The monotonicity of f-vectors of random polytopes

Abstract : Let K be a compact convex body in Rd, let Kn be the convex hull of n points chosen uniformly and independently in K, and let fi(Kn) denote the number of i-dimensional faces of Kn. We show that for planar convex sets, E(f0(Kn)) is increasing in n. In dimension d>=3 we prove that if lim( E((f[d -1](Kn))/(An^c)->1 when n->infinity for some constants A and c > 0 then the function E(f[d-1](Kn)) is increasing for n large enough. In particular, the number of facets of the convex hull of n random points distributed uniformly and independently in a smooth compact convex body is asymptotically increasing. Our proof relies on a random sampling argument.
Document type :
Reports
[Research Report] RR-8154, INRIA. 2012, pp.10


https://hal.inria.fr/hal-00758686
Contributor : Olivier Devillers <>
Submitted on : Thursday, November 29, 2012 - 5:10:36 PM
Last modification on : Wednesday, January 7, 2015 - 3:19:49 PM

Files

RR-8154.pdf
fileSource_public_author

Identifiers

  • HAL Id : hal-00758686, version 1
  • ARXIV : 1211.7020

Citation

Olivier Devillers, Marc Glisse, Xavier Goaoc, Guillaume Moroz, Matthias Reitzner. The monotonicity of f-vectors of random polytopes. [Research Report] RR-8154, INRIA. 2012, pp.10. <hal-00758686>

Export

Share

Metrics

Consultation de
la notice

155

Téléchargement du document

62