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Abstract: Nowadays two main approaches are being pursued to reduce energy consumption of
networks: the use of sleep modes in which devices enter a low-power state during inactivity periods,
and the adoption of energy proportional mechanisms where the device architecture is designed to
make energy consumption proportional to the actual load. Common to all the proposals is the
evaluation of energy saving performance by means of simulation or experimental evidence, which
typically consider a limited set of benchmarking scenarios.
In this paper, we do not focus on a particular algorithm or procedure to o�er energy saving
capabilities in networks, but rather we formulate a theoretical model based on random graph
theory that allows to estimate the potential gains achievable by adopting sleep modes in networks
where energy proportional devices are deployed. Intuitively, when some devices enter sleep modes
some energy is saved. However, this saving could vanish because of the additional load (and power
consumption) induced onto the active devices. The impact of this e�ect changes based on the
degree of load proportionality. As such, it is not simple to foresee which are the scenarios that
make sleep mode or energy proportionality more convenient.
Instead of conducting detailed simulations, we consider simple models of networks in which devices
(i.e., nodes and links) consume energy proportionally to the handled tra�c, and in which a given
fraction of nodes are put into sleep mode. Our model allows to predict how much energy can be
saved in di�erent scenarios. The results show that sleep modes can be successfully combined with
load proportional solutions. However, if the static power consumption component is one order of
magnitude less than the load proportional component, then sleep modes become not convenient
anymore. Thanks to random graph theory, our model gauges the impact of di�erent properties
of the network topology. For instance, highly connected networks tend to make the use of sleep
modes more convenient.
Key-words: Energy-e�cient networks, sleep modes, random graph models



Modélisation des gains possibles avec les modes de sommeil
dans les réseaux énergétiquement performants

Résumé : Pour réduire la consommation d'énergie des réseaux, il existe deux approches prin-
cipales: l'utilisation d'un mode veille à basse consommation énergétique pendant les périodes
d'inactivité et l'adoption de matériels dont la consommation d'énergie est proportionnelle à la
charge. Dans ce rapport, nous formulons un modèle théorique, basé sur la théorie des graphes
aléatoires, qui permet d'estimer les gains potentiels réalisables en adoptant des modes de mise en
veille dans les réseaux où sont déployés des appareils consommant de l'énergie proportionnelle-
ment à leur charge. La mise en veille de certains appareils permet d'économiser sur l'énergie de
ceux-ci, mais en contrepartie l'énergie consommée par les appareils actifs augmentera au vu de
leur charge accrue. Le degré de proportionnalité entre la charge d'un appareil et sa consommation
d'énergie joue un rôle important. Ainsi, il n'est pas simple de prévoir les cas dans lesquels une
mise en veille ou une consommation proportionnelle à la charge serait plus avantageuse. Notre
approche se base non pas sur des simulations détaillées mais sur des modèles simples de réseaux
dans lesquels le matériel (n÷uds et liens) consomme de l'énergie proportionnellement au tra�c
géré et dans lesquels une certaine fraction de n÷uds est mise en veille. Notre modèle permet
d'estimer l'économie d'énergie dans des scénarios divers. Nos résultats montrent que la mise
en veille et la proportionnalité de la consommation avec la charge peuvent être combinées avec
succès. Toutefois, si la puissance de consommation statique est un ordre de grandeur inférieure
à celle proportionnelle à la charge, la mise en veille perd ses avantages. Grâce à la théorie des
graphes aléatoires, l'impact de di�érentes propriétés de la topologie du réseau est étudié. A titre
d'exemple, un réseau fortement connexe avantage la mise en veille.
Mots-clés : réseaux énergétiquement performants, modes de sommeil, modèles des graphes
aléatoires
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1 Introduction
In networking, one of the main causes of energy waste is the fact that most of the devices
do not consume energy proportionally to the work they sustain, but they consume much even
when they are under-utilized [1]. On the contrary, network usage and tra�c follow the typical
human being activity patterns, with signi�cant di�erences between peak and o�-peak values and
typical daily periodicities. The network results thus highly under-utilized for long periods of
time causing a large energy waste. Many solutions are being studied to reduce this waste, or,
equivalently, to make the network consumption proportional to the tra�c load [2]. The proposed
approaches can be divided into two main categories: i) Energy proportional approaches work on
the individual devices and try to achieve energy consumption proportionality by adapting the
speed (and capacity) of the devices to the actual load, over relatively short time-scales [3]; ii)
Sleep mode approaches involve the network as a whole and approximate load proportionality by
carefully distributing the tra�c in the network so that some devices are highly utilized while
others become idle and are put in sleep modes [4]. The two solutions can be merged so that energy
proportional devices are present and sleep mode can be leveraged to possibly save additional
energy.

In this context, several solutions have been proposed in the literature, including network
management algorithms that optimize tra�c routing so as to maximize the energy saving o�ered
by sleep mode enabled devices (see Sec. 7 for more details). However, to the best of our knowledge,
all previous works adopt simulation or actual testbed experiments as main means to assess
energy saving performance, and typically few benchmarking scenarios have been considered.
Furthermore, either energy proportionality or sleep modes approach is assumed, with few works
only considering the combination of the two. In this paper, we instead aim at: i) comparing and
combining the two approaches, and ii) proposing an analytical methodology to estimate their
bene�ts.

Given a family of network topologies, and given a model of the energy consumed by a device
as a function of its load, is it better to purely rely on device energy proportionality capability,
or, on the contrary, is it better to couple it with sleep mode solutions? And, also, which is the
minimum energy proportionality that would make sleep mode ine�ective? What is the impact of
the network size, or topological properties on the bene�ts of energy saving feature? The answer
to these questions is the goal of this paper.

When a device is switched-o� the tra�c passing through it has to be rerouted on di�erent,
typically longer, paths; thus, the bene�cial saving achieved by switching o� the device is mitigated
by the increase of the consumption of the devices that remain on, due to the higher load they
have to sustain. To investigate this trade-o�, we consider a general model to represent network
topologies ranging from backbone networks to metropolitan networks, and a general model for
device power consumption.

Several power consumption models for devices have been proposed [5], [6], [7], [8]. Basically,
all these models assume that the energy consumption of network devices, i.e., nodes and links,
is composed by a constant amount and a variable part that is an increasing function of the
tra�c that �ows through the devices. We compute the total network energy cost as the sum of
the �xed and variable cost of network devices which depends on the tra�c they have to carry.
In our previous work [9] this problem has been faced considering that only links o�er energy
saving capabilities. In this work we go a step further by considering a more general model that
includes also the cost of nodes. We start considering the variable cost of devices scales linearly
with the load. Then, we extend the model to generic cost functions which include linear and
super-linear costs. The network and its topological characteristics are represented by random
graphs; leveraging then on random graph theory, the load on network devices is computed from
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Modeling Sleep Mode Gains in Energy-Aware Networks 5

the knowledge of the shortest path between node pairs. Thus, the energy consumption of the
whole network is easily derived.

Since we are not interested in proposing a novel algorithm to select which link and node
can be put into sleep mode, we consider a generic policy, according to which some elements are
turned o�. This results in a change in the topological characteristics of the network, which is
modeled as a new graph, whose energy consumption is evaluated using graph theory again. To
the best of our knowledge, the only previous work that is similar to ours is [8]. Yet, only simple
simulations have been used, so that the set and generality of presented results is limited. In our
work, we present modeling results that corroborate the intuition of [8] and derive more general
insights.

We present an extensive sensitivity analysis to show the impact of model parameters. We
include both small-world and power-law graph models that are claimed to re�ect actual network
topology properties [10]. Our results show that:
• when the variable part of the cost model is small with respect to the constant part, as is typical
of today devices, sleep modes are convenient;
• for future devices, whose consumption will probably be more load proportional, sleep modes
might not be convenient anymore provided the static cost would be one order of magnitude
smaller than the variable part;
• network topology characteristics have limited impact on energy saving. Yet, well-connected
topologies show larger bene�ts in terms of energy saving margins when sleep-mode policies are
in place.

This suggests that, given the today technological constraints that make the constant energy
consumption of devices quite large, sleep mode enabled networks will allow to save more energy
than purely energy proportional approaches for long time. Finally, we emphasize that, despite
being simple, our model gives general insights of sleep modes e�ectiveness in actual telecommu-
nication networks.

The rest of the paper is organized as follows. The system model and methodology is detailed
in Section 2. The adopted network models are reported in Section 3. We present the evaluation
of sleep modes in Section 4. The comparison of di�erent switching o� policies is reported in
Section 5. A discussion about model assumptions is reported in Section 6. Section 7 reviews
related work. Finally, Section 8 concludes the paper.

2 System Model and Methodology
In this section we provide a general overview of the methodology we use to evaluate sleep mode
gains.

The network is composed by access and transport devices. Access devices are the possible
sources and destinations of tra�c, therefore they can never be powered o�. On the contrary,
some of transport devices can be turned o� if their tra�c can be supported by other devices that
remain on.

We adopt the following assumptions: i) tra�c is uniformly exchanged among all access nodes;
ii) tra�c is routed on the shortest paths among nodes1; iii) the set of devices to be switched o� is
given a-priori, e.g., it has been previously chosen based on collection of tra�c measurements and
predictions so as to guaranteeing the minimum required Quality of Service (QoS); iv) node/link
power consumption is composed by a �xed amount of power, and a variable part that is an

1An energy-aware routing protocol could be adopted here rather than a shortest path routing. For example,
tra�c could be routed over the paths consuming the lowest power. However, this issue is outside the scope of this
paper.

RR n° 8187



6 Chiaraviglio & Ciullo & others

increasing function of the current tra�c �owing on the link; v) the same power consumption
model is applied to all the links/nodes in the network.

Modeling the power consumption of today's networks is still an open issue, since it mainly
depends on the technology of network devices. Current network devices consume a large amount
of static power and a limited amount of power that depends on the current load [1]. However,
future devices will instead be more energy-proportional [2], with a predominant term of power
scaling with load. To capture the e�ectiveness of sleep modes in both the aforementioned sce-
narios, we �rst assume a linear power consumption model, in accordance with [8]. Then, as a
second step, we extend our model to super-linear power functions, focusing on the case in which
power scales quadratically with load. The latter is representative of devices exploiting Dynamic
Voltage Scaling (DVS) techniques [7]. This allows us to investigate the impact of sleep modes
when extremely optimized devices are deployed.

2.1 Basic formulation and metrics
Let the transport network topology be described by an undirected graph G(N ,L), with N the
set of nodes, with cardinality N = |N |, and L the set of links, with cardinality L = |L|. The
average node degree is K̄ = 2L

N . The link rate is denoted by R, while T is the total tra�c2
�owing in the transport network from access nodes at a given time.

The j − th link power consumption, A(j), is modeled by a �xed amount F and a variable
term that is a function f(·) of the link load, ρ(j):

A(j) = F + f(ρ(j)) (1)

For the sake of simplicity, we assume the same �xed power F and function of the load f(·) for
all links. Similarly, the i− th node power consumption AN (i) is modeled by a �xed amount FN

and a variable term that is a function g(·) of the node load ρN (i):

AN (i) = FN + g(ρN (i)) (2)

Again, the same �xed power FN and function g(·) is assumed for all the nodes3. The total
network consumption, C, can be computed as

C =
∑

j∈L

(F + f(ρ(j))) +
∑

i∈N

(FN + g(ρN (i))) =

LF +
∑

j∈L

f(ρ(j)) + NFN +
∑

i∈N

g(ρN (i))

(3)

Let us consider the case where the variable part of the cost model increases linearly with the
load. For links we have:

f(ρ(j)) = αρ(j) (4)

thus,
∑

j∈L

f(ρ(j)) =
∑

j∈L

αρ(j) = LαE[ρ] = Lαρ̄ (5)

2We assume values for R and T such that the network is not overloaded, i.e., the link load ρ is smaller than
one.

3Note that this model can be easily extended to integrate di�erent classes of links (nodes), each of them with
a di�erent value of the parameters F (FN ).
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Figure 1: Linear power consumption model for a link.

where ρ̄ is the mean link load and α is a scaling coe�cient. Similarly, for nodes we assume:

g(ρN (i)) = βρN (i) (6)

By assuming that the node variable power consumption depends on the total amount of tra�c
passing through the node and that the link load is independent on the node degree, we de�ne
the average load on a node ρ̄N as the sum of the average load carried by the K̄ links connected
on average to a node: ρ̄N = K̄ρ̄.

Under these assumptions, the total network consumption is

C = N K̄
2 (F + αρ̄) + N

(

FN + βK̄ρ̄
)

(7)

As an index of the relative importance of variable and �xed costs, we de�ne the constant cost
equivalent load,

ν =
F

α
; νN =

FN

β
(8)

where ν (νN ) is the amount of load that, added to a link (node), makes its energy consumption
increase of a quantity F (FN ). Or, in other terms, whenever the load increases by an amount
ν (νN ), the part of the energy consumption due to links (nodes) increases by F (FN ). The
parameters ν, νN and their ratio play a crucial role in the evaluation of sleep mode schemes, as
we show in Section 4. Fig.1 shows a graphical representation of a link power consumption A.

The average link load can be computed as:

ρ̄ =
T d̄

LR
(9)

where d̄ is the average shortest path length and LR is the total capacity o�ered by the network.
We call C the all-on network consumption and we take this value as a reference for the nominal
consumption of the network. Table 1 summarizes the notation introduced so far.

2.2 Node Switch-o� Policy
We now compute the network consumption when some nodes enter sleep mode. We assume
that the scheme according to which the nodes enter sleep mode has been preliminarily planned
so that, when the nodes are removed (powered o�), the resulting network still meets the QoS

RR n° 8187



8 Chiaraviglio & Ciullo & others

Table 1: Notation
Symbol De�nition

N number of nodes
L number of links
K̄ average node degree
T tra�c
R link rate

F (FN ) link (node) �xed cost
A (AN ) link (node) total cost
ρ̄ (ρ̄N ) average link (node) load

d̄ average shortest path length
α (β) link (node) scaling coe�cient

C network consumption
ν(νN ) link (node) constant cost equivalent load

constraints, e.g., the graph is connected and maximum link load is below the admissible value.
Clearly, when a node is powered o�, all links connected to it are switched o� too.

Let p ∈ (0, 1) be the fraction of nodes that are switched o�. We model the network resulting
from the sleep mode scheme through the new graph in which we randomly remove a fraction p
of the nodes; we take p smaller than the critical probability after which the network becomes
disconnected. In this regime, random node elimination makes the new graph maintain the same
structure of the original graph; refer to [11] for details. The number of nodes after the random
node removal becomes N ′ = N(1 − p), and the new average degree becomes K̄ ′ = K̄(1 − p).
From (7), the average network consumption in sleep mode C ′ is now:

C ′ = N K̄
2 (1 − p)2 (F + αρ̄′) +

N(1 − p)
(

FN + βK̄(1 − p)ρ̄′
) (10)

with
ρ̄′ = T

d̄′

N ′ K̄′

2 R
= T

d̄′

N K̄
2 (1 − p)2R

(11)

where d̄′ is the average shortest path length in the new graph.
Our aim now is to compare the energy consumption of the all-on network consumption, C,

to the one of the network in sleep modes, C ′. To this purpose, we de�ne the ratio E = C ′/C as
the energy reduction ratio. Intuitively, the use of sleep modes for network devices saves energy
when E < 1.

By computing E and comparing C and C ′ in (7) and (10), it is possible to evaluate when
sleep modes are convenient:

C > C ′ i� N K̄
2 (F + αρ̄) + N(FN + βK̄ρ̄) >

N K̄
2 (1 − p)2 (F + αρ̄′) + N(1 − p)

(

FN + βK̄(1 − p)ρ̄′
)

(12)

Then, we have
C > C ′ i� F+ 2

K̄(2−p)
FN

α+2β > T

(2p−p2)N K̄
2 R

(d̄′ − d̄) (13)

This equation de�nes the region in which the sleep mode approach is convenient.

Inria
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Note that, if the network technology is such that the link cost is negligible with respect to
the node cost, i.e., F << FN and α << β, we can disregard the link cost and we have

C > C ′ i� νN >
2T

pNR
(d̄′ − d̄) (14)

Similarly, if the node cost is negligible with respect to the link cost, i.e., FN << F and
β << α, we obtain

C > C ′ i� ν >
T

(2p − p2)N K̄
2 R

(d̄′ − d̄) (15)

Lemma 1: If devices do not implement load proportionality (α = β = 0), sleep mode is
always convenient, i.e., C ′ < C and E < 1.

Proof. With α = β = 0, (12) simpli�es to N K̄
2 F + NFN > N K̄

2 (1 − p)2F + N(1 − p)FN , which
is veri�ed for any p ∈ (0, 1).

Lemma 2: If the �xed power consumption is zero (F = FN = 0), sleep mode is never
convenient, i.e., E ≥ 1.

Proof. If F = FN = 0, (12) becomes: d̄ > d̄′, i.e., it is veri�ed if the average shortest path after
some node switch o�, d̄′ is smaller than the initial average shortest path d̄, which is never true4.
Consequently, E ≥ 1.

2.3 Generalization of the cost function
We now extend our analysis to a generic cost model, in which the variable part of the cost
increases according to a polynomial function of the load. For simplicity, we �rst consider the
cost due to links and then compute the total cost due to nodes too. For each link j, we can write
the cost function as:

A(j) = F +

∞
∑

z=1

αz(ρ(j))z (16)

The total cost C becomes:

C =
∑

j∈L

(

F +

∞
∑

z=1

αz(ρ(j))z

)

+
∑

i∈N

(

FN +

∞
∑

z=1

βz(ρN (i))z

)

=

LF +
∑

j∈L

∞
∑

z=1

αz(ρ(j))z + NFN +
∑

i∈N

∞
∑

z=1

βz(ρN (i))z =

LF + L

∞
∑

z=1

αzE[ρz] + NFN + N

∞
∑

z=1

βzE[ρz
N ]

(17)

where the last term E[ρz
N ] can be computed as:

E[ρz
N ] =

∞
∑

k=1

E[ρz
N |K = k]P(K = k) =

∞
∑

k=1

E

[(

k
∑

q=1

ρ(q)

)z]

P(K = k),

(18)

4Note that, in our context, d̄′ ≥ d̄ is always veri�ed since we are considering only connected graphs, and we
assume we cannot remove source/destination nodes.

RR n° 8187



10 Chiaraviglio & Ciullo & others

where K is the random variable representing the degree distribution. The last result follows from
the node load computation: we assume that the load of a node is given by the sum of the load
carried by the links connected to it.

Observe that, given all the moments of the link load distribution and the degree distribution
up to the z−th moment, (17) allows the computation of the total cost for any type of polynomial
cost function. Moreover, we can extend the previous analysis to any other cost functions, e.g.,
logarithmic or any sub-linear functions, by using the Maclaurin series to approximate the cost
function, so that cost can still be expressed by (16).

Quadratic Cost Model As a special case of (16), we assume that the variable part of the
cost model increases quadratically with the load. Thus, the j − th link cost can be modeled as:
F + α(ρ(j))2 and (3) becomes:

C = LF + α
∑

j∈L

(ρ(j))2 + NFN + β
∑

i∈N

(ρN (i))2 =

L(F + αE[ρ2]) + N(FN + βE[ρ2
N ])

(19)

Considering the node load distribution, we have: E[ρ2
N ] = σ2

ρN
+ E[ρN ]2 = σ2

ρN
+ (ρ̄K̄)2,

where σ2
ρN

is the variance of the node load distribution. Note that, being the node load given by
the sum of the load of the node's links, the node load distribution is a compound distribution that
depends on the link load and the degree distributions. Assuming that link load ρ is independent
on the node degree K, and that the load on the links are i.i.d. random variables, we obtain:
σ2

ρN
= K̄σ2

ρ + ρ̄2σ2
K . Thus,

E[ρ2
N ] = (ρ̄K̄)2 + K̄σ2

ρ + ρ̄2σ2
K = ρ̄2E[K2] + σ2

ρK̄ (20)
Considering the link load distribution we have: E[ρ2] = E[ρ]2 + σ2

ρ = ρ̄2 + σ2
ρ, where σ2

ρ is
the variance of the link load distribution. From (9), we can observe that ρ̄ is a linear function
of the average shortest path d̄. Thus, ρ̄ = E[ρ] = E[(T/LR)d] = (T/LR)E[d], and the link load
variance is:

σ2
ρ =

(

T

LR

)2

σ2
d, (21)

where σ2
d is the variance of the shortest path distribution.

Therefore, by knowing the �rst and the second moments of the shortest path and the degree
distribution, we can compute the total cost given by (19). Note that to compute the network cost
after the random node removal, we need to evaluate the second moment of the degree distribution
in the new graph E[(K ′)2]. From [11] we know that: E[(K ′)2] = E[K2](1 − p)2 + p(1 − p)K̄,
where E[K2] is the second moment of the degree distribution in the original graph. We will show
the analysis referred to the quadratic cost model in Section 4.4.

3 Network Models
Many network topologies and the Internet, in particular, satisfy the following properties: (i)
small-world property, according to which the average number of hops between each node pair is
quite limited, (ii) local clustering, according to which the topology has highly connected zones,
(iii) heavy-tailed distributions of the node degree, meaning that, in general, most of the nodes
have few links while a few nodes have a large number of links. In the literature, several random
graph models have been proposed to generate topologies matching the properties of the real ones.
However, deciding which model better �ts the real topology is an open problem [12]. Therefore,

Inria



Modeling Sleep Mode Gains in Energy-Aware Networks 11

instead of focusing on a single model, we consider a few among the most popular models, showing
that common properties regarding energy consumption can be inferred in all cases. In particular,
we consider three well-known graph models: Erdös and Rényi, Power Law and Watts-Strogatz
models.

In the Erdös and Rényi (ER) model [13] nodes are connected by links according to a given
probability, and the resulting degree distribution follows a Poisson distribution. The properties
of this model are well-known in the literature and have been extensively studied. In particular,
the ER model exhibits the small-world property, according to which the diameter of the graph
scales as log(N). However, the local clustering and heavy-tailed properties are not met.

In the Power Law (PL) model [11] the distribution PK(k) of the node degree K follows a
power-law distribution, i.e., PK(k) ∼ k−γ . The intuition is that some nodes behave like hubs,
and have many more connections than others.

The Watts-Strogatz (WS) model [14] is built starting from a regular lattice in which each node
is linked to a �xed number of neighbors. Then, additional edges are inserted between randomly
chosen pairs of nodes5. The resulting graph is an interpolation between ordered lattices and
purely random graphs. This model matches both small-world and the local clustering properties,
but the degree distribution is not heavy-tailed.

In the next sections, we discuss more in detail the properties of the considered models focusing,
in particular, on the �rst and second moments of the shortest path and the degree distributions
that we need in order to compute the �rst and second moments of the load distribution and,
hence, the energy consumption.

3.1 The Erdös-Rényi model
We �rst compute the network consumption C in the case of linear cost models, i.e., the variable
part of the cost model increases linearly with the load. To compute C we need the expression of
the average shortest path that, for an Erdös-Rényi graph, is given by [10]:

d̄ ≃
log(N)

log(K̄)
(22)

Using (7), (9) and (22), we can compute the all-on consumption of the network as:

C = N K̄
2 F + αT

R
log(N)
log(K̄)

+ NFN + 2βT
R

log(N)
log(K̄)

(23)

After randomly removing a fraction p of the nodes, the average shortest path becomes: d̄′ =
log(N(1−p))
log(K̄(1−p))

and, from (10), the network consumption becomes:

C ′ = N K̄
2 (1 − p)2F + αT

R
log(N(1−p))
log(K̄(1−p))

+

N(1 − p)FN + 2βT
R

log(N(1−p))
log(K̄(1−p))

(24)

To compute the network consumption when the quadratic cost model is used, we need to
know the second moments of both the degree and shortest path distributions, as shown in the
previous section. The degree distribution in an ER graph follows a Poisson distribution, thus:
K̄ = σ2

K and E[K2] = K̄2 + K̄. For what concerns the variance of the shortest path distribution
5In the original WS model presented in [15] shortcuts are rewired from the lattice. However, the resulting

graph is a�ected by a not negligible probability to be disconnected. Therefore, we adopt the modi�cation of the
WS model proposed by [14], in which shortcuts are additionally inserted as new links. In this way, the resulting
graph is always connected.
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σ2
d, it can be shown that it tends to zero when the number of nodes N is high (see [16] for details).

Thus, we assume that σ2
d = 0 and we obtain E[d2] = d̄2 + σ2

d = d̄2 ≈
(

log(N)
log(K̄)

)2

. Finally, we can
compute the network consumption using (19), (20) and (21).

3.2 Power-law model
We consider a graph in which the distribution of the degree K follows a power law, i.e., PK(k) ∼
k−γ . In this case, the average shortest path can be computed as in [10]:

d̄ ≈ 1 +
log(N/K̄)

log[(E[K2] − K̄)/K̄]
(25)

In particular, we consider a Pareto distribution for the degree since it is one of the most
widely used and studied power laws in the literature. The Pareto distribution is described by the
parameters (a, km), where km is the minimum possible value of K, and a is a positive parameter.
For this distribution we have: K̄ = akm/(a − 1) and E[K2] = ak2

m/(a − 2).
Using the linear cost model, the all on network consumption C can be computed similarly

to what done for the ER model using (7), (9) and (25). As reported in [11], a power law graph
remains power law even after a random removal of nodes. Thus, the average shortest path of the
network with sleep modes is:

d̄′ ≈ 1 +
log(N/K̄)

log
[(

E[K2]−K̄
K̄

)

(1 − p)
] (26)

from which the network consumption with sleep mode C ′ can be computed.
To compute C in the case of quadratic cost model, we need also to estimate the second

moment of the shortest path distribution. For the PL graph we have: σ2
d ≃ 2

9
log(N)
log(3) (see [18]).

Thus, the second moment of the shortest path distribution is:

E[d2] ≈



1 +
log(N/K̄)

log
[(

E[K2]−K̄

K̄

)

(1 − p)
]





2

+
2

9

log(N)

log(3)
(27)

3.3 The Watts-Strogatz model
The Watts-Strogatz (WS) model interpolates between ordered lattices and purely random graphs
[17]. Starting from a lattice of N vertices in which each node is symmetrically connected to its
KL nearest neighbors, randomness is introduced by independently adding x shortcuts between
randomly chosen pairs of nodes [14]. The mean node degree, K̄, is given by K̄ = KL + 2x/N .

We �rst focus on the computation of the network consumption when a linear cost model is
used. In the literature, there are some models for the estimation of the average shortest path
length when a WS model with rewiring is considered. For example, for small values of x, i.e.,
x << N/KL, approximation of [17] holds,

d̄ ≃
N

KL/2

log(2x)

4x
(28)

In this case, d̄ is similar to the shortest path of a lattice, scaled by a factor that takes into account
the number of random links. For large values of x, i.e., x >> N/KL, the WS graph with rewiring
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is similar to a purely random graph [14] and the average shortest path can be approximated as,

d̄ ≃
log(N)

log(K̄)
(29)

However, both approximations do not hold in our case, since we are using the WS model without
rewiring, i.e. we add the random links to the graph, and the number of random links is quite
large. We therefore propose a model that �ts the scenarios we are interested in. By considering a
large number of simulation results for cases of interest to this study, we have derived the following
expression to compute d̄:

d̄ ≈
N

KL/2

log(2x)

4x
+

log(N)

log(K̄)
(30)

Intuitively, we have found that in our scenarios d̄ scales like a random graph plus the corrective
term of (28).

During the sleep mode regime, the average shortest path becomes:

d̄′ ≈
N

KL/2

log(2x(1 − p)2)

4x(1 − p)2
+

log(N(1 − p))

log(K̄(1 − p))
(31)

Similarly to the previous graph models, using (12), (30) and (31), we derive the cost C and
C ′ for the WS graph in this regime.

To evaluate the total cost with a quadratic cost model we also need the second moment of
the shortest path and the degree distributions of a WS graph. We propose the following new
model for E[d2] that is derived by interpolation from simulation results:

E[d2] ≈

(

log(N)

φτ log(KL) + log
(

2x
N

)

)2

+ χ (32)

with φ = 2x/N
KL

, τ = 0.08 and χ = 15.
For what concerns the degree distribution, we use E[K2] ≈ K̄2 + KL, assuming a behavior

similar to a ER graph.

3.3.1 Model Validation
We validated the proposed WS model by comparison against simulation results in a large number
of scenarios. We consider networks with a given value of N and of the constant part of the
neighbor degree, KL, but di�erent values of x. By varying x we make the random component of
the degree vary.

Top plot of Fig. 2 reports the average shortest path d̄ for the case N = 10, 000, KL = 4, and
x ∈ [5, 000 − 20, 000]. For each value of x, the results are averaged over 20 independent runs in
which di�erent random seeds are used for adding the shortcuts. The �gure reports d̄ computed
from: (28) that corresponds to the model of a scaled lattice (SL label in the �gure), (29) that is
the ER model, our proposed model (30), and simulation results. Clearly, the SL model does not
match the measured d̄ for the considered scenarios; the ER model underestimates d̄, since it does
not consider the presence of many links to neighbors. Our model presents a good matching, since
it is �tted for these scenarios. We have also validated the model in other scenarios, including
scenarios with sleep modes, obtaining similar results.

Bottom plot of Fig. 2 shows the energy reduction ratio, E, computed by simulation and with
the proposed model, for the case of a network with sleep modes, N = 10, 000 nodes, KL = 4,
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Figure 2: Validation of the proposed model to compute d̄ for WS graphs: (top) average shortest
path for di�erent models and by simulation, considering N = 10, 000, KL = 4, x ∈ [5, 000 −
20, 000], (bottom) energy reduction ratio versus p for the proposed model and the simulation,
considering N = 10, 000, KL = 4, x = 10, 000.

x = 10, 000 and ν = νN ; the fraction of nodes that are switched o� varies between 0 and 0.4.
Bars indicate minimum and maximum values of the energy reduction ratio. Moreover, we have
also computed the con�dence intervals of E, �nding that they never exceed 1% of the estimated
value at 95% con�dence level. Again, observe how accurate the proposed model is.

We then validate the WS model also for the case of quadratic cost function. Top plot of
Fig. 3 reports E[d2] for N = 10, 000, KL = 4, and x ∈ [5, 000 − 20, 000], considering the ER
model, the simulations, and the proposed model of (32). The lattice model (not reported in the
�gure) highly overestimates E[d2], with values in the order of 106. Our model presents a very
good matching with the simulation results.

Bottom plot of Fig. 3 reports the energy reduction ratio E for N = 10, 000 nodes, K̄ = 6,
x = 10, 000 and p ∈ [0, 0.4]. In this case the con�dence intervals of E never exceed 5% of
the estimated value at 95% con�dence level. Our proposed model matches the simulated E
considering di�erent values of ν. In the following we therefore adopt our models for computing
C and C ′.
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Figure 3: Validation of the proposed model for the quadratic load function for WS graphs: (top)
E[d2] for di�erent models and by simulation, considering N = 10, 000, KL = 4, x ∈ [5, 000 −
20, 000], (bottom) energy reduction ratio versus p of di�erent models considering N = 10, 000,
KL = 4, x = 10, 000.
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Figure 4: E versus p for ER, PL and WS graph models.
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Figure 5: Equivalent link load ν (top) and equivalent node load νN (bottom) versus the switch-o�
probability p for the ER, PL and WS model.
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Figure 6: Energy reduction ratio E versus equivalent load ν for di�erent values of p, from left to
right: ER, PL, WS model.

4 Performance Evaluation
In this section, we compare the e�ectiveness of the approaches based on sleep modes under the
di�erent network models proposed in the previous section.

For the numerical results, unless otherwise speci�ed, we set N = 10, 000 and the link rate
R = 100 Gbps. The link and node linear power model of (4) and (6) is used. The average degree
K̄ is set to 6. This re�ects the results of recent measurement studies about actual network
topologies like the Internet (see [19] for an overview), according to which K̄ ranges between 4
and 8. We assume that the total tra�c scales with the number of nodes N and the degree K̄.
Notice also that we impose an amount of tra�c that does not overload the network when the
maximum amount of devices is switched o�, i.e., ρ̄′ < 1 for p = 0.4.

For the PL model, we choose a Pareto distribution of the node degree, setting a = 3 and
km = 4, so that K̄ = 6; for the WS model, we set KL = 4 and x = 10, 000 and the average node
degree is K̄ = KL + 2x/N = 6.

4.1 Impact of Sleep Modes
We �rst evaluate the impact of sleep modes on energy consumption for di�erent graph models.
Fig. 4 reports the energy reduction ratio versus p for two distinct cases: high equivalent load
(ν = νN = 10) and low equivalent load (ν = νN = 0.01). When the constant part of power is
predominant (ν = 10) the introduction of sleep modes saves energy in the network, i.e., E < 1, for
all the graph models. Moreover, the energy reduction ratio decreases as p increases, suggesting
that the saving increases with the number of devices that are switched o�. Notice also that the
curves of WS, PL and ER are overlapping since the constant part of power is the same for the
three graph models, while the impact of the variable power is negligible. On the contrary, when
highly energy-proportional networks are considered (ν = 0.01), the network consumes a higher
amount of energy when devices are switched o� and E > 1. Thus, in this scenario, sleep modes
are not convenient. In particular, E is higher for WS than for ER and PL models, due to the
fact that, in the WS graph model, node removal has an important impact on the shortest paths.

We then analyze the impact of sleep modes by separately analyzing the impact of links and
nodes power consumption. In particular, from (14) and (15) we compute the minimum values
of ν and νN for which E becomes smaller than 1; these values represent breakeven points for
which sleep mode saves energy. The top (bottom) plot of Fig. 5 reports the breakeven curve
for links (nodes). If the value of ν falls above the breakeven curve, sleep mode is convenient;
otherwise, the network consumes a higher amount of energy when devices are switched o�. In
all cases, as p increases the minimum value of ν increases too, meaning that for large values of p
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Figure 7: ER model: (left) breakeven curves corresponding to E = 1 versus ν and νN , (central)
energy reduction ratio for r = 102, (right) energy reduction ratio for r = 10−2.

a sleep mode approach is convenient only when the constant part of the energy cost is high with
respect to the variable part. In particular, from the top plot of Fig. 5, it can be observed that
the breakeven curve of the ER model ranges between 0.06 and 0.14. The WS breakeven curve is
above the other two curves, due to the fact that the average shortest path length increases faster
for WS (and load increase is thus more signi�cant) than in the other models; or, in other terms,
even with devices that present quite signi�cant load proportionality, sleep modes are convenient.
From bottom plot of Fig. 5, it can be observed that the breakeven curves of nodes are one order
of magnitude larger than the corresponding ones of links. This is due to the fact that the variable
term of nodes power grows much faster than the links one, thus higher �xed costs are required
to balance the increase in the node load.

4.2 Impact of Technology Constraints
We now evaluate the impact of the equivalent load. Fig. 6 reports the values of E versus ν
for the three proposed models; the di�erent curves correspond to di�erent values of p where for
simplicity we set ν = νN . In all cases, the breakeven point for which E = 1 occurs when the
�xed cost F (FN ) is one order of magnitude lower than α (β) (ν ≈ 0.3). Two di�erent regimes
are possible: i) sleep mode is not convenient (E > 1), and ii) sleep mode is convenient (E < 1).
In the �rst regime, the higher the probability to switch o� devices is, the higher the additional
energy is, being WS the worst case. In the second regime, instead, sleep mode leads to high
energy saving for all models, and the saving strongly increases with p. Notice that with today
technology, we are in the right part of the �gures (sleep mode is always convenient, with saving
up to 30-40%), while in the future, the values of ν will probably decrease, meaning that sleep
mode will become less convenient.

In the following, we consider the impact of varying the relative cost of nodes and links. In
particular, we introduce a scaling factor r for the cost of nodes, so that the total network cost C
becomes:

C =
∑

j∈L

A(j) +
1

r

∑

i∈N

AN (i)

In this way, we �nd the tradeo�s that emerge as the costs of nodes and links are weighted
di�erently. For example, the cost of links is normally marginal for wireless technologies: the
largest amount of power is needed to keep powered on Base Stations in UMTS or Access Points
in WiFi networks [26]. On the contrary, for backbone networks the cost of links is not negligible,
due to the presence of multiple ampli�ers for optical networks or DSL lines for home access
networks [27].
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Figure 8: Energy reduction ratio E versus the number of nodes N for ν = 0.5 and p = 0.3.

Left plot of Fig. 7 reports the breakeven curves for which E = 1 varying both ν and νN ,
considering di�erent values of the parameter r. In this case, we are considering an ER graph
model and p = 0.3. Points below a breakeven curve correspond to conditions in which sleep
modes are not convenient. For low values of ν and νN sleep modes are not convenient, i.e.,
E > 1 (bottom left corner of the plot). Conversely, for high �xed costs (top right corner of the
plot) sleep modes are convenient, E < 1. As r increases, the network becomes almost insensitive
to nodes equivalent load. For example, for r = 100, sleep modes are convenient if ν > 0.12 or
νN > 40. On the contrary, for r = 10−2 sleep modes are convenient if ν > 20 or νN > 1.

To give more insights, central and right plots of Fig. 7 detail the energy reduction ratio for
r = 102 and r = 10−2, respectively. The vertical colorbars report the values of the energy
reduction ratio. As expected, for r = 102 the energy reduction ratio mainly depends on the
value of ν. Notice that for ν >> 1 (i.e., F >> α), the energy reduction ratio of the network
approaches the limit (1 − p)2 = 0.49 obtained when α = 0. Interestingly, for r = 10−2 (right
plot) the energy reduction ratio still depends on the cost of the links, so that the network saves
up to 25% of energy when ν = 100, independently of νN . This is due to the fact that, for a given
p, the fraction of links powered o� is always larger than the fraction of nodes.

4.3 Impact of Network Properties
We now consider the impact of the network properties on the possible energy saving. In partic-
ular, we start by setting K̄ = 6, while we vary N in [102, 105]. For the WS model we set x = N .
Fig. 8 reports the energy reduction ratio E for the considered models, for ν = νN = 0.5 and
p = 0.3. The highest saving is obtained by the PL model. In all the cases, E increases (sleep
mode e�ectiveness reduces) with the number of nodes; this is due to the fact that we increase N
while letting the node degree unchanged, so that the set of alternative paths does not scale with
N and the impact of switching o� some devices on the path length increases. This is particularly
visible under the WS model.

Now we consider the impact of the average node degree K̄ and select values of K̄ that mimic
those used in [19] to represent the average node degree of large topologies. We set ν = νN = 0.5
and p = 0.3. Moreover, for the WS model we �x x = 10, 000 and we vary KL ∈ [2, 8]. Fig. 9
shows E versus K̄. For all the models, the energy reduction ratio is decreasing as K̄ is increasing.
Indeed, for large values of K̄, the number of possible paths between any two nodes is large and,
once some nodes are powered o�, it is easy for the network to �nd alternative paths; or, in other
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Figure 9: Energy reduction ratio E versus average node degree K̄ for ν = 0.5 and p = 0.3.
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Figure 10: ER quadratic-linear comparison for p = 0.3.

terms, the increase of the average shortest path due to sleep modes is limited if K̄ is large. For
low values of K̄, sleep modes are not convenient. For example, for the WS model E is around
1.27 when K̄ = 4, meaning that the sleep mode wastes an additional 27% of power with respect
to an always on solution. Conversely, when K̄ increases, the additional cost due to the increase
of the path length is smaller, so that sleep modes are more e�cient. Finally, notice that the
energy reduction ratio of the ER and PL models is consistently lower than the WS one. This is
due to the better path length properties the former two graphs have.

4.4 Impact of Power Consumption Model
We consider here the impact of the power consumption model. In particular, we compare the
linear power consumption model of (7) and the quadratic model of (19). Fig. 10 details the
breakeven curves for which E = 1, comparing the two models for di�erent values of r under the
ER network model. Interestingly, the area for which E > 1 steadily increases with the quadratic
model, since the weight of the variable term is higher than the linear case.

We then consider the impact of the quadratic cost function when the fraction of switched o�
nodes varies. Fig. 11 shows the energy reduction ratio versus the probability to remove nodes p,
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Figure 11: Energy reduction ratio versus p with the quadratic cost model: ER model (top) and
PL model (bottom).

for the ER and PL graph models (refer to Fig. 3 for the WS model). In this case, we consider
ν = νN = 0.005 and ν = νN = 50. The �gures report also the average results obtained by
simulation. Bars indicate minimum and maximum values. Interestingly, when ν = 0.005 the
variable term of power is predominant and E > 3 for p = 0.4 considering the ER model. This
means that a strongly energy proportional network with sleep modes can consume up to three
times an all-on network. Notice also that, with the same parameters, the WS model performs
consistently worse, while the PL performs quite better. On the contrary, as high �xed costs are
considered, all the models save energy, being E < 1 for all values of p. Finally, all the models
present a good matching with the simulations, indicating that the introduced approximations do
not impact on the variation of E.

5 Comparison of Switching Policies
Finally, we investigate the case in which the nodes to be switched o� are chosen according to
another strategy than a simple random removal policy. Note that, the choice of the node removal
strategy is out of the main scope of this paper. Nevertheless, in the following we compare the
simple random removal strategy with the least-�ow policy of [4] to assess the e�ectiveness of sleep
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Figure 12: Least-Flow (LF) versus Random (R) policy comparison for the ER graph model:
energy reduction ratio versus p for ν = 10 (left) and ν = 0.01 (center); average path distance
(right).

modes under a smart switch-o� policy. Speci�cally, the least-�ow strategy consists in switching
o� the devices with the least amount of tra�c �owing through them, where the total amount of
�ow crossing a node is computed as the sum of the tra�c �owing through its incident links. This
strategy could be particularly e�ective in reducing the rerouted tra�c in the network when a
node is powered o�, in order to maintain an adequate QoS for users. Note that our models apply
only to random strategy, thus, the results of the least-�ow policy are derived by simulation.

Fig. 12 shows the energy reduction ratio versus p for the random (R) and least-�ow (LF)
policies considering the ER graph model and r = 1/10. Several considerations hold in this case.
First, with little proportional networks (left plot) the energy reduction ratio of the least-�ow
policy is higher than a pure random policy. This is due to the fact that most of least loaded
nodes have low degree, thus the number of actually switched o� links is lower than in the random
case, in which a fraction 1 − (1 − p)2 of links is switched o�. Second, as predominant variable
terms of power are considered (central plot), the energy reduction ratio of the least-�ow policy is
consistently lower than the random policy. This is due to the fact that the average path length
after the nodes removal grows slower than in the random policy, since the least loaded devices
carry less tra�c. This is con�rmed by the right plot of the same �gure that reports the average
path length in the considered cases.

6 Discussion
In this section we brie�y discuss the main assumptions of our model and how much the results
are impacted by these assumptions.

Network Topology. In the literature, the e�ectiveness of sleep modes has been evaluated
on benchmarking topologies (see for example [4] and [22]). However, the obtained results are
tailored to speci�c reference topologies, and are di�cult to be generalized. In this work, we follow
a di�erent approach: we exploit graph theory to model network topologies, and we derive general
insights, showing what happens when network parameters, such as the number of nodes and the
average node degree, are varied. In this way, we are able to overcome the limitations derived
from the analysis over a speci�c topology. However, we recognize that actual topologies can be
more complex than a single graph model. To partially cope with this issue, rather then showing
results for a single model, in this work we have considered di�erent graph models, showing that
common properties can be inferred in all cases.

Set of Devices in Sleep Mode Another crucial aspect is how to choose the set of devices
to be put in sleep mode. In the literature, several algorithms have been proposed to select the
set of devices to be powered o� (see for example [4, 22, 23, 24]). In this work, we assume that the
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set of devices in sleep mode is given and is such that the minimum required QoS is guaranteed to
all the users. For analytical tractability, we adopt the conservative assumption that the devices
in sleep mode are randomly chosen. We recognize that the actual savings may be even larger if
smarter algorithms are considered. However the most interesting �nding of the paper, i.e., the
fact that sleep mode is e�ective even when load proportional devices are deployed, is still valid
and general. To further support this insight, in this paper we compare the random policy with
the least-�ow policy of [4], which is more e�ective in choosing the set of devices in sleep mode.
We show that the general message still holds even when the this advanced policy is adopted.

Tra�c Variation. In a telecommunication network tra�c varies over time, suggesting that
sleep mode can be dynamically applied in order to follow the tra�c trend [28], [29]. In this work,
we consider a snapshot of the network at a given time, and evaluate the e�ectiveness of sleep
mode for the selected snapshot. Our model gives indications for the considered scenario. Finally,
note that transient behavior of devices and of the whole network has to be considered. This
includes the latency introduced to recover from a sleep mode state, and how to react to sudden
load �uctuations. These aspects are out of the scope of this paper.

Tra�c Distribution. Our framework takes as input the total amount of tra�c exchanged
in the network, which we assume to be uniformly distributed among all nodes. If a real tra�c
matrix shows unbalanced tra�c demands, e.g., a peering point collecting most of the tra�c in
the network [4], a uniform matrix is a conservative scenario, since many devices are required to
be at full power. This intuition has been con�rmed in previous work too [4].

Power and Capacity Distribution. We assume that all the devices (nodes or links)
consume the same power. This assumption can be considered representative of current core
networks, in which all devices have a similar capacity [4]. Extensions to classes of devices are
possible, and we leave it for future work. Considering power consumption model of devices, sev-
eral measurements corroborate the simple linear relationship with o�ered tra�c. More advanced
scaling mechanisms (such as DVS) are also modeled by quadratic functions. Extensions to higher
degree polynomial functions are possible, but not straightforward.

7 Related Work
The study of power-saving network devices has been introduced in recent years, starting from
the pioneering work of [30]. Rate adaptation and sleep mode techniques have recently attracted
the attention of the research community (see [33, 34] for an overview). In [35] authors focus
on two power management schemes for power saving, based either on sleeping or rate adaption.
Di�erently from our work, they consider to put into standby mode network elements during idle
times, i.e., among subsequent packet arrivals. In our work, instead, we assume that devices are
put in sleep mode over coarser time scales, i.e., of the order of minutes and hours. Moreover, they
consider the impact of the two techniques in isolation, while in our work we assess the impact of
sleep mode over a variety of scenarios, including energy-proportional networks.

Moreover, in the last years, Dynamic Voltage Scaling techniques that dynamically adjust the
frequency and voltage of links have been shown to reduce power consumption [31]. However, these
techniques require sophisticated hardware mechanisms to ensure correct link operation during
scaling, and the potential power savings can be smaller than the ones achievable with sleep modes
since links are still powered on even when they are in an idle state. Furthermore, the authors
of [32] investigated the savings achievable dynamically turning links on/o� in response to tra�c
variation. However, their work is targeted to a rather di�erent �eld, i.e., the interconnection
network fabrics. In particular, the topology of an interconnection network is represented by a
grid, while an ISP network has a less regular structure. Moreover, the authors of [32] consider
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only the case in which links only are put in sleep mode and their analysis is limited to a simple
power model on/o�, whithout investigating the case in which energy-proportional devices are
used.

In [36] authors estimate the total power consumption of a telecommunication network, given
the power requirements of network devices and the tra�c from users. In particular, they consider
all the network portions of a telecom operator, foreseeing that the highest energy consumption
growth rates will be in the data centers and IP backbone networks. Basing their assumptions
on technology forecasts, they claim that future networks with enabled sleep modes and load
adaptation will save a consistent amount of energy, i.e., typically larger than 56%. While this
intuition is inline with our results, our model is able to derive more general insights, being able
to highlight the breakeven points that emerge adopting di�erent power models and technology
assumptions.

Power consumption of current network devices is mostly independent of the current load,
considering backbone [1, 5] and access networks [26]. Moreover, the power consumption of links
is not negligible, and can be of the same order of magnitude of nodes [27]: this is especially true
for long-haul optical links, in which several ampli�ers are needed to regenerate the signal. Step
functions are adopted to model power consumption of such devices. Several works have therefore
targeted the minimization of network devices powered on while satisfying QoS [25, 33, 34]. Our
work con�rms that, in this scenario, networks with sleep nodes are the best solution in terms of
power saving.

Researchers from universities and industries are now studying solutions to adapt power with
current load. In particular, in [7] the authors exploit the idea of exchanging energy pro�les
among devices to reduce the overall power consumption during routing and tra�c-engineering
operations. They consider di�erent models to represent device power consumption, including
linear and super-linear models. In [8] authors evaluate the impact of sleep modes over di�erent
network topologies. They consider di�erent power models, evaluating the total power consump-
tion when some elements are put into sleep modes. All these works are mainly focussed on
speci�c case-studies, while our framework is able to produce more general insights over a variety
of network graphs, showing that the gain adopting sleep modes can be consistent even when
energy-proportional devices are deployed.

Overall, the consciousness of power-aware telecommunication networks is growing. Several
projects are investigating the impact of power adaptive technologies for network devices [37,
38, 39, 40]. Indeed, this work is undertaken under the project TREND (Towards Real Energy-
e�cient Network Design) [41], a Network of Excellence funded by the European Commission
through the FP7 Program.

8 Conclusions
In this paper, we have proposed an analytical framework for the evaluation of the potential
energy saving that can be achieved by applying sleep modes to the devices of a complex network,
like the Internet. We have modeled the network device (nodes and links) power consumption
by means of a simple function composed of a constant cost and a variable cost proportional to
the device load. Leveraging on random graph theory, we have then computed the overall power
consumption of networks with di�erent topological properties. Random graph theory results are
used to evaluate the total power consumption of a network with all the devices powered on, or
a fraction of devices only. The comparison of these �gures has enlightened when the sleep mode
adoption is convenient.

Our results suggest that with today technology, with device consumption that varies very
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little with the load, the use of sleep modes is very e�ective in reducing the network energy con-
sumption. In the future, with devices whose consumption will likely be more load proportional,
the e�ectiveness of sleep mode approaches will reduce. However, we have found that sleep modes
reduce power consumption even when device power scales quadratically with load. Our results
indicate also that highly connected networks, with large node degree and high randomness, tend
to make the use of sleep modes more convenient.
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