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Abstract

We present a robust method for modeling cities from un-

structured point data. Our algorithm provides a more com-

plete description than existing approaches by reconstruct-

ing simultaneously buildings, trees and topologically com-

plex grounds. Buildings are modeled by an original ap-

proach which guarantees a high generalization level while

having semantized and compact representations. Geomet-

ric 3D-primitives such as planes, cylinders, spheres or

cones describe regular roof sections, and are combined with

mesh-patches that represent irregular roof components. The

various urban components interact through a non-convex

energy minimization problem in which they are propagated

under arrangement constraints over a planimetric map. We

experimentally validate the approach on complex urban

structures and large urban scenes of millions of points.

1. Introduction

The 3D reconstruction of urban environments is a topic

of major interest in computer vision. Driven by new virtual

applications, this research domain has considerably pro-

gressed during the last decade.

Related works on urban scene modeling - Many works

are devoted to street level modeling from ground or oblique-

view data, e.g. [4, 8, 9, 21]. Other works propose large

city descriptions from airborne data, and offer complemen-

tary advantages to street level representations such as fine

roof descriptions. Most of the city modeling approaches di-

rectly or indirectly tackle the problem through point cloud

analysis. Digital Surface Models (DSM), which are 2.5D

view-dependent representations, constitute structured point

clouds having a regular point distribution in the XY-plane

well adapted to aerial-based large city modeling. Lafarge

et al. [13] and Zebedin et al. [24] generate DSMs from

MultiView Stereo (MVS) imagery in order to model build-

ings using polyhedral structures. Other approaches con-

sider unstructured point clouds obtained from Laser/lidar

systems [17, 19, 22, 25] or MVS imagery [6]. Such data

have spatially heterogeneous point distributions without in-

duced neighborhood relationship between the points, and

contain outliers, especially when generated from MVS im-

agery. Matei et al. [17] and Poullis et al. [19] propose flat

roof models adapted to ”Manhattan-world” environments.

Both approaches put efforts in segmenting the buildings and

simplifying their boundaries, either by estimating building

orientations [17] or by using statistical considerations [19].

A more general building representation is proposed in [25]

where a mesh simplification procedure based on dual con-

touring is used. Although this approach wins in level of

generalization, semantic information is lost: a simple planar

roof section can be described by many mesh facets with dif-

ferent normal orientations. These approaches provide con-

vincing 3D models but do not address two important issues.

Firstly, strong urban prior on orthogonality, symmetry and

roof typology are frequently introduced to reduce the so-

lution space, and thus the problem complexity. These as-

sumptions are very efficient for ”Manhattan-world” envi-

ronments but become penalizing for less ”well-organized”

urban landscapes such as the areas presented in Section 6.

Secondly, these methods provide a sparse description of ur-

ban scenes. They are focused on the building modeling task

and disregard all the other objects which can be found in an

urban scene such as trees, or even sometimes ground sur-

faces by assuming a constant altitude over the global scene.

Contributions - We propose an algorithm which brings

solutions to address the problems mentioned above.

• Complete modeling of unspecified urban environments:

we do not simply reconstruct the buildings: we provide a

more complete representation by modeling vegetation and

topologically complex grounds. Moreover, the method is

adapted to various types of urban landscapes, from the busi-

ness districts of big cities to small mountainous villages,

including historical towns with old architectural buildings,

and is robust to a large range of point data having different

point densities and various sensor characteristics.

• Hybrid reconstruction: our 3D-model combines geomet-

ric 3D-primitives such as planes, cylinders, spheres or cones

to represent standard roof sections and mesh-patches to de-

scribe more irregular roof components. Those two differ-

ent types of 3D-representation tools interact through a non-
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Figure 1. Overview of the proposed approach - Our algorithm digests large amounts of unstructured points in order to provide a compact

and semantized representation of urban environments including atypical buildings, trees, and topologically complex grounds.

convex energy minimization problem. Thus, the 3D-models

provide urban details while being semantized and compact.

• 2.5D-arrangement scheme of urban structures: we

present a general formulation for roof section arrangement

problems, the first to date to our knowledge which works

in non-restricted contexts (i.e. unspecified primitives, vari-

ous types of urban objects interacting in the scene, unknown

building contours).

A four-step strategy illustrated in Fig. 1 is adopted. First,

the lidar point cloud is classified using an unsupervised

method presented in Section 2. Four classes are distin-

guished: ground, building, vegetation and clutter. The sec-

ond step, detailed in Section 3, consists in extracting geo-

metric primitives such as 3D-segments, planes or cylinders

from the point set classified as building by a fast process.

Section 4 constitutes the key element of the system in which

the geometric primitives and the other urban components

are arranged in a common planimetric map through a multi-

label energy minimization formulation. In the last stage, the

various urban objects are represented in 3D using template

fitting and meshing procedures explained in Section 5. Ex-

perimental results on complex urban structures and various

types of large urban scenes are presented and commented in

Section 6. Note that technical details and additionnal exper-

iments could be found in [14].

2. Point cloud classification

Four classes of interest are defined: building, vegeta-

tion, ground, and clutter. The class clutter corresponds to

the outliers contained in the data and to small urban com-

ponents which temporarily perturb the scene such as cars,

fences, wires, roof antennas or cranes. This class also in-

cludes the vertical structures such as facades because these

have a sparse and irregular point repartition penalizing the

scene understanding. A neighboring relationship is defined

to create spatial dependencies between the 3D-points. Two

points are neighbors if their Euclidean distance is inferior to

a certain value, in practice 2 m.

Discriminative features - Several geometric attributes

computed for each point are proposed to distinguish the four

classes of interest.

• Local non-planarity fp represents the quadratic distance

between the point and the optimal 3D-plane computed

among its neighbors. The response to this feature is weak

in the case of buildings and ground.

• Elevation fe allows the distinction between the ground

and the other classes. This feature corresponds to the height

difference between the point and its planimetric projection

on an estimated elevation map of the ground.

• Scatter fs measures the local height dispersion of the

points. It provides a high value in the case of trees and

also some undesirable urban components. This feature is

usually defined as the minimal principal curvature mean of

the considering point and its neighbors [22].

• Clutter fc is dedicated to outliers and undesirable compo-

nents having a linear structure. It is defined as the Euclidian

distance between the point and the optimal 3D-line among

its neighbors, weighted by the number of neighbors.

In order to tune the sensitivity of each feature, four parame-

ters σe, σp, σs and σc are introduced. The features are then

normalized by a linear projection on the interval [0, 1].

Non-supervised problem formulation - An energy
minimization is proposed to classify the point cloud. The
energy is a sum of two terms: a pairwise interaction defined
by the standard Potts model [15] whose parameter is de-
noted γ, and a data component Ed based on a combination
of the normalized features defined above given by



Edi(xi) =















(1− fe).fp.fs if xi = building

(1− fe).(1− fp).(1− fs) if xi = vegetation

fe.fp.fs if xi = ground

(1− fp).fs.fc if xi = clutter

(1)

where xi is the class of the point i and Edi is the partial

data term of the point i with Ed =
∑

i Edi. A Graph-Cut

based algorithm [5] is used to quickly reach an approximate

solution close to the global optimum of the energy. One can

easily check that our model fits the requirements for this

algorithm. In our experiments, the initial configuration is

chosen as the configuration minimizing the data term Ed.

The parameter γ which balances the Potts interaction with

respect to the data term, is set to (2.p̂)−1 where p̂ is the av-

erage point density of the cloud. We set σe to 6 m (i.e. the

height of two floors), σs to 0.5, σp to 0.5m, and σc to 0.25m

(i.e. critical distances to be considered as planar and linear,

respectively). One can imagine tuning these parameters us-

ing a learning procedure, as for example in [11]. However,

we notice that these values are stable on a wide range of data

in spite of the simplicity of the model, as explained in [14].

Thus, this would unnecessarily make the system heavier.

3. Geometric shape extraction

3D-primitives are then extracted from the point set clas-

sified as building. As the classification proposed in Sec-

tion 2 rejects outliers from the building point set, the use

of Ransac-based algorithms, which are more computation-

ally expensive for similar problems [20, 22], is not required.

Two types of elements are detected.

3D-segments- These are used to locate the building con-

tours. Our concern is not to describe the contour of a build-

ing as a set of perfectly connected segments (which is a dif-

ficult talk requiring urban assumptions and geometric ap-

proximations), but rather to have an accurate positioning of

the main edges with potentially small missing parts between

them (see Fig. 2). First, the points located on the building

borders are selected from the building point set. A point

is selected if its Euclidean distance to the optimal 3D-line

among its neighbors is inferior to (2
√
p̂)−1. Then, 3D-lines

are detected by region growing from the selected points.

The 3D-segments are obtained by projecting the accumu-

lated points on the detected 3D-lines.

Planar, spherical, cylindrical, and conoidal shapes-

They are extracted on the regular sections of the roofs.

First, the planar structures, which constitute the most com-

mon shape of roofs, are detected. A region growing al-

lows the fast extraction of 3D-planes. The propagation cri-

terion tests whether the normal of the considered point is

similar to the average normal of the points in the region.

Non-planar shapes are then extracted from the points un-

fitted to a plane. Fitting spheres, cylinders or cones have

no obvious solution when the points only represent an un-

known portion of the whole shape. One can use Monte

Carlo sampling but it requires high computing time [12].

We prefer extracting these non-planar primitives using an

iterative non-linear minimization, typically by a Levenberg-

Marquardt optimization. The parametrization and the first

order Euclidean distance approximation to spheres, cylin-

ders and cones proposed by [16] are used to achieve numeri-

cally stable fittings. Extracting the non-planar shapes subse-

quently to the 3D-planes avoids both high computing times

and typical confusions between large non-planar primitives

and planes which could have the same fitting error.

Figure 2. Shape extraction - (top-left) aerial image of a build-

ing, (top-right) classified point cloud [color code: blue=building,

red=vegetation, yellow= ground and white= clutter], (bottom-left)

extracted 3D-segments and (bottom-right) extracted areal primi-

tives. The main regular roof sections of the buildings are detected

as well as the global building contours. Note that the planes are

visually represented by their convex envelopes.

4. Planimetric arrangement

The third step consists in arranging both the geometric

shapes extracted in Section 3 and the other urban compo-

nents identified in Section 2 in a common dense represen-

tation. Several efficient methods of roof section arrange-

ment have been proposed in restricted contexts. A model

for planar sections is presented in [3] for simple houses.

Revolution sections are also taken into account in [24], but

this graph-cut based approach does not address the build-

ing contouring problem and requires building masks as in-

put. It remains an open issue when (i) the primitives are

unspecified, (ii) different types of urban objects interact in

the scene, and (iii) the building contours are not given. We

propose an original solution by propagating the point labels

in a grid of X and Y axis (see Fig. 3). Performing the ar-

rangement on such a grid, called a planimetric map in the

following, allows us to highly reduce the problem complex-

ity by assuming a 2.5D representation of urban scenes.



Figure 3. The labels of the points are first projected on a 2D-grid

G, and then propagated under arrangement constraints.

Point labels - Each point of the cloud is associated

with the label ground, vegetation, clutter, plane(k),
cylinder(l), sphere(m), cone(n) or roof . The points la-

beled as clutter are not taken into account in the follow-

ing. The label roof corresponds to the points classified as

’building’ in Section 2, which have not been fitted to pla-

nar, spherical, cylindrical or conoidal shapes. The point

labels are projected on a 2D-grid G as illustrated on Fig.

3. We denote by G(proj), the subset of G composed of the

cells on which at least one point label has been projected,

and G(empty) its complementary subset on G. The labels

are then propagated on the entire grid G under structure ar-

rangement constraints.

Label propagation under arrangement constraints -

The label propagation procedure is performed using a

Markov Random Field (MRF) with pairwise interactions,

whose sites are specified by the cells of the 2D-grid G, and

whose adjacency set E is given by a breakline-dependent

neighborhood. The quality of a configuration l is measured

by the energy U of the standard form:

U(l) =
∑

i∈G

Di(li) + β
∑

{i,j}∈E

Vij(li, lj) (2)

where Di and Vij constitute the data term and propagation

constraints respectively, balanced by the parameter β > 0.

Breakline-dependent neighborhood -The neighborhood re-

lationship is not defined by an isotropic area, but takes into

account the 3D-segments extracted in Section 3 in order to

stop the propagation beyond building contours. It is given

by:

{i, j} ∈ E ⇔

{
‖i− j‖2 ≤ r
O(i,Lk) = O(j,Lk)

(3)

where Lk is the 2D-line obtained by projecting on the plani-

metric map the kth 3D-segment interacting with the pair

{i, j} (see Fig. 4). O(i,L) is the oriented side in which

the cell i is located with respect to the line L, and r is

the maximal distance between two neighboring cells. This

breakline-dependent neighborhood allows us to efficiently

address the building contouring problem which is usually a

critical point in existing methods.

Data term - Di checks the coherence of the label li at the

Figure 4. Breakline-dependent neighborhood - The neighbors of

the cell i are contained in the yellow area. {i, j1} ∈ E but

{i, j2} /∈ E.

cell i with respect to the input point cloud. We have

Di(li) =

{
c if li = roof
1{i∈G(proj)} min(1, |zli − zpi

|) otherwise

(4)
where c ∈ [0, 1] is a coefficient penalizing the labels roof in

order to favor the primitive-based description of buildings,

1{.} is the characteristic function, zli is the height associ-

ated with li, and zpi the maximal height of the 3D-points

contained in the cell i.

Propagation constraints - Vij allows both the label con-

sistency and a coherent structure arrangement. To do so,

an arrangement law, denoted by ⋊⋉, is introduced to test

whether two labels of neighboring cells are spatially co-

herent. Two labels li and lj are said coherent (denoted by

li ⋊⋉ lj) if O(i, Ili,lj ) 6= O(j, Ili,lj ) where Ili,lj is the XY-

intersection between the two objects li and lj , and O(i, I)
is the oriented side in which the cell i is located with respect

to the curve I. In other words, the intersection of the two

objects must be spatially located in between the two cells i
and j. For example, if two neighboring cells are associated

with two different planar labels, the ⋊⋉-law checks that the

projection in XY of the 3D-line intersecting the two planes

is located in between the two cells (see Fig. 5). Thus, the

exact separation of two connected planes is constrained as

shown in Fig. 6. The pairwise interaction is then given by:

Vij(li, lj) =





ǫ1 if li ⋊⋉ lj
ǫ2 if li = lj
1 otherwise

(5)

where ǫ1 and ǫ2 are real values in [0, 1] with ǫ1 < ǫ2, and

tune the label consistency with respect to the coherent ob-

ject arrangement considerations.

Optimization with parallelization scheme- Finding the la-

bel configuration which minimizes the energy U is a non-

convex optimization problem. Simulated annealing tech-

niques [15], graph-cut based algorithms [5] or belief propa-

gation methods [23] could provide a good approximation of

the solution but at the expense of high computing time. The

scenes are generally of large scale and the number of labels

is very high. In order to reach reasonable computing times,



Figure 5. Principle of the ⋊⋉-law on two examples - The blue (re-

spectively red) junctions between neighboring cells correspond to

spatially coherent (resp. non-coherent) labels.

an original parallelization scheme is proposed, relying on

the two following assumptions:

• the labels cannot be propagated between two non-

overlapped urban objects in the scene (e.g. the label cor-

responding to the roof section of a building cannot be used

for an other building),

• the point labels originally projected in the 2D-grid G are

of quality, i.e. they are probably correct (see Fig. 3).

Thus, the configuration space can be significantly reduced

by considering the minimization of U as a set of N local

independent (and thus parallelizable) energy minimization

problems over a partition of the grid G = ∪
k∈[1,N+1]

Gk:

min
l∈L

U(l) ⇔

{
min

l/Gk
∈Lk

U(l/Gk
)

}

k∈[1,N ]

(6)

where l/Gk
is a configuration of labels on the cluster Gk,

and Lk is the subset of labels restricted to Gk in the ini-

tial configuration l(0) which is obtained by a basic isotropic

propagation on G(empty) of the projected labels in G(proj)

(see Fig. 6). The partition of G is obtained by separating

the low-level urban components (e.g. blocks of buildings,

groups of trees, etc). Each cluster Gk corresponds to the

connected cells labeled as non-ground in l(0). GN+1 repre-

sents the remaining set of cells labeled as ground.

The α-expansion algorithm [5] is used to solve each local

independent optimization problem. This algorithm is par-

ticularly efficient in our context, i.e. with a limited num-

ber of labels and a good initial configuration. Confidence

is given to the labels originally projected: the expansions

are first performed on the cells originally labeled as empty,

and then on the remaining cells for readjusting the config-

uration. The parallelization scheme allows us to reach a

good approximation of the solution while significantly re-

ducing the computing times on a 8-core computer compared

to standard techniques as shown in Tab. 1.

Table 1. Comparisons of different optimization techniques on a

1 km2 dense urban area.
α-exp. [5] LBP [23] α-exp. with our parallelization

scheme

Energy 2832.9 3016.6 2853.3

Time 6.7 hrs 10.3 hrs 209.3 sec

Figure 6. Planimetric arrangement - (from left to right) grid G of

the projected point labels, initial label map l(0) , label map af-

ter minimizing U, and after minimizing a variant of U discard-

ing the ⋊⋉-law. One can notice the label propagation is correctly

stopped beyond building contours and neighboring primitives. The

⋊⋉-law allows the optimal arrangement of the roof sections [color

code: white=empty, yellow=ground, red=vegetation, blue=roof,

other colors=primitives].

5. Representation of the urban elements

The three types of elements contained in the scenes are

differently represented in 3D.

Buildings - A hybrid representation is used to model the

buildings with a high level of generalization and good com-

paction. Arrangements of geometric 3D-primitives, for the

standard roof sections, and mesh-patches describing the ir-

regular roof components are combined. The primitive ar-

rangements are represented as polyhedral structures eas-

ily computed from the label map (see Section 4) by using

the Computational Geometry Algorithms Library [1]. The

mesh-patches are created by meshing a regular grid of 3D-

points obtained from the cells labeled as roof in the label

map (blue cells on the figures). As illustrated on Fig. 9,

one of the main advantages of this strategy is to simplify

the mesh patches while controlling the approximation error.

Thus a standard mesh simplification algorithm [10] can be

used to obtain more compact and coarser building represen-

tations. The fac ades are obtained by projecting the building

contours on the ground.

Trees - They are reconstructed in 3D using template

matching. The template is a simple ellipsoidal tree model

whose compaction and rendering are well adapted to large

urban scenes (see Fig. 7). As directly matching the point

set is computationally expensive, the center of mass of trees

is first detected using a watershed algorithm performed on

the estimated height of the cells labeled vegetation. The

other parameters of the template such as the height and the

canopy radius are then simultaneously found by minimizing

the Euclidean distance from points to an ellipse.

Ground - A meshing procedure is used to model the

ground. A grid of 3D-points is created from a spatial sub-



sampling of the cells labeled as ground. It allows an ac-

curate surface description without imposing geometric con-

straints. Note that, as with the mesh patches of the buildings

and the non-planar primitives, the mesh can be simplified

using a decimation algorithm [10] to gain in compaction.

Figure 7. Object representation - (top) obtained 3D-model and

(bottom) input cloud (2 pts/m2) with the points colored accord-

ing to their distance to the 3D-model. The high errors correspond

to points from trees (the points of a tree do not obviously describe

an perfect ellipsoidal shape), and from small urban components as

cars or roof superstructures.

6. Experiments

Our method has been tested on various datasets having

different point densities. One of the major strengths of the

algorithm is that the point density of the data does not in-

terfere with the planimetric arrangement in terms of result

quality and computation complexity. The size of a cell sc
is usually chosen in the interval [0.2m, 0.4m], the radius

r of the breakline-dependent neighborhood to 1.5sc, ǫ1 to

0.5ǫ2 = 1/3 and β to 0.5.

Visual considerations - Fig. 11 shows large scenes

reconstructed with different types of landscapes includ-

ing business districts with large and tall buildings, historic

downtowns with a high concentration of both small build-

ings and trees, and hilly areas with high altimetric variations

and dense forests. The input data generated from aerial

laser scanning contain more than ten million of points.

The results are obtained without using prior information on

the landscape type and the object distributions within the

scenes. One of the main advantages of this hybrid repre-

sentation is that we are not penalized by primitive under-

detection problems because the regular roof sections missed

during the geometric shape extraction stage are completed

by mesh-patches. The level of detail of the results mainly

depends on the input point density. For example, the roof

details such as the dormer-windows or chimneys in Fig. 7

are described by less than 4 points in the 2 pts/m2 density

data. Our method ignores these sets of points in the compu-

tation of the main roof sections because they are too small

to extract robust information. In Fig. 8, the input data has

a 17 pts/m2 density which is high enough to recover roof

details such as the chimney.

Performances - The evaluation of building reconstruc-

tion methods is a difficult task due to the absence of a

benchmark in the field, the problems of data sharing and

the difficulty in achieving ground truth. In order to mea-

sure the quality of the results, two main criteria are consid-

ered: the distance of the input points to the 3D-model and

the compaction of the 3D-model. The mean distance on a

2 pts/m2 density point cloud is typically contained in the

interval [0.2 m, 0.35 m] (see Fig. 7 and 9). However, the

mean distance is computed from all the points of the input

data, including the outliers and the undesirable points corre-

sponding to cars, fences or wires which highly corrupt the

error value. Without taking these points into account, the

mean error is usually inferior to 0.1 m.

Figure 8. Comparison with a mesh simplification method- (a) 3D-

models obtained (left) by our method and (right) by [25], (b) input

clouds (17 pts/m2) with the points colored according to their dis-

tance to the associated 3D-models. Our model presents a better

roof component recovery. Although the mean errors to the input

data are similar (0.07 m), the compaction of our model is almost

twice better (126 vs 228 facets).

In addition, the altimetric accuracy of the algorithm is eval-

uated with respect to ground truth obtained by topographi-

cal measurement on two buildings , and compared to a con-

structive solid geometry approach and a Digital Elevation

Model from point cloud (see Fig. 10). From a 2 pts/m2 den-

sity input data, we obtain the best mean error (0.21m) on the

evaluated buildings in spite of some high local errors on the

contours (see the thin black lines partially surrounded the

buildings on the altimetric error maps). From such a low

point density, it is indeed difficult to accurately extract the

building contours. Note also that the algorithm is globally

more efficient from point clouds generated by laser acquisi-

tion than by MVS imagery, as explained in [14]. In terms of

tree detection, the false alarm rate and the under-detection

rate are respectively estimated to 2% and 6% on the Amiens

dataset. However, certain building contour points associ-

ated with atypical roof sections may be detected as vegeta-

tion (see Fig. 11, top right crop). Less than 10 minutes is

required to model a 1 km2 dense urban area using a single

computer. The computing times are competitive compared



Figure 9. Hybrid reconstruction of a complex building - (a) aerial image, (b) extracted 3D-primitives, (c) label map [color code: see Fig.

6], 3D-models obtained with (e) fine and (f) coarse mesh patch descriptions, input cloud (2 pts/m2) with the points colored according to

their distance to the (g) ”fine” and (h) ”coarse” 3D-models [color code: see Fig. 7], and (d) error graph of the 3D-models with mesh-

patch simplification w.r.t. the input point cloud (red) and the unsimplified 3D-model (blue) in function of the log-compaction ratio of

the unsimplified 3D-model to the simplified one. The interest of our hybrid representation is underlined here: the building is accurately

modeled by planes and a sphere for the regular parts, and by mesh-patches for the atypical surfaces (i.e. the undulating roofs). The fine

(resp. coarse) 3D-model has 46K facets (resp. 864 facets) and a 0.24 m (resp. 0.33 m) mean error to the input data .

to most of the large scale modeling algorithms (e.g. [19]

with around half an hour per km2, or [18] requiring several

interactive operations per building).

Figure 10. Altimetric accuracy w.r.t. ground truth - (from left to

right) aerial images of two buildings, altimetric error maps for our

method, for a Digital Elevation Model from point cloud and for

a Constructive Solid Geometry approach [13]. See how the roof

sections from our method are accurately estimated when compared

to the other models.

Limitations - Firstly, some urban components are not

taken into account in our representation. In particular, the

bridges and the elevated roads which are locally planar

structures elevated above the ground are frequently detected

as buildings (see Fig. 11, top right crop). This problem can

be solved by considering additional urban components in

the point cloud classification. Note that, in this perspec-

tive, the energy formulation of the planimetric arrangement

could be easily adapted. Secondly, the modeling of the trees

is restricted to the use of an ellipsoidal shape template. It

is sufficient for large scene descriptions but too limited for

street-view representations. In light of this, it seems rele-

vant to introduce a library of tree forms.

7. Conclusion

We propose an original approach for modeling large ur-

ban environments from unstructured point data. One of the

main strengths of the algorithm compared to existing meth-

ods is the complete and realistic semantized description of

urban scenes by simultaneously reconstructing buildings,

trees and topologically complex ground surfaces, but also

the original hybrid representation of buildings combining

high level of generalization and compaction. Moreover, a

general mathematical formulation for roof section arrange-

ment problems is defined, the first to date to our knowledge

which works in non-restricted contexts. In future works, it

could be interesting to improve the parallelization scheme

of the energy minimization by using GPU. Another interest-

ing challenge is to adapt our approach to point clouds gen-

erated from Internet-based multi-view stereo [2, 7] which

contain more outliers and have spatial distributions highly

heterogeneous.
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