Inference of polynomial invariants for imperative programs: a farewell to Gröbner bases

Abstract : We propose a static analysis for computing polynomial invariants for imperative programs. The analysis is derived from an abstract interpretation of a backwards semantics, and computes pre-conditions for equalities like g = 0 to hold at the end of execution. A distinguishing feature of the technique is that it computes polynomial loop invariants without resorting to Gröbner base computations. The analysis uses remainder computations over parameterized polynomials in order to handle conditionals and loops efficiently. The algorithm can analyse and find all loop invariants reported previously in the literature, and executes significantly faster than implementations using Gröbner bases.
Type de document :
Communication dans un congrès
SAS - 19th International Static Analysis Symposium - 2012, Sep 2012, Deauville, France. 2012
Liste complète des métadonnées

https://hal.inria.fr/hal-00758890
Contributeur : David Cachera <>
Soumis le : jeudi 29 novembre 2012 - 15:11:51
Dernière modification le : mardi 16 janvier 2018 - 15:54:15

Identifiants

  • HAL Id : hal-00758890, version 1

Citation

David Cachera, Thomas Jensen, Arnaud Jobin, Florent Kirchner. Inference of polynomial invariants for imperative programs: a farewell to Gröbner bases. SAS - 19th International Static Analysis Symposium - 2012, Sep 2012, Deauville, France. 2012. 〈hal-00758890〉

Partager

Métriques

Consultations de la notice

906