparison of indices is necessary only for the few objects
involved in a given predicate; sorting the whole input with respect to indices is not required.

Generality In the first three toy examples above, SoS would have taken ε0 = ε8, ε1 = ε4,
ε2 = ε2, and ε3 = ε, which yields the same result as QSP. When it leads to a simple result,
the classical algebraic view is a very good solution. However, if the original predicate is a
bit intricate, the algebraic way will produce numerous extra predicates to resolve degeneracies.
Moreover, as for any predicate, some specific work is often still needed on the polynomial to
evaluate it efficiently, e.g., finding a good factorization.

QSP provides a very general approach that is able to handle various predicates, even non-
polynomial as in the fourth example. Of course applying this scheme to a given problem requires
some problem-specific work, but, as noted at the previous paragraph, this is also often the case
for most algebraic approaches.

We would not advise the use of QSP for simple cases such as Delaunay triangulations of
points where other approaches work well [7], but rather only in cases where the predicates are
very complex or non-polynomial. The applications below use high degree polynomials and QSP
is a good solution. As far as we know, there is no equivalent perturbation scheme for Apollonius
diagrams. Regarding intersections of circles, Irving and Green [12] recently proposed a pseudo-
random scheme, only handling a particular case of the predicate we address in this paper.

Meaningfulness According to a classification by Seidel [18], QSP is (geometrically) meaning-
ful, that is we have some control on the direction (in input data space) used to move away from
the degeneracies. For example, for the Apollonius diagram we will choose to minimize the num-
ber of Apollonius vertices (it is also possible to choose to maximize it). QSP is not independent

RR n° 8153



10 O. Devillers, M. Karavelas & M. Teillaud

(αi, βi)

√
γi

pi,
j
x+

qi,
j
y +

si,
j
=
0

Li,j

ri,j

Lk,m rk,m

Ci

Cj

Ck

Cm

Figure 1: x-comparison of endpoints:
a degenerate case where ri,j and lk,m have the same abcissa.

of indexing, but if this indexing is geometrically meaningful, then we can ensure invariance with
respect to some geometric transformations.

3 Predicates for circular arcs arrangements
To address the problem of computing arrangements of circular arcs by sweep-line algorithms, it
is necessary to compare abscissae of endpoints of circular arcs. In the formalism of the previous
section, u is a vector of parameters defining a set of circular arcs andG(u) is the arrangement, but
we will use notations more adapted to our application. This predicate was studied in a previous
paper [5]. The arc endpoints are described as intersections of two circles, which leads us to
consider the arrangement of all circles supporting arcs or defining their endpoints. Degeneracies
occur if several vertices of the arrangement have the same abscissa or if more than two circles meet
at a common point. For arrangements exhibiting a lot of degeneracies, it may be interesting to
design an algorithm that directly handles special cases, while in other contexts where degeneracies
are occasional, it would be preferable to keep the algorithm simple and handle degeneracies
through a perturbation scheme.

An endpoint zν,µ, defined as an intersection of two circles Cν and Cµ, is determined by the
centers (αν , βν) and (αµ, βµ) of the circles (see Figure 1), their squared radii γν and γµ, and a
Boolean bν,µ encoding whether zν,µ is the leftmost lν,µ or rightmost intersection point rν,µ (if
they have the same abscissa, rν,µ is the highest and lν,µ the lowest intersection point).

3.1 Algebraic formulation
Intersection points of Cν and Cµ can also be seen as intersections between Cν and the line Lν,µ
whose equation pν,µx+ qν,µy + sν,µ = 0 is obtained by subtracting the equations of Cν and Cµ:

pν,µ = 2(αν − αµ), qν,µ = 2(βν − βµ), and sν,µ = γν − γµ − α2
ν − β2

ν + α2
µ + β2

µ.

The predicate x-compare(Ci, Cj , bi,j , Ck, Cm, bk,m) compares the abscissae of two arc endpoints
zi,j defined by Ci, Cj , and bi,j (i 6= j) on the one hand, and zk,m defined by Ck, Cm, and bk,m
(k 6= m) on the other hand. The most complicated evaluation is the sign of the following degree
12 polynomial [5]:

(Ai,j Ck,m −Ak,m Ci,j)2 − 4(Ai,j Bk,m −Ak,mBi,j)(Bi,j Ck,m −Bk,m Ci,j)
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(a) zi,j left of zk,m

Ci
Cj

Cm

Ck

εn
zi,j

zk,m

(b) zi,j right of zk,m (d) zi,j right of zi,m(c) zi,j left of zi,m

zεk,m

zεi,j

Ci = Ck
CjCm

εi
zi,j = zk,m

zεi,j zεi,m
εiCi = Ck

Cj
Cm

zi,j = zk,m

zεi,jzεi,m

CiCj
Cm

Ck εi

zεi,jzi,j = zk,m

Figure 2: Perturbing zi,j and zk,m

where:

Aν,µ = p2ν,µ + q2ν,µ,

Bν,µ = q2ν,µ αν − pν,µ( sν,µ + qν,µ βν),

Cν,µ = (sν,µ + qν,µ βν)2 + q2ν,µ (α2
ν − γν).

Introducing an algebraic symbolic perturbation yields quite a complicated polynomial in ε, not
really suitable for efficient predicate evaluation. For the same problem, Irving and Green [12]
use an algebraic perturbation with pseudo-random coefficients, but they only address the special
case where Ci = Ck.

3.2 Qualitative symbolic perturbation
We construct a sequence of n+ 1 successive perturbations for an input C consisting of n circles
Cν , 0 ≤ ν < n.

The first perturbation, πn(C, εn) is a rotation centered at the origin and with angle εn. This
perturbation handles the cases where zi,j and zk,m are different points with the same abscissa.
In other words, it just uses lexicographic comparisons: y-comparisons are used to break ties
in x-comparisons (see Figure 2(a)). The rotation by a small angle has the same effect as a
shear transform. A shear transform is often preferred in the literature because it is a rational
transformation. We use a rotation instead because it transforms circles into circles, which is
preferable in order to apply the remaining perturbations in the sequence. On top of that, we are
not interested in the algebraic formulation of the transformation, since we look at the limit in a
geometric way instead of algebraically.

We are now left with cases when zi,j = zk,m. The other perturbations in the sequence consist
in inflating the circles: πν(C, εν) replaces γν by γεν = γν +εν , εν ≥ 0. Recall that the comparison
of indices is necessary only for the four circular arcs involved in a given predicate; sorting the
whole input with respect to indices is not required. We consider the circles by decreasing radii
to get rid of pairs of tangent circles in a geometrically meaningful way: if two circles are tangent,
the perturbation inflates the largest one by a larger amount, making the intersection point either
disappear if the two circles are internally tangent, or split into two points if they are externally
tangent.

Without loss of generality, we may assume that i ≥ j, k,m, i.e., Ci is the most perturbed
circle. If i 6∈ {k,m}, then zi,j moves (i.e., zεi,j 6= zi,j) while zk,m stays fixed. After determining
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12 O. Devillers, M. Karavelas & M. Teillaud

the vertical order of Ci and Cj at the right of zi,j , and whether zi,j is on the top or bottom part
of Ci using the auxiliary predicates described below, it is easy to decide if zεi,j moves left or right
when εi > 0 (see Figure 2(b)). If i ∈ {k,m}, assume, without loss of generality, that i = k. If
zεi,j and zεi,m are perturbed in opposite x-directions, it is easy to decide which one is the leftmost
(see Figure 2(c)). Otherwise, we determine the vertical order of the three circles Ci, Cj , and Cm
at the right of zi,j = zi,m; we know that Ci is either the topmost or the bottommost circle in
this vertical ordering. The point lying on the closest arc to Ci is more perturbed than the other,
and the auxiliary predicates below allow us to decide which of zεi,j and zεi,m is to the left (see
Figure 2(d)).

Auxiliary predicates A circle can be split in four parts: top-right, top-left, bottom-left, and
bottom-right at its points with horizontal or vertical tangents. Knowing if a point zi,j is on the
left or right part of Ci can be evaluated by x-compare(Ci, Cj , bi,j , Ci, Cm, bi,m) for a suitable Cm
such that Li,m has equation x − αi = 0. Discriminating between the top and bottom parts is
done in the same way, by exchanging the roles of the x- and y-coordinates. Another predicate
consists in deciding if Ci is above or below Cj at the right of ri,j ; this can be done by elementary
geometric computations.

4 The Apollonius diagram

4.1 Definition
The Apollonius diagram, also known as additively weighted Voronoi diagram, is defined on a set
of weighted points in the Euclidean space Rd. In the formalism of Section 2, u is a vector of
coordinates and weights of a set of weighted points and G(u) is the Apollonius diagram; as in
Section 3, we will use notations more adapted to our application. The Euclidean norm is denoted
as | · |. The weighted distance from a query point q to a weighted point (p, w), where p is a point
in the Euclidean space and w ∈ R, is |pq| − w. The Apollonius diagram is the closest point
diagram for this distance. It generalizes the Voronoi diagram, defined on non-weighted points.

Given a set of weighted points, also called sites, it is clear that adding the same constant to
all weights does not change the Apollonius diagram. Thus, in the sequel, we may freely translate
the weights to ensure, for example, that all weights are positive, or that a particular weight is
zero. A site (s, w), w ≥ 0, can be identified with the sphere S centered at s and of radius w. The
distance from a query point r to a site S = (s, w) is the Euclidean distance from r to S, with a
negative sign if r lies inside S.

An Apollonius vertex v is a point at the same distance from d + 1 sites S0, S1, . . . , Sd in
general position. We call the configuration external if v is outside sphere Si, for all i = 0, . . . , d,
and internal if it is inside the spheres. If the configuration is external (resp., internal), v is the
center of a sphere externally (resp., internally) tangent to the sites Si (see green (resp., dark
green) disks in Figure 3). It is always possible to ensure an external configuration by adding
a suitable constant to the weights of all Si, such that all weights are non-negative, while the
smallest among them is equal to zero.

Let us show that d + 1 sites in general position define zero, one or two Apollonius vertices.
Assume, without loss of generality, that all weights are non-negative for i = 1, . . . , d and w0 = 0,
so as to be in external configuration. Consider now the inversion with point s0 as the pole. The
point s0 goes to infinity, while each sphere Si, i = 1, . . . , d becomes a new sphere Zi = (zi, ρi)
(see Figure 4). Determining the balls Bα (where α indexes the different solutions) tangent to the
spheres Si, i = 0, . . . , d is equivalent to determining halfspaces delimited by the hyperplanes Tα
tangent to the spheres Zi, i = 1, . . . , d, with all spheres on the same side of Tα. Requiring that a
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Figure 3: Planar Apollonius diagram. Weighted points are in light blue. A green disk is centered
at an Apollonius vertex and its radius is the weighted distance of the center to its three closest
sites. The darker green disk has a negative distance to its closest neighbors.

given Bα is externally tangent to the spheres Si is equivalent to requiring that Tα separates the
spheres Zi from the origin. The normalized equation of Tα: λα ·x+δα = 0, with λα ∈ Rd,|λα| = 1
and δα ∈ R, gives the signed distance of a point x ∈ Rd to Tα. We have

Tα tangent to Zi, 1 ≤ i ≤ d ⇐⇒
ß
λα · zi + δα = ρi, 1 ≤ i ≤ d
|λα|2 = 1

. (4)

In the inverted space, the general position hypothesis means that the spheres Zi do not have an
infinity of tangent hyperplanes; the latter can occur only if the points zi (and thus the points si)
are affinely dependent. Therefore, the system (4) of one quadratic and d linear equations in d+1
unknowns (λα ∈ Rd and δα ∈ R) has at most two real solutions by Bézout’s theorem, hence the
first claim follows. Depending on the position of the origin with respect to Tα (or equivalently
on the sign of δα), zero, one or the two solutions may correspond to external configurations.

An Apollonius vertex is actually defined by a sequence of d + 1 sites in general position,
up to a positive permutation of the sequence. Indeed, in the previous paragraph, if there are
two solutions Tα and Tα′ , we observe that they are symmetric with respect to the hyperplane
spanned by the points zi, thus the d-simplex formed by the tangency points and the origin has
different orientations for the two solutions (see Figure 5). This implies that the two solutions
can be distinguished by the signature of the permutation of the spheres Si.

4.2 The VConflict predicate
Several predicates are necessary to compute an Apollonius diagram. We start with the vertex
conflict predicate VConflict(Sv, Q), which answers the following question:

Does an Apollonius vertex v defined, up to a positive permutation, by a (d+ 1)-tuple
of sites Sv = (Si0 , Si1 , . . . , Sid) remain as a vertex of the diagram after another site
Q is added?
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Z2

Z1

S2

S1 s0

Z3

S3

Bα Origin
Tα′ (non external)

inversion
pole s0

Tα

Figure 4: The spheres Bα externally tangent to the sites Si, i = 0, . . . , d, correspond, via the
inversion transformation with s0 as the pole, to hyperplanes Tα tangent to the spheres Zi that
separate them from the origin.

Z2
Z1

Origin

Tα

Tα′

Figure 5: If Tα and Tα′ are both external, the simplices formed by the tangency points and the
origin have different orientations.

If the site centered at v and tangent to the sites of the tuple Sv is in internal configuration,
we can add a negative constant to the radii of all spheres in Sv ∪ {Q} so that the smallest site
in Sv has zero radius. Then the configuration of the common tangent sphere becomes external.
In this manner, we can always restrict our analysis to the case where the Apollonius vertex we
consider is in external configuration. Note that this may lead to a negative weight wq for Q,
which was a priori excluded above, but is treated below.

We denote by Bi0i1...id the open ball whose closure Bi0i1...id is tangent to the sites of Sv. The
contact points ti0 , ti1 , . . . , tid define a positively oriented d-simplex.

If wq ≥ 0, the predicate VConflict(Sv, Q) answers (Figure 6)
• “conflict” if Q intersects Bi0i1...id ,
• “no conflict” if Q and Bi0i1...id are disjoint,
• “degenerate” if Q and Bi0i1...id do not intersect, while Q and Bi0i1...id are tangent.

If wq < 0, we define Q− as the sphere with the same center sq as Q and radius −wq. Then
VConflict(Sv, Q) answers

• “conflict” if Q− is included in Bi0i1...id ,
• “no conflict” if Q− intersects the complement of Bi0i1...id ,
• “degenerate” if Q− is included in Bi0i1...id and is tangent to its boundary.
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Si0
Bv

S
SS− S−

S

S−

S−
“conflict” “degenerate” “no conflict”

ti0

ti1
Si1

S

ti2 Si2

Figure 6: Examples of positions of Q or Q− that are in “conflict”, “degenerate” or “no conflict”
configuration with an Apollonius vertex v.

Qualitative perturbation of the VConflict predicate QSP relies on some ordering of the
sites. Each site Sν = (sν , wν) is perturbed to Sεν = (sν , wν +εν), εν ≥ 0, with Sλ perturbed more
than Sν if λ > ν. Following the QSP framework, if the configuration is still degenerate after
we have enlarged the site of maximum index, then we enlarge the site with the second largest
index, and so on. As mentioned in the general presentation (Section 2.4), we need only consider
the sites involved in the predicate, and enlarge them one-by-one until the resulting configuration
is non-degenerate, in which case the predicate is resolved. Sites are sorted internally in the
predicate, among a constant number of objects; there is no need for globally sorting sites.

Any indexing can be used. We choose what we call the max-weight indexing that assigns a
larger index to the site with larger weight. As a result, a site with larger weight is perturbed
more, and in order to resolve the predicate we need to consider the sites in order of decreasing
weights, until the degeneracy is resolved. To break ties between sites with the same weights, we
use the lexicographic comparison of their centers: among two sites with the same weight, the site
whose center is lexicographically smaller than the other is assigned a smaller max-weight index.
The max-weight indexing has the strong advantage of being geometrically meaningful. It favors
sites with larger weights, so, if two sites are internally tangent, then the site with the larger
weight will be perturbed first, in which case the site with the smallest weight will be inside the
interior of the other site, and its Apollonius region will disappear in the perturbed diagram. As
a first consequence, this indexing minimizes the number of Apollonius regions in the diagram,
or, equivalently it maximizes the number of hidden sites in the diagram. Secondly, and most
importantly, the tangency points of the sites with the Apollonius sites that they define in the
diagram are pairwise distinct. This property makes the analysis of the perturbed predicates
much simpler, whereas the Apollonius diagram computed does not exhibit pathological cases,
such as Apollonius regions with empty interiors. Some inevitable degenerate constructions, such
as zero length Apollonius edges, are handled seamlessly by the method. As a final comment, the
max-weight scheme can be used to resolve the degeneracies of all predicates described by Emiris
and Karavelas for the 2D case [10].

4.3 Perturbing circles for the 2D Apollonius diagram
In two dimensions, the two main predicates for computing Apollonius diagrams are the VConflict
predicate introduced in the previous section and the EdgeConflict predicate, which will be ana-
lyzed in Section 4.3.5.

4.3.1 Algebraic expression for the 2D VConflict predicate

Let Si, Sj , Sk be the three sites that define an Apollonius circle in the Apollonius diagram and
let Q = Sq be the query site. In the algebraic formulation of the predicate by Emiris and
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Karavelas [10], the evaluation of VConflict(Si, Sj , Sk, Q) relies on the computation of the sign of
the quantity:

I := ExwEx + EywEy + Exy
√

∆, ∆ = (Ex)2 + (Ey)2 − (Ew)2,

where

Es =

∣∣∣∣s∗j p∗j
s∗k p∗k

∣∣∣∣ , Est =

∣∣∣∣∣∣
s∗j t∗j p∗j
s∗k t∗k p∗k
s∗q t∗q p∗q

∣∣∣∣∣∣ , s, t ∈ {x, y, w},

and

x∗ν = xν − xi, y∗ν = yν − yi, w∗ν = wν − wi, p∗ν = (x∗ν)2 + (y∗ν)2 − (w∗ν)2, ν ∈ {j, k, q}.

The quantity I is a quantity of the form X0 +X1

√
Y , where the algebraic degrees of X0, X1 and

Y are 7, 4 and 6, respectively. Its sign can be computed by means of the formula

sign(X0 +X1

√
Y ) =


sign(X1) if X0 = 0

sign(X0) if X1 = 0 or Y = 0

sign(X0) if sign(X0) = sign(X1)

sign(X0) sign(X2
0 −X2

1Y ) otherwise.

(5)

It is thus concluded by Emiris and Karavelas that the algebraic degree of the predicate is 14 [10,
Theorem 11].

If fact we can further decrease the algebraic degree of the predicate by observing that the
quantityX2

0−X2
1Y can be factorized as follows (see Appendix B for the details of this derivation):

X2
0 −X2

1Y = [(Ex)2 + (Ey)2] [(Exw)2 + (Eyw)2 − (Exy)2],

where the first factor is a non-negative quantity of degree 6, whereas the second factor is of
degree 8. In fact, when we compute the sign of the quantity X2

0 −X2
1Y , we already know that

the quantity (Ex)2 + (Ey)2 is strictly positive, since otherwise X0 would have been zero (X0 is a
linear combination of Ex and Ey), which has already been ruled out according to the procedure
in Eq. (5). Hence the algebraic degree of the predicate is 8.

Before using our qualitative symbolic perturbation framework to design the perturbed pred-
icate, we briefly sketch how a standard algebraic perturbation framework could be applied.

4.3.2 Algebraic perturbation of the 2D VConflict predicate

If Sν = (xν , yν , wν) is perturbed in Sεν = (xν , yν , wν + εν) for ν ∈ {i, j, k, q}, then developing
an expression like (Exw)2 will give a polynomial of degree 6 in εi, εj , εk and εq with 186 terms.
Assigning εi, εj , εk and εq to be polynomial functions of a single variable ε (for example, we
may set εν = εαν , ν ∈ {i, j, k, q}) transforms the expression in a univariate polynomial in ε.
When performing such an assignment, either some of the terms collapse making their geometric
and algebraic interpretation difficult, or αi, αj , αk and αq have to be chosen carefully so that
the coefficients of the various monomials of the variables εν in the resulting polynomial do not
collapse. Even if one can find an assignment that does not make the coefficients (of the originally
different terms) collapse, we are still faced with the problem of analyzing the monomials, and, by
employing algebraic and/or geometric arguments, showing that there is at least one coefficient
of the polynomial that does not vanish.
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Bijk
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Qε

“conflict”

Bijkdual-view

Figure 7: Perturbing a degenerate Apollonius vertex: the case q > i, j, k.

4.3.3 Qualitative perturbation of the 2D VConflict predicate

We now precisely describe how the perturbation works on the VConflict predicate in dimension 2.
Let us denote by q the max-weight index of Q, i.e., Q = Sq. We denote with superscript ε the
perturbed version of objects, that is Bεijk is a shorthand for the ball tangent to Sεi , Sεj , and Sεk,
and

VConflictε(Si, Sj , Sk, Sq) = lim
εi3→0+

lim
εi2→0+

lim
εi1→0+

lim
εi0→0+

VConflict(Sεi , S
ε
j , S

ε
k, Q

ε)

with i0 < i1 < i2 < i3, {i0, i1, i2, i3} = {i, j, k, q}.
If q > i, j, k and VConflict (Si, Sj , Sk, Q) = “degenerate”, we compute the limit given by

Eq. (1)
lim

εq→0+
VConflict(Si, Sj , Sk, Qε).

It is clear that this limit always evaluates to “conflict”, since Q is growing while the open ball
Bijk whose closure is tangent to Si, Sj , and Sk can be considered as fixed and we do not need to
look at smaller perturbations (see Figure 7).

If q is not the largest index, then Bijk can be viewed as defined by three other circles among
Si, Sj , Sk, and Q. Since Bijk = Bjki = Bkij , we can assume, without loss of generality, that
i > j, k, q. Moreover, Bijk coincides with either Bjkq or Bkjq, depending on the orientation of
the tangency points of Sj , Sk and Q with Bijk.

In the perturbed setting, Sεi is in conflict with Bεjkq (or B
ε
kjq) since S

ε
i is growing, while Bεjkq

can be considered as fixed. We simply need to determine if Bεijk remains empty in the perturbed
setting. Let tν (resp., tq) be the tangency point of Sν (resp., Q) with Bijk, ν ∈ {i, j, k}, and
notice that titjtk is a ccw triangle. We consider three cases depending on the position of tq on
∂Bijk. If tq is different from ti, tj , and tk, the four points form a convex quadrilateral. When
perturbing Si to become Sεi , the Apollonius vertex is split in two, which, in the dual,1 corresponds
to a triangulation of the quadrilateral with vertices Si, Sj , Sk, Sq. Since Si is the most perturbed
circle, the quadrilateral will be triangulated by linking Si to the other three vertices. If tq is
on the same side as ti with respect to the line tjtk, then the triangulation contains triangle
SiSjSk and, therefore, Q is not in conflict with Bijk (see Figure 8), otherwise SiSjSk is not in
the triangulation and Q has to be in conflict with Bijk (see Figure 9).

If tq is equal to ti then, since i > q, Q is internally tangent to Si and there is no conflict
(Sεi contains Q in its interior, and thus Q has empty Apollonius region in the diagram). If tq is
equal to tν with ν ∈ {j, k} then either Q is internally tangent to Sν , or Sν is internally tangent
to Q. In the former case, Q does not intersect the perturbed Apollonius disk Bεijk and thus

1 The dual of the Apollonius diagram is called Apollonius graph. The Apollonius region of a site Si is associated
to a vertex of the dual graph, thus Si can be used to refer to the corresponding vertex in the dual graph.
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Figure 8: Perturbing a degenerate Apollonius vertex:
the case i > j, k, q and tjtktq is a ccw triangle.
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Figure 9: Perturbing a degenerate Apollonius vertex:
the case i > j, k, q and tjtktq is a cw triangle.

the result of the perturbed predicate is “no conflict”; in the latter case, Q intersects Bεijk, and
the perturbed predicate returns “conflict”. Hence, in the case tq = tν , ν ∈ {j, k}, the perturbed
predicate returns “conflict” if an only if q > ν.

4.3.4 Practical evaluation of the 2D VConflictε predicate

Following the analysis in the previous section, VConflictε(Si, Sj , Sk, Q) can be evaluated by the
following procedure:

1. if VConflict(Si, Sj , Sk, Q) 6= “degenerate” then return VConflict(Si, Sj , Sk, Q);
2. if q > max{i, j, k} then return “conflict”;
3. ensure that i > max{j, k} by a cyclic permutation of (i, j, k);
4. if tq = ti then return “no conflict”;
5. if tq = tj then { if q > j then return “conflict”; else return “no conflict”; };
6. if tq = tk then { if q > k then return “conflict”; else return “no conflict”; };
7. if tjtktq is ccw then return “no conflict”; else return “conflict”;

Step 1 is evaluated as described in Section 4.3.1. Steps 2 and 3 amount to sorting the indices
of the four sites and determining if q is the largest, or, if this is not the case, finding the largest
index. At Step 4, we already know that i > q, which implies that wi ≥ wq, and hence the only
possibility is that Q is internally tangent to Si. So, in order to perform Step 4, we simply look at
p∗q = (xq − xi)2 + (yq − yi)2 − (wq −wi)2: if p∗q = 0, return “no conflict”, otherwise continue with
Step 5. Steps 5 and 6 can be resolved in a similar way: if (xq−xν)2 +(yq−yν)2−(wq−wν)2 = 0,
then if q > ν (resp. q < ν), we return “conflict” (resp. “no conflict”). Otherwise, we continue
with the last step of the procedure.
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Figure 10: Computing the auxiliary predicate Orientation(tj , tk, tq) using orientations involving
the Apollonius vertex vijk. From left to right: the case α = π, the case α > π, and the case
α < π, where α is the angle of the ccw oriented arc t̃jtk.

We will now focus on this last step, Step 7, because it introduces a new geometric predicate,
which is difficult to evaluate: Orientation(tj , tk, tq), for three tangency points. Our aim is to
reduce the complexity of the expressions to be evaluated, which is why we avoid computing the
tangency points explicitly. The end of this section describes a method with algebraic degree
8, as in Step 1. This computation can be done in another way: in Appendix A we proposed
an alternative method that requires very few additional arithmetic computations besides the
quantities already computed in the unperturbed evaluation of Step 1, however these few extra
computations have algebraic degree 12.

It has been shown in [10] that evaluating the orientation of three points where two are centers
of sites and the third is an Apollonius vertex, can be performed using algebraic expressions of
degree at most 14. In fact, this degree may be decreased to 8 (Appendix B), in which case we
resolve Orientation(tj , tk, tq), without resorting to a higher degree predicate, as described below.

Firstly, we evaluate o1 = Orientation(sj , vijk, sk), where vijk is the center of the Apollonius
circles Bijk of the three sites Si, Sj , Sk. We perform this evaluation in order to determine whether
the angle α of the ccw arc t̃jtk on Bijk is more or less than π. Secondly, we distinguish between
the following cases (see Figure 10):

o1 = “collinear”. In this case α = π, and the line through tj and tk coincides with the line
through sj and sk. Hence: Orientation(tj , tk, tq) = Orientation(sj , sk, sq) (see Qn (resp.
Qc) in Figure 10(left) to illustrate a position of Q not in conflict (resp. in conflict)).

o1 = “ccw”. In this case α > π. We start by evaluating o2 = Orientation(sj , vijk, sq). If o2 6=
“ccw” (see Q′c in Figure 10(middle)), tq lies to the right of the line through tj and tk,
and thus Orientation(tj , tk, tq) = “cw”. Otherwise, we need to evaluate the orientation
o3 = Orientation(vijk, sk, sq); then Orientation(tj , tk, tq) = “ccw” if and only if o3 = “ccw”
(see Qn and Qc in Figure 10(middle)).

o1 = “cw”. In this case α < π. We start by evaluating o2 = Orientation(sj , vijk, sq). If o2 6=
“cw”, tq lies to the left of the line through tj and tk, and thus Orientation(tj , tk, tq) =
“ccw” (see Qn in Figure 10(right)). Otherwise, we need to evaluate the orientation o3 =
Orientation(vijk, sk, sq); then Orientation(tj , tk, tq) = “cw” if and only if o3 = “cw” (see Qc
and Q′n in Figure 10(right)).

To summarize, the evaluation of Step 7 requires at most three orientation tests involving an
Apollonius vertex and two sites; one may be obtained as a subproduct of Step 1, while the other
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two require work similar to the work performed for Step 1. Thus, the evaluation of Step 7 does
not increase the algebraic degree of the VConflict predicate.

4.3.5 Qualitative perturbation for the 2D EdgeConflict predicate

The computation of the 2D Apollonius diagram requires another predicate. When a new site
is added it is not enough to find which Apollonius vertices remain or disappear: we need a
more complete analysis of the modification of the edges of the diagram. This is the subject
of the EdgeConflict predicate. Given four sites Si, Sj , Sk and Sl that define a Voronoi edge e
in the diagram, and a query site Q, EdgeConflict determines the type of conflict of Q with the
edge e. This predicate is the basis of the randomized incremental construction algorithm for
computing abstract Voronoi diagrams by Klein, Mehlhorn, and Meiser [15], as well as one of the
main predicates analyzed by Emiris and Karavelas [10]. In [10] this predicate is decomposed to
a number of subpredicates, one of them being the VConflict predicate.

We assume below that e lies on the bisector of Si and Sj , oriented so that Si is lying to
the right of the bisector (refer also to Figure 11). The edge e inherits the orientation from its
supporting bisector. The origin vertex of e is the Apollonius vertex defined by the (oriented)
triple Si, Sj and Sk, while the target vertex of e is the Apollonius vertex defined by the triple Sj ,
Si and Sl. The EdgeConflict predicate determines the type of the subset of e that is destroyed
by the insertion of Q in the Apollonius diagram of the four sites, and has six possible outcomes:

• “conflict origin”:

a subsegment of e adjacent to its origin vertex disappears in the Apollonius diagram of
the five sites. This case occurs if and only if VConflictε(Si, Sj , Sk, Q) = “conflict” and
VConflictε(Sj , Si, Sl, Q) = “no conflict”. This case is illustrated by Qcn in Figure 11.

• “conflict target”: is the symmetric case that occurs iff VConflictε(Si, Sj , Sk, Q) = “no con-
flict” and VConflictε(Sj , Si, Sl, Q) = “conflict”. See Qnc in Figure 11.

• “no conflict”: no portion of e is destroyed by the insertion of Q in the Apollonius diagram of
the four sites. This case can occur only when VConflictε(Si, Sj , Sk, Q) = VConflictε(Sj , Si,
Sl, Q) = “no conflict”. See Qnn in Figure 11.

• “conflict interior”: a subsegment in the interior of e disappears in the Apollonius diagram of
the five sites. This case can occur only when VConflictε(Si, Sj , Sk, Q) = VConflictε(Sj , Si,
Sl, Q) = “no conflict”. See Q′nn in Figure 11.

• “conflict entire edge”:

the entire edge e is destroyed by the addition of Q in the Apollonius diagram of the four
sites. This case can occur only when VConflictε(Si, Sj , Sk, Q) = VConflictε(Sj , Si, Sl, Q) =
“conflict”. See Qcc in Figure 11.

• “conflict both”: subsegments of e adjacent to its two vertices disappear in the Apollo-
nius diagram of the five sites. This case can occur only when VConflictε(Si, Sj , Sk, Q) =
VConflictε(Sj , Si, Sl, Q) = “conflict”. See Q′cc in Figure 11.

Thus when the evaluations of predicate VConflictε on (Si, Sj , Sk, Q) and (Sj , Si, Sl, Q) are
available, it only remains to distinguish between “no conflict” and “conflict interior”, as well as
between “conflict entire edge” and “conflict both”. Assuming a non-degenerate configuration,
this question is addressed in [10] using an auxiliary predicate of algebraic degree 16. The only
situation where this auxiliary predicate has degeneracies is when VConflict(Si, Sj , Sk, Q) or/and
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Figure 11: The different non-degenerate possible configurations
for the EdgeConflict predicate.
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Figure 12: The different degenerate possible configurations
for the EdgeConflict predicate.

VConflict(Sj , Si, Sl, Q) are “degenerate” and VConflictε(Si, Sj , Sk, Q) = VConflictε(Sj , Si, Sl, Q).
Then the predicate can be answered by looking at the relative position of tq with respect to ti
and tj on ∂Bijk (or the relative position of t′q with respect to t′i and t′j on ∂Bjil).

More precisely EdgeConflictε(Si, Sj , Sk, Sl, Q) can be evaluated by means of the following
procedure:

1. if (VConflictε(Si, Sj , Sk, Q) = “conflict”
and VConflictε(Sj , Si, Sl, Q) = “no conflict”) then
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return “conflict origin”;

2. if (VConflictε(Si, Sj , Sk, Q) = “no conflict”
and VConflictε(Sj , Si, Sl, Q) = “conflict”) then

return “conflict target”;

3. if (VConflict(Si, Sj , Sk, Q) = VConflict(Sj , Si, Sl, Q)
and VConflict(Si, Sj , Sk, Q) 6= “degenerate”) then

return EdgeConflict(Si, Sj , Sk, Sl, Q);

4. if VConflictε(Si, Sj , Sk, Q) = VConflictε(Sj , Si, Sl, Q) = “no conflict” then
if VConflict(Si, Sj , Sk, Q) = “degenerate” then

if titjtq is ccw then return “no conflict”; [Qdn in Fig-
ure 12]
else return “conflict interior”; [Q′dn in Figure 12]

else
[in this case: VConflict(Sj , Si, Sl, Q) = “degenerate”]
if t′jt′it′q is ccw then return “no conflict”;
else return “conflict interior”;

5. if VConflictε(Si, Sj , Sk, Q) = VConflictε(Sj , Si, Sl, Q) = “conflict” then
if VConflict(Si, Sj , Sk, Q) = “degenerate” then

if titjtq is ccw then return “conflict both”; [Qdc in Figure 12]
else return “conflict entire edge”; [Q′dc in Figure 12]

else
[in this case: VConflict(Sj , Si, Sl, Q) = “degenerate”]
if t′jt′it′q is ccw then return “conflict both”;
else return“conflict entire edge”;

The main observation from the above analysis is that the max-weight qualitative pertur-
bation scheme described in Section 4.2 not only resolves the VConflict predicate, but also the
EdgeConflict predicate (although not described in this paper, our perturbation scheme resolves,
in fact, all degeneracies of all predicates used in [10] for the computation of the 2D Apollonius di-
agram). To resolve the EdgeConflict predicate, we need only evaluate Orientation(ti, tj , tq) and/or
Orientation(t′j , t

′
i, t
′
q). As described in the previous section, this predicate is of algebraic degree 8,

and thus does not increase the algebraic degree of the EdgeConflict predicate. Furthermore, with
a careful implementation, it is possible to keep track of the intermediate results of the evaluation
of the VConflictε predicate and resolve the EdgeConflict predicate using these intermediate results
in a purely combinatorial manner.

As a final note, the above procedure for the evaluation of the EdgeConflict predicate works
as is even when the Apollonius edge e is of zero length. This is the case when the Apollonius
vertices vijk and vjil coincide, or, equivalently, when the four sites Si, Sl, Sj and Sk are all
tangent (and in that ccw order) to the same Apollonius circle. The only difference with respect
to the non-zero-length Apollonius edge case are the possible outcomes: the EdgeConflict predicate
will never return “conflict interior” nor “conflict both”; this is, however, automatically handled by
the procedure described above, that is without the need to handle any additional special cases.

4.4 Perturbing spheres for the 3D Apollonius diagram
In three dimensions, an Apollonius vertex vijkl is defined by four sites Si, Sj , Sk, and Sl, while
the predicate VConflict(Si, Sj , Sk, Sl, Q) tests if after adding a fifth site Q = Sq, vijkl remains a
valid Apollonius vertex or not. Let Bijkl denote the ball tangent to Si, Sj , Sk, and Sl, whose
tangency points ti, tj , tk, and tl form a positively oriented tetrahedron titjtktl.
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Figure 13: The case, for the VConflict predicate, where the tetrahedron tqtjtktl is flat.

The predicate in general position can be solved in different ways. One way is to do like
Boissonnat and Delage [2]. Another way is to use inversion like in the 2D case by Emiris and
Karavelas [10], and arrive at an alternative expression [11]. In degenerate configuration, Q and
Bijkl are tangent at tq and we can obtain, as a side product, the orientation of the tetrahedra
formed by 4 of the 5 tangency points ti, tj , tk, tl, and tq.

As for the 2D case, we apply the max-weight QSP scheme. If the predicate is degenerate the
effect of the perturbation is that the weight of the site with largest index increases, and thus
intersects the ball tangent to the four other sites. In the neighborhood of the center of Bijkl the
Apollonius diagram of Si, Sj , Sk, Sl, and Q has the same combinatorial structure as the Voronoi
diagram of ti, tj , tk, tl, and tq. We, thus, get an equivalent formulation for the predicate: given
five co-spherical points ti, tj , tk, tl, and tq, does the tetrahedron titjtktl remain in the Delaunay
triangulation when the point of the largest index is moved inside the ball. Notice that it implies
that the point with largest index is linked to all other points in this Delaunay triangulation.

Similarly to the two-dimensional case, we can conclude that Q is in conflict with Bijkl if
q > i, j, k, l. We can also take care of the cases where tq is equal to one of the four points ti,
tj , tk, and tl. Otherwise, we rename the indices so that i is the largest one. The definition of
Bijkl says that tetrahedron titjtktl is positively oriented. Notice that this can be true in two
ways: either the tetrahedron is really positively oriented, or it is flat, as the limit of a positively
oriented tetrahedron when εi → 0+.

If tqtjtktl is positively oriented, tq and ti are on the same side of tjtktl, which is a convex hull
facet. Since the 3D Apollonius graph is “star-shaped” from Si, Si is linked to SjSkSl to create
the tetrahedron SiSjSkSl, and thus there is no conflict for Q.

If tqtjtktl is negatively oriented, tq and ti are on opposite sides of tjtktl, which implies that
SjSkSl ceases to be a facet of the Apollonius graph. Thus, the tetrahedron SiSjSkSl disappears
and Q is in conflict.

If tqtjtktl is flat, the question reduces to determining the orientation of tεqtεjtεkt
ε
l , which are the

points of tangency of Sq, Sj , Sk, Sl with Bεijkl after the perturbation of Si by εi. This orientation
will be non-degenerate except in two very special cases where the centers of Q, Sj , Sk, and Sl
are either co-circular or collinear.

We first address the case where sq, sj , sk, and sl are neither co-circular nor collinear. Let us
assume that l is smaller than j and k, which means that wl ≤ wj , wk. By subtracting wl from
all weights, we can consider that Sl has zero weight, and then perform an inversion with pole sl
(see Figure 13). Let Zi, Zj , Zk, and Zq be the images of sites Si, Sj , Sk, and Q, and ωi, ωj , ωk,
and ωq be the images of ti, tj , tk, and tq under inversion, and denote by zi, zj , zk, and zq the
centers of Zi, Zj , Zk, and Zq. Since tqtjtktl is a flat tetrahedron, the four points tq, tj , tk, tl are
co-circular and thus ωq, ωj , ωk are collinear. Their supporting line lies in the unique plane Tijk
that is commonly tangent to all three sites Zq, Zj , and Zk. The uniqueness follows from the
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fact that zq, zj , and zk are not collinear, since sq, sj , sk, and sl = tl have been assumed to be
neither co-circular nor collinear. The planes tangent to both Zj and Zk are tangents to the cone
C, whose axis is the line through zj and zk. When we perturb Si to Sεi , the plane Tijk moves a
bit, in the set of planes tangent to C, to become T εijk.

Consider first the case wq ≥ wl, which implies that the weight of Zq is non-negative. Since
zq, zj , and zk are not collinear and Zq is tangent to C at ωq, Zq either properly intersects C or
is inside C. If Zq is (tangent to and) inside C, then, for all values of εi, T εijk does not intersect
Zq, and the result of the perturbed predicate is “no conflict”, otherwise, for all values of εi, T εijk
intersects Zq, and the result of the perturbed predicate is “conflict”. The way to evaluate the
VConflictε predicate, in this case, is by determining the value of Orientation(zq, zj , zk), where this
orientation is seen as a two-dimensional orientation in the plane that is perpendicular to Tijk and
passes through zj and zk. If wj = wk = wl, the cone C degenerates to the line through zj and zk.
In this case we have wq > wl (since, otherwise, sj , sk, sl and sq would have been co-circular), and
thus VConflictε returns “conflict”. If at least two of wj , wk, wl differ, then at least one of ωj and ωk
differs from zj and zk, respectively. Denoting by ω? a/the point of tangency that differs from the
corresponding center, it suffices to determine if Orientation(zq, zj , zk) = Orientation(ω?, zj , zk), in
which case the VConflictε predicate returns “no conflict”, otherwise “conflict” is returned.

Finally, notice that when wq < wl, the site Zq has negative weight. In this case, the sphere
Z−q will properly intersect the plane T εijk for all values of εi, which implies that Sq does not
intersect Bεijk. Hence, in this case, the result of the perturbed predicate is “no conflict”.

In all cases above, perturbing Si was sufficient to remove the degeneracy. In the very degener-
ate cases where sj , sk, sl, and sq are co-circular or collinear, the unique edge of the (degenerate)
Apollonius diagram of Sj , Sk, Sl, and Q is a circle or a line. In these cases, the position of Si
has no influence on the combinatorial structure of the diagram of Si, Sj , Sk, Sl, and Q, and we
need to perturb the second most perturbed site Sj or Sk or Q to remove the degeneracy. The
resolution of the degeneracy is similar to the 2D case: first perform a positive permutation of
j, k, l to ensure that j > k, l. If q > j then Q will be in conflict, otherwise, if q < j then Q will
be in conflict if and only if tjtktl and tqtktl have different two-dimensional orientations.

Following the above analysis, VConflictε(Si, Sj , Sk, Sl, Q) can be evaluated as follows:

1. if VConflict(Si, Sj , Sk, Sl, Q) 6= “degenerate” then return VConflict(Si, Sj , Sk, Sl, Q);

2. if q > max{i, j, k, l} then return “conflict”;

3. ensure that i > max{j, k} ≥ min{j, k} > l by a positive permutation of (i, j, k, l);

4. if tq = ti then return “no conflict”;

5. if tq = tj then { if q > j then return “conflict”; else return “no conflict”; };

6. if tq = tk then { if q > k then return “conflict”; else return “no conflict”; };

7. if tq = tl then { if q > l then return “conflict”; else return “no conflict”; };

8. if tqtjtktl is positively oriented then return “no conflict”;

9. if tqtjtktl is negatively oriented then return “conflict”;

10. if sj , sk, sl, sq are neither collinear nor co-circular then

i. if wq < wl then return “no conflict”;

ii. if wj = wk = wl then return “conflict”;
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iii. compute a/the tangency point ω?;
if zq, zj , zk and ω?, zj , zk have the same 2D orientation then return “no conflict”;
else return “conflict”;

11. ensure that i > j > max{k, l} by a positive permutation of (j, k, l);

12. if q > j then return “conflict”;

13. if tjtktl and tqtktl have the same 2D orientation then return “no conflict”;
else return “conflict”;

Steps 8 and 9 of the above algorithm rely on the auxiliary predicate Orientation(tq, tj , tk, tl)
that, given five sites, computes the orientation of the four tangency points on the common
tangent sphere to the fifth site. Since the tetrahedron titjtktl is, by definition positively oriented,
Orientation(tq, tj , tk, tl) will be positive if and only if tq lies on the upper half of Bijkl as ti, where
the two halves of Bijkl are delimited by the circle through tj , tk and tl. We first reduce all the
weights by wl. If wj = wk = wl(= 0), computing the orientation of tq, tj , tk, tl amounts to
evaluating the orientation of tq, sj , sk, sl. If wj , wk and wl are not all equal, we consider again
the inversion transformation with sl as the pole. Then tq lies on the same half of Bijkl as
ti if and only if ωq lies on the same half-plane of Πijk, with respect to the line through ωj
and ωk, with ωi. The equality of these 2D orientation tests is equivalent to testing the result
of Orientation(zq, zj , zk, ω?); if Orientation(zq, zj , zk, ω?) = “ccw” return “no conflict”, otherwise
return “conflict”.

For Step 10 we first need to test if the points sj , sk, sl and sq are either collinear or co-
circular. The possible collinearity can easily be tested via the cross-products (sl− sj)× (sk− sj)
and (sq − sj)× (sk − sj); if both are the zero vector, the four points are collinear. Co-circularity
in the original space corresponds to collinearity in the inverted space (where the pole of inversion
is sl); to test if sj , sk, sl and sq are co-circular we simply need to test if zj , zk, zq are collinear,
which amounts to computing the cross-product (zq − zj) × (zk − zj). For the 2D orientations
of zq, zj , zk and ω?, zj , zk, we need only choose a point x 6∈ plane(zqzjzk) and determine if the
tetrahedra zqzjzkx and ω?zjzkx have the same orientation.

Finally, if the centers sj , sk, sl, sq are co-circular the 2D orientations of tjtktl and tqtktl in
Step 13 are the same as those of sjsksl and sqsksl. Choosing a point x 6∈ plane(sjsksl), we
may compute these 2D orientations via their 3D counterparts sjskslx and sqskslx. If the centers
sj , sk, sl, sq are collinear, notice that, due to the fact that the tetrahedron titjtktl is positively
oriented, sk lies inside the segment sjsl. Hence, determining if the 2D orientations of tjtktl and
tqtktl are the same reduces to determining if sq lies inside the segment sksl or not; in the former
case we return “conflict”, while in the latter case we return “no conflict”.

We end this section by briefly discussing the algebraic degree of three-dimensional VConflictε
predicate. The unperturbed predicate can be evaluated with algebraic expressions of degree at
most 10 [11]; this accounts for Step 1 of the algorithm described above. Steps 2, 3, 11 and 12
all amount to comparing indices of sites, so they are all of degree 1. To resolve Steps 4 to 7
we need to test whether the points of tangency of two spheres with the common Voronoi sphere
coincide; this amounts to testing whether one sphere is internally tangent to another one, which
is a degree-2 predicate. Step 13 can easily be resolved using expressions of degree at most 6 [13],
while Steps 10(i) and 10(ii) are clearly degree-1 operations. The most demanding parts of our
evaluation procedure are Steps 8, 9 and 10(iii). Their algebraic degrees can be shown to be 28
and 20, respectively [13]. Hence, the VConflictε predicate can be evaluated, as described above,
with expressions of algebraic degree at most 28.
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5 Conclusion
In this paper, a new framework for dealing with geometric degeneracies has been proposed: QSP.
Conversely to usual approaches for symbolic perturbation, the new framework does not rely on a
particular algebraic description of the predicate, but rather directly on its geometric description.

A QSP scheme consists of a sequence of perturbations, but given a specific predicate only a
few of these perturbations are really active. The number of active perturbations used to resolve
a specific predicate depends on the problem at hand. For the 2D Apollonius diagram perturbing
one site always suffices. In its 3D counterpart we may need to perturb two sites, whereas in the
case of circular arcs we may need perform a rotation (perturb the axes) and perturb up to one
supporting circle per predicate. Minimizing the number of active perturbations is not necessarily
desirable, since it might result in a more complicated design of the perturbed predicate (for
example, trying to resolve degeneracies for the trapezoidal map of circular arcs with a single
active perturbation seems much more complicated).

Besides the number of active perturbations, another important issue is the ordering of the
perturbations: for the Apollonius diagram we consider sites by decreasing weight, whereas for
the trapezoidal map of circular arcs we first consider a (global) rotation and then the circles
by means of decreasing radius. Different perturbation sequences than the ones described in this
paper are definitely possible; the analysis, however, can become unnecessarily more complicated.

Our qualitative symbolic perturbation framework, and in particular the schemes described in
this paper, can also be applied to a variety of other problems, such as the 2D Voronoi diagram
of disjoint convex objects under any Lp metric, as well as the Euclidean Voronoi diagram of
certain disjoint convex objects in 3D (the objects can be, for example, non-intersecting lines, line
segments or rays). It suffices to replace a site Si with its Minkowski sum with a ball of radius
εi, and then consider the limits εi → 0+, for an appropriately defined ordering of the sites.
Another type of geometric problem, involving complex predicates, for which the QSP framework
is relevant, is the computation of lines tangent to four given lines in 3D [3, 6].

As a parallel goal, we plan to implement QSP schemes for the problems presented in this
paper. In fact, the implementation of the max-weight perturbation scheme inside Package
Apollonius_graph_2 of CGAL [14] is under way, and is expected to become part of the package
in the future.
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Figure 14: Computing the auxiliary predicate Orientation(tj , tk, tq) using inversion. ωqc lies inside
ωjωk, which corresponds to Orientation(tj , tk, tqc) = “cw”. ωqn (resp., ωq′n) lies outside ωjωk,
which corresponds to Orientation(tj , tk, tqn) = “ccw” (resp., Orientation(tj , tk, tq′n) = “ccw”).

A Alternative evaluation of the VConflictε predicate
In this appendix, we propose a method to evaluate Step 7 of VConflictε predicate. Actually,
this step requires the evaluation of the orientation of tangent points Orientation(tj , tk, tq). The
version proposed here is simpler than the one at Section 4.3.4 but has algebraic degree 12.

We essentially follow the same procedure that was used in [10] for evaluating the VConflict
predicate. The various calculations described below may be found in Section B.2. We decrease
the weights of Si, Sj , Sk and Sq, which results in Si becoming a point, while the weights of Sj , Sk
and Sq become non-positive. We define S−j = (sj ,−wj), S−k = (sk,−wk), S−q = Q− = (sq,−wq).
Using si as the pole, we invert S−j , S

−
k and Q−, and let Z−j = (uj , vj , ρj), Z−k = (uk, vk, ρk) and

Z−q = (uq, vq, ρq) be the corresponding inverted sites (see Figure 14). Let L denote the line that
is tangent to Z−j , Z

−
k and Z−q , and call ωj , ωk and ωq the points of tangency of Z−j , Z

−
k and Z−q

with L. Determining Orientation(tj , tk, tq) is equivalent to determining if ωq lies inside or outside
the segment ωjωk (the cases ωq = ωj and ωq = ωk have been ruled out by Steps 5 and 6 of the
predicate evaluation procedure): Orientation(tj , tk, tq) is ccw if and only if tq lies on Bijk and on
the arc delimited by tj and tk that contains ti, which, in turn, is the case if and only if ωq ∈ L
lies outside the segment ωjωk. To determine this, we consider the oriented lines L⊥j and L⊥k that
are perpendicular to L and pass through the centers of Z−j and Z−k respectively. We assume
that the positive orientation of L⊥j and L⊥k is in the direction of the (open) half-plane delimited
by L that does not contain Z−j and Z−k . Let oj and ok be the result of the orientation test of
(uq, vq) with respect to the two lines. If oj = ok, then ωq lies outside the segment ωjωk, and the
predicate returns “no conflict” (see Z−qn and Z−q′n in Figure 14); otherwise, oj 6= ok, in which case
ωq lies inside the segment ωjωk, and the predicate returns “conflict” (see Z−qc in Figure 14).

Computing the orientation oν , ν ∈ {j, k} amounts to computing the sign of the quantity:

o′ν = p∗νExyEw + (ExFx + EyFy)
√

∆, Fs =

∣∣∣∣s∗q p∗q
s∗ν p∗ν

∣∣∣∣ , s ∈ {x, y}.

The sign can be resolved using the procedure in (5). At a first glance the algebraic degree of the
predicate is 18. However, as for the VConflict predicate, we can factor the quantity X2

0 −X2
1Y
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as follows:

X2
0 −X2

1Y = [(Ex)2 + (Ey)2] o′′ν , o′′ν = [(Fx)2 + (Fy)2] (Ew)2 − (ExFx + EyFy)2.

Since (Ex)2 + (Ey)2 cannot be zero (otherwise we would have resolved the sign of X0 + X1

√
Y

without resorting to the computing the sign of X2
0 + X2

1Y ), determining the sign of o′ν reduces
to determining the sign of [(Fx)2 + (Fy)2] (Ew)2 − (ExFx +EyFy)2, which is of algebraic degree
12. Notice that the way of evaluating Orientation(tj , tk, tq) results in a perturbed predicate with
higher algebraic degree than the unperturbed one. On the other hand, both oj and ok can be
evaluated with extremely few operations in addition to those required for the VConflict predicate:
observing that the quantities p∗ν , Ex, Ey, Ew, (Ew)2 and Exy have already been computed when
evaluating the VConflict predicate, and that Fx and Fy are minors of Exy, and thus can be stored
while evaluating Exy, we need a maximum of 9 operations in order to compute the sign of o′ν (3
ops for ExFx + EyFy, 3 ops for (Fx)2 + (Fy)2, 1 op for (ExFx + EyFy)2, and another 2 ops for
o′′ν).

B Analysis of the predicates for the 2D Apollonius diagram
In this section we introduce a slightly heavier, yet more general notation. In particular, we
introduce the following determinant shorthands:

Ds
µν =

∣∣∣∣sµ 1
sν 1

∣∣∣∣ = sµ − sν , Dst
µν =

∣∣∣∣sµ tµ
sν tν

∣∣∣∣ , Dst
µνλ =

∣∣∣∣∣∣
sµ tµ 1
sν tν 1
sλ tλ 1

∣∣∣∣∣∣ ,
with s, t ∈ {x, y, u, v, ρ} and µ, ν, λ ∈ {j, k, q}, and

Esµν =

∣∣∣∣s∗µ p∗µ
s∗ν p∗ν

∣∣∣∣ , Estµν =

∣∣∣∣s∗µ t∗µ
s∗ν t∗ν

∣∣∣∣ , Estµνλ =

∣∣∣∣∣∣
s∗µ t∗µ p∗µ
s∗ν t∗ν p∗ν
s∗λ t∗λ p∗λ

∣∣∣∣∣∣ ,
with s, t ∈ {x, y, w} and µ, ν, λ ∈ {j, k, q}, and

x∗ν = xν − xi, y∗ν = yν − yi, w∗ν = wν − wi, p∗ν = (x∗ν)2 + (y∗ν)2 − (w∗ν)2, ν ∈ {j, k, q}.

B.1 The algebraic degree of the VConflict predicate
Recall from Section 4.3.1 that the VConflict predicate can be resolved by determining the sign of
the quantity:

I := ExwjkqE
x
jk + EywjkqE

y
jk + Exyjkq

√
∆, ∆ = (Exjk)2 + (Eyjk)2 − (Ewjk)2.

This is a quantity of the form X0 +X1

√
Y , which means that we might need to compute the
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sign of the quantity Z = X2
0 −X2

1Y . In our case Z can be factorized as described below:

Z = (ExwjkqE
x
jk + EywjkqE

y
jk)2 − (Exyjkq)

2((Exjk)2 + (Eyjk)2 − (Ewjk)2)

= (ExwjkqE
x
jk)2 + (EywjkqE

y
jk)2 + 2ExjkE

y
jkE

yw
jkqE

xw
jkq − (Exyjkq)

2[(Exjk)2 + (Eyjk)2] + (ExyjkqE
w
jk)2

= (Exwjkq)
2(Exjk)2 + (Eywjkq)

2(Eyjk)2 + (Eywjkq)
2(Exjk)2 + (Exwjkq)

2(Eyjk)2 − (Exyjkq)
2[(Exjk)2 + (Eyjk)2]

− (EywjkqE
x
jk)2 − (ExwjkqE

y
jk)2 + 2ExjkE

y
jkE

yw
jkqE

xw
jkq + (ExyjkqE

w
jk)2

= (Exwjkq)
2[(Exjk)2 + (Eyjk)2] + (Eywjkq)

2[(Exjk)2 + (Eyjk)2]− (Exyjkq)
2[(Exjk)2 + (Eyjk)2]

+ (ExyjkqE
w
jk)2 − (ExwjkqE

y
jk − E

yw
jkqE

x
jk)2

= [(Exwjkq)
2 + (Eywjkq)

2 − (Exyjkq)
2][(Exjk)2 + (Eyjk)2] + (ExyjkqE

w
jk)2 − (ExwjkqE

y
jk − E

yw
jkqE

x
jk)2.

It easy to verify that the following identities hold:

p∗jE
xw
jkq = ExQjE

w
jk − ExjkEwQj ,

p∗jE
yw
jkq = EyQjE

w
jk − EyjkEwQj , and

p∗jE
xy
jkq = ExjkE

y
Qj − EyjkExQj ,

which implies that

p∗j (E
xw
jkqE

y
jk − E

yw
jkqE

x
jk) = (ExQjE

w
jk − ExjkEwQj)Eyjk − (EyQjE

w
jk − EyjkEwQj)Exjk

= ExQjE
y
jkE

w
jk − ExjkEyjkEwQj − ExjkE

y
QjE

w
jk + ExjkE

y
jkE

w
Qj

= ExQjE
y
jkE

w
jk − ExjkEyQjEwjk

= (ExQjE
y
jk − ExjkE

y
Qj)E

w
jk

= −p∗jExyjkqEwjk,

Since p∗j 6= 0, we have
ExwjkqE

y
jk − E

yw
jkqE

x
jk = −ExyjkqEwjk. (6)

Hence (ExyjkqE
w
jk)2 − (ExwjkqE

y
jk − E

yw
jkqE

x
jk)2 = 0, and Z simplifies to:

Z = [(Exjk)2 + (Eyjk)2][(Exwjkq)
2 + (Eywjkq)

2 − (Exyjkq)
2]. (7)

Clearly, the two factors of Z are of degree 6 and 8, respectively. Moreover, as discussed in Section
4.3.1, when we evaluate Z it cannot be the case that Exjk = Eyjk = 0 (since then we would have
resolved the sign of I without resorting to Z); as a result the degree of the VConflict predicate is
8.

B.2 The auxiliary predicate for VConflictε using inversion
In this section we assume that we are given three sites Sµ = (xµ, yµ, wµ), µ ∈ {i, j, k} that define
an Apollonius vertex, and a query site Q = (xq, yq, wq) such that VConflict(Si, Sj , Sk, Q) =
“degenerate” (see Figure 14). We are going to compute the VConflictε(Si, Sj , Sk, Q) predicate in
the manner described in Appendix A.

Following the analysis in [10], the equation of the line L in the plane of inversion is au+bv+c =
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0, where:

a =
Du
jkD

w
jk +Dv

jk

√
Γ

(Du
jk)2 + (Du

jk)2
=
ExjkE

w
jk + Eyjk

√
∆

(Exjk)2 + (Eyjk)2
,

b =
Dv
jkD

w
jk −Du

jk

√
Γ

(Du
jk)2 + (Du

jk)2
=
EyjkE

w
jk − Exjk

√
∆

(Exjk)2 + (Eyjk)2
,

c =
Du
jkD

uρ
jkq +Dv

jkD
vρ
jkq +Duv

jkq

√
Γ

(Du
jk)2 + (Du

jk)2
=
ExjkE

xw
jkq + EyjkE

yw
jkq + Exyjkq

√
∆

(Exjk)2 + (Eyjk)2
.

where Γ = (Du
jk)2 + (Dv

jk)2 − (Dρ
jk)2. Therefore, the line L⊥ν that is perpendicular to L and

passes through cν has equation (written in the coordinate system of the plane of inversion):

β(u− uν)− α(v − vν) = 0,

where (uν , vν) = (x∗ν/p
∗
ν , y
∗
ν/p
∗
ν) is the image under the inversion transformation of the center cν

of Sν , ν ∈ {j, k}. To evaluate the orientation of the center (uq, vq) of Zq, we need to compute
the signs of the quantities:

oν = β(uq − uν)− α(vq − vν),

which in the inverted coordinates gives:

oν [(Du
jk)2 + (Dv

jk)2] = (Dv
jkD

ρ
jk −Du

jk

√
Γ)Du

qν − (Du
jkD

ρ
jk +Dv

jk

√
Γ)Dv

qν

= (Dv
jkD

u
qν −Du

jkD
v
qν)Dρ

jk − (Du
jkD

u
qν +Dv

jkD
v
qν)
√

Γ.
(8)

Since ν ∈ {j, k}, it is straightforward to verify that:

Dv
jkD

u
qν −Du

jkD
v
qν = Duv

qjk = Duv
jkq.

Substituting in terms of the original coordinates we have:

Γ = (p∗jp
∗
k)−2 ∆

Dρ
jk = (p∗jp

∗
k)−1Ewjk

Duv
jkq = (p∗jp

∗
kp
∗
q)
−1Exyjkq

Du
jkD

u
qν +Dv

jkD
v
qν = (p∗jp

∗
kp
∗
qp
∗
ν)−1 (ExjkE

x
qν + EyjkE

y
qν)

(Du)2 + (Dv)
2 = (p∗jp

∗
k)−2 [(Exjk)2 + (Eyjk)2].

We can thus rewrite (8) as follows, is terms of the original quantities:

oν [(Exjk)2 + (Eyjk)2] = p∗νE
xy
jkqE

w
jk + (ExjkE

x
qν + EyjkE

y
qν)
√

∆.

To determine the sign of oν , we must determine the sign of

o′ν = p∗νE
xy
jkqE

w
jk + (ExjkE

x
qν + EyjkE

y
qν)
√

∆,

which is a quantity of the form X0 + X1

√
Y , where the algebraic degrees of X0, X1 and Y are

9, 6 and 6, respectively. In fact, X0 is already factorized into p∗ν , E
xy
jkq and Ewjk, the algebraic

degrees of which are 2, 4, and 3, respectively. Hence, determining the signs of X0 and X1 reduces
to computing the signs of algebraic expressions of degree at most 6. To deduce the sign of o′ν ,
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however, we might need to compute the sign of Z = X2
0 −X2

1Y , which, a priori, is of degree 18.
Below, we will show that Z can be factorized appropriately, thus reducing the algebraic degree
of the quantities we need to evaluate in order to determine its sign. Indeed,

Z = (p∗νE
xy
jkqE

w
jk)2 − (ExjkE

x
qν + EyjkE

y
qν)2∆

= (p∗νE
xy
jkq)

2(Ewjk)2 − (ExjkE
x
qν + EyjkE

y
qν)2 [(Exjk)2 + (Eyjk)2] + (ExjkE

x
qν + EyjkE

y
qν)2(Ewjk)2

= [(p∗νE
xy
jkq)

2 + (ExjkE
x
qν + EyjkE

y
qν)2] (Ewjk)2 − (ExjkE

x
qν + EyjkE

y
qν)2 [(Exjk)2 + (Eyjk)2].

But,

(p∗νE
xy
jkq)

2 + (ExjkE
x
qν + EyjkE

y
qν)2 = (ExjkE

y
qν − EyjkExqν)2 + (ExjkE

x
qν + EyjkE

y
qν)2

= (Exjk)2(Eyqν)2 + (Eyjk)2(Exqν)2

+ (Exjk)2(Exqν)2 + (Eyjk)2(Eyqν)2

= [(Exjk)2 + (Eyjk)2] [(Exqν)2 + (Eyqν)2].

Hence, we have:

Z = [(Exjk)2 + (Eyjk)2] [(Exqν)2 + (Eyqν)2] (Ewjk)2 − (ExjkE
x
qν + EyjkE

y
qν)2 [(Exjk)2 + (Eyjk)2]

= [(Exjk)2 + (Eyjk)2] {[(Exqν)2 + (Eyqν)2] (Ewjk)2 − (ExjkE
x
qν + EyjkE

y
qν)2}

Notice that it cannot be the case that Exjk = Eyjk = 0 (since otherwise X0 would have been zero
and we would have been able to compute the sign of o′ν without resorting to Z), the sign of Z
is the sign of the quantity [(Exqν)2 + (Eyqν)2] (Ewjk)2 − (ExjkE

x
qν + EyjkE

y
qν)2, which is of algebraic

degree 12.

B.3 The algebraic degree of the Orientation predicate involving an Apol-
lonius vertex

Suppose we are given three sites Sν = (xν , yν , wν), ν ∈ {i, j, k} and two points Sν = (xν , yν , 0),
ν ∈ {l,m}, we are interested in computing the orientation Orientation(vijk, Sl, Sm), where vijk is
the Apollonius vertex of Si, Sj and Sk. Emiris and Karavelas [10] have shown that this predicate
can be resolved by computing the sign of the quantity

O := 2(ExjkE
xw
jk + EyjkE

yw
jk )Exylm + (EyjkD

x
lm − ExjkDy

lm)Ewjk

+ (2ExyjkE
xy
lm − ExjkDx

lm − EyjkD
y
lm)
√

∆,

= (2ExylmE
xw
jk − EwjkDy

lm)Exjk + (2ExylmE
yw
jk + EwjkD

x
lm)Eyjk

+ (2ExyjkE
xy
lm − ExjkDx

lm − EyjkD
y
lm)
√

∆.

As for the VConflict predicate, it is of the form X0 +X1

√
Y , and in order to evaluate its sign

we might need to compute the quantity Z = X2
0 −X2

1Y . As discussed in [10], since the algebraic
degrees of X0, X1 and Y are 7, 4 and 6 respectively, the Orientation predicate is of algebraic
degree 14.
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However, as for the VConflict predicate we can factorize Z:

Z = [(2ExylmE
xw
jk − EwjkDy

lm)Exjk + (2ExylmE
yw
jk + EwjkD

x
lm)Eyjk]2

− (2ExyjkE
xy
lm − ExjkDx

lm − EyjkD
y
lm)2[(Exjk)2 + (Eyjk)2 − (Ewjk)2]

= (2ExylmE
xw
jk − EwjkDy

lm)2(Exjk)2 + (2ExylmE
yw
jk + EwjkD

x
lm)2(Eyjk)2

+ 2(2ExylmE
xw
jk − EwjkDy

lm)(2ExylmE
yw
jk + EwjkD

x
lm)ExjkE

y
jk

− (2ExyjkE
xy
lm − ExjkDx

lm − EyjkD
y
lm)2[(Exjk)2 + (Eyjk)2]

+ (2ExyjkE
xy
lm − ExjkDx

lm − EyjkD
y
lm)2(Ewjk)2

= (2ExylmE
xw
jk − EwjkDy

lm)2[(Exjk)2 + (Eyjk)2] + (2ExylmE
yw
jk + EwjkD

x
lm)2[(Exjk)2 + (Eyjk)2]

− (2ExyjkE
xy
lm − ExjkDx

lm − EyjkD
y
lm)2[(Exjk)2 + (Eyjk)2]

− (2ExylmE
xw
jk − EwjkDy

lm)2(Eyjk)2 − (2ExylmE
yw
jk + EwjkD

x
lm)2(Exjk)2

+ 2(2ExylmE
xw
jk − EwjkDy

lm)(2ExylmE
yw
jk + EwjkD

x
lm)ExjkE

y
jk

+ [(2ExyjkE
xy
lm − ExjkDx

lm − EyjkD
y
lm)Ewjk]2

= [(Exjk)2 + (Eyjk)2]O′ + [(2ExyjkE
xy
lm − ExjkDx

lm − EyjkD
y
lm)Ewjk]2

− [(2ExylmE
xw
jk − EwjkDy

lm)Eyjk − (2ExylmE
yw
jk + EwjkD

x
lm)Exjk]2

= [(Exjk)2 + (Eyjk)2]O′ + [(2ExyjkE
xy
lm − ExjkDx

lm − EyjkD
y
lm)Ewjk]2

− [2Exylm(Exwjk E
y
jk − E

yw
jk E

x
jk)− (Dx

lmE
x
jk +Dy

lmE
y
jk)Ewjk]2,

where

O′ = (2ExylmE
xw
jk − EwjkDy

lm)2 + (2ExylmE
yw
jk + EwjkD

x
lm)2 − (2ExylmE

xy
jk − ExjkDx

lm − EyjkD
y
lm)2.

But

Exwjk E
y
jk − E

yw
jk E

x
jk = ExyjkE

w
jk,

which implies that the last two terms in the last expression for Z above cancel out. Hence,
Z = [(Exjk)2 + (Eyjk)2]O′. Clearly, the algebraic degree of O′ is 8. Moreover, the quantity
(Exjk)2 + (Eyjk)2 is strictly positive when we compute the sign of Z, since otherwise X0 would
have been zero (X0 is a linear combination of Exjkand E

y
jk), a case which has already been ruled

out according to the procedure in (5). Hence the algebraic degree of the Orientation(vijk, Sl, Sm)
predicate is 8.
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