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This work deals with the stability analysis of a one-parameter family of Absorbing
Boundary Conditions (ABC) that have been derived for the acoustic wave equation.

We tackle the problem of long-term stability of the wave field both at the continuous

and the numerical levels. We first define a function of energy and we show that it is
decreasing in time. Its discrete form is also decreasing under a Courant-Friedrichs-Lewy

(CFL) condition that does not depend on the ABC. Moreover, the decay rate of the

continuous energy can be determined: it is exponential if the computational domain is
star-shaped and this property can be illustrated numerically.
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1. Introduction

In a previous work5, we have constructed a one-parameter family of Absorbing

Boundary Conditions (ABC) for the acoustic wave equation. We have obtained

second-order boundary conditions that can be applied on regular arbitrarily-shaped

surfaces. They read as:

∂t (∂nu+ ∂tu) =
(κ

4
− γ
)
∂nu−

(κ
4

+ γ
)
∂tu on Σ. (1.1)

The function κ stands for the curvature of Σ and γ is a regular parameter defined on

Σ. Condition (1.1) states the normal derivative of the wave field u via the pseudo-

differential operator
(
∂t + γ − κ

4

)−1
. It thus interferes with the sparse structure of

the finite element matrices that may be used for the numerical computations. That

is why we proposed7 to introduce an auxiliary unknown ψ defined on the absorbing

surface. By combining ψ with u, we thus avoid discretizing the pseudo-differential

operator and the sparsity of the discrete matrices is preserved.

The problem reads then as:

∂2
t u−∆u = F in Ω× (0,+∞) ;(
∂t −

κ

4
+ γ
)
ψ = ∂tu on Σ× (0,+∞) ;

∂nu+ ∂tu+
κ

2
ψ = 0 on Σ× (0,+∞) ;

u = 0 on Γ× (0,+∞) ;

u(0, x) = 0, ∂tu(0, x) = 0 in Ω;

ψ(0, x) = 0 on Σ;

(1.2)

where Ω is a bounded domain and its boundary ∂Ω = Γ ∪ Σ is assumed to be

regular, with Γ∩Σ = ∅. F is a given source that is compactly supported in time t.

In Ref. 7, we have performed a collection of numerical experiments that show that

if γ ≥ κ
4 , the condition (1.1) performs well, with the same degree of accuracy.

This work aims at refining the analysis carried out in Ref. 5 where we obtained

a weak stability result by proving that, if F is compactly supported in time, the

solution to (1.2) converges to 0 as t tends to infinity. In this paper, we focus on

the study of energy by considering its long-term behavior. To this end, we perform

a stability analysis describing the time variations of the energy. This way, we can

obtain a strong stability result that depends on the geometrical properties of the

computational domain.

An outline of the rest of the paper is as follows. First, we show that the time behavior

of the solution to the continuous problem (1.2) can be represented by an energy

E := E(t), defined as a Lyapunov function. Next, we study the variations of E when

t tends to infinity. We show that E is decreasing and we establish that if the domain

Ω is star-shaped, the decay rate is exponential. Thus we obtain a strong stability

result. Regarding the discrete problem, we show that there also exists a discrete
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energy defined as a suitable approximation of the continuous energy. The discrete

energy is also decreasing, provided that the time step satisfies a CFL condition

that does not depend on the ABC. Numerical experiments are then performed to

illustrate that the discrete energy decays very fast like an exponential function

whose coefficients can be computed in the case of a circular boundary.

In this paper, we focus on the 2D case because it is easier to perform large series

of numerical experiments. Nevertheless, regarding theoretical results, there is no

difference between 2D and 3D.

2. Strong long-term stability of the continuous problem

In Ref. 5, we have established that if F ∈ C1([0 ; T ];L2(Ω)), where T > 0 is given,

the solution u to (1.2) satisfies

u ∈ C0([0 ; +∞[ ; H1(Ω)) ∩ C1([0 ; T ]) ; L2(Ω)) and ψ ∈ C1([0 ; T ]) ; L2(Σ)).

Then, assuming that Σ is convex, κ is positive and the function

E(t) =
1

2

∫
Ω

(
|∂tu|2 + |∇u|2

)
dx+

1

2

∫
Σ

κ

2
|ψ|2dσ

is positive and decreasing. Moreover, since u is defined through a contraction semi-

group, we have proved that lim
t→∞

E(t) = 0. This is what we call a weak stability

result because this result does not give the decay rate of E(t).

Our purpose is thus to establish a strong stability result by proving that the decay

rate of the function E is exponential. In practice, the source term in (1.2) is timely

compactly supported and, just as was formerly observed in Ref. 5, the long-term

behavior of the energy can be characterized by considering the Cauchy problem

only. In this section, we thus consider the system

∂2
t u−∆u = 0 in Ω× (0,+∞) ;(
∂t −

κ

4
+ γ
)
ψ = ∂tu on Σ× (0,+∞) ;

∂nu+ ∂tu+
κ

2
ψ = 0 on Σ× (0,+∞) ;

u = 0 on Γ× (0,+∞) ;

u(0, x) = u0, ∂tu(0, x) = u1 in Ω;

ψ(0, x) = ψ0 = ψ(t0, x) on Σ;

(2.1)

The mathematical framework of this section has been previously set in papers deal-

ing with the boundary stabilization of the wave equation. In particular, in Refs. 14,

13, it has been proved that it is sufficient to show that there exists a positive con-

stant C such that ∫ T

S

E(t)dt ≤ CE(S) (2.2)

with 0 ≤ S < T < +∞ to have the exponential decay of the energy.
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2.1. Preliminary results

We first introduce the function space H defined by H = H1
Γ(Ω) × L2(Ω) × L2(Σ),

where H1
Γ(Ω) = {h1 ∈ H1 (Ω) , h1 = 0 on Γ}. Let V be the product space defined

by

V = {(v1, v2, ψ) ∈ H, ∆v1 ∈ L2(Ω), v2 ∈ H1
Γ(Ω), ∂nv1|Σ ∈ L

2(Σ),

∂nv1 + v2 +
κ

2
ψ = 0 on Σ}.

Lemma 2.1. Let (u0, u1, ψ0) ∈ V with ψ0 ∈ H1/2(Σ). Then u ∈
C0
(
[0,+∞[; H2(Ω)

)
.

Proof. In Ref. 5, the Hille-Yosida theorem allowed us to prove that for any

(u0, u1, ψ0) ∈ V ,

(u, ∂tu, ψ) ∈ C0 ([0,+∞[; V ) ∩ C1 ([0,+∞[; H) .

By definition of V , we thus have :

u ∈ C0
(
[0,+∞[; H1(Ω)

)
and ∆u ∈ C0

(
[0,+∞[; L2(Ω)

)
. (2.3)

Moreover, if ψ0 ∈ H1/2(Σ), the auxiliary unknown satisfies ψ ∈
C0
(
[0,+∞[; H1/2(Σ)

)
.

Indeed, according to the Duhamel formula, ψ reads as :

ψ(t, x) =

∫ t

0

e(γ−κ4 )(s−t)∂tu(s, x)ds, for any x ∈ Σ.

We know that ∂tu ∈ C0
(
[0,+∞[; H1(Ω)

)
, which implies that

∂tu|Σ ∈ C0
(
[0,+∞[; H1/2(Σ)

)
. We thus obtain that ψ ∈ C0

(
[0,+∞[; H1/2(Σ)

)
.

Now, u, ∂tu and ψ satisfy the boundary condition

∂nu+ ∂tu+
κ

2
ψ = 0 on Σ.

Since κ belongs to L∞(Σ), we thus have

∂nu|Σ ∈ C0
(

[0,+∞[; H1/2(Σ)
)

and the previous regularity result combined with (2.3) implies that u ∈
C0
(
[0,+∞[; H2(Ω)

)
.

Lemma 2.1 generalizes a result that has been glimpsed in Ref. 7 where we as-

sumed that ψ0 = 0 to show that the solution to (2.1) converges as t→ +∞.

Lemma 2.2. Let (u0, u1, ψ0) ∈ V . Then,

E(T )− E(S) = −
∫ T

S

∫
Σ

|∂tu|2dσdt+

∫ T

S

∫
Σ

κ

2

(κ
4
− γ
)
|ψ|2dσdt, (2.4)
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Proof. Following the Hille-Yosida theory, when (u0, u1, ψ0) ∈ V , u ∈
C1
(
[0,+∞[; H1(Ω)

)
, ∂u ∈ C1

(
[0,+∞[; H1(Ω)

)
, ∂2

t u ∈∈ C0
(
[0,+∞[; L2(Ω)

)
and

ψ ∈ C1
(
[0,+∞[; L2(Σ)

)
.

The function E is thus differentiable and it derivative is given by

dE
dt

(u, ∂tu, ψ) =

∫
Ω

∂tu∂
2
t u dx+

∫
Ω

∇u · ∇∂tu dx+

∫
Σ

κ

2
ψ∂tψdΣ

Then, using the Green formula, we get

dE
dt

(u, ∂tu, ψ) = −
∫

Σ

|∂tu|2dσ +

∫
Σ

κ

2

(κ
4
− γ
)
|ψ|2dσ.

and by integrating on [S, T ], we have

E(T )− E(S) = −
∫ T

S

∫
Σ

|∂tu|2dσdt+

∫ T

S

∫
Σ

κ

2

(κ
4
− γ
)
|ψ|2dσdt.

Lemma 2.3. Let (u0, u1, ψ0) ∈ V with ψ0 ∈ H1/2(Σ). If

γ(x) >
κ(x)

4
, ∀x ∈ Σ and γ − κ(x)

4
∈ L∞(Σ) (2.5)

and if Σ is strictly convex so that κ(x) > 0, ∀x ∈ Σ, then, we have
∫ T

S

∫
Σ

|∂tu|2 dσ dt ≤ E(S)∫ T

S

∫
Σ

κ

2

(
γ − κ

4

)
|ψ|2 dσ dt ≤ E(S)

(2.6)

and if αmin = min
x∈Σ

(
γ − κ

4

)
, we have∫ T

S

∫
Σ

κ

2
|ψ|2 dσ dt ≤ 1

αmin
E(S) (2.7)

Proof. We know that

E(T )− E(S) = −
∫ T

S

∫
Σ

|∂tu|2dσdt+

∫ T

S

∫
Σ

κ

2

(κ
4
− γ
)
|ψ|2dσdt,

which is equivalent to

E(S) =

∫ T

S

∫
Σ

|∂tu|2dσdt+

∫ T

S

∫
Σ

κ

2

(
γ − κ

4

)
|ψ|2dσdt+ E(T ).

Since each term is positive, we obviously get
∫ T

S

∫
Σ

|∂tu|2 dσ dt ≤ E(S);∫ T

S

∫
Σ

κ

2

(
γ − κ

4

)
|ψ|2 dσ dt ≤ E(S).
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Moreover

∫ T

S

∫
Σ

κ

2

(
γ − κ

4

)
|ψ|2 dσ dt ≤ E(S) implies that, if αmin = min

x∈Σ

(
γ − κ

4

)
,

αmin

∫ T

S

∫
Σ

κ

2
|ψ|2 dσ dt ≤ E(S)

which ends the proof of Lemma 2.3.

Lemma 2.4. There exists a constant C > 0 such that, for any 0 ≤ S ≤ t,∫
Σ

|u(t, x)|2dσ ≤ CE(S). (2.8)

Proof. The trace map from H1(Ω) into H1/2(Σ) is continuous and there exist

C1 > 0 and C2 > 0 such that for any u ∈ H1(Ω),

‖u‖2L2(Σ) ≤ C1‖u‖2H1/2(Σ) ≤ C2‖u‖2H1(Ω).

Moreover, u satisfies the Poincaré inequality: there exists a positive constant C3

such that

‖u‖L2(Ω) ≤ C3‖∇u‖L2(Ω) ≤ C3E(t). (2.9)

This implies that ‖u‖2L2(Σ) ≤ CE(t), and we conclude easily since t 7−→ E(t) is

decreasing.

Lemma 2.5. Let m(x) be a function in C1(Ω̄)3 and u a regular solution to the wave

equation (see Lemma 2.1). Then, we have[∫
Ω

∂tu (m · ∇u) dx

]T
S

− 1

2

∫ T

S

∫
∂Ω

(m · n) |∂tu|2dσ dt+
1

2

∫ T

S

∫
Ω

div m|∂tu|2dx dt+∫ T

S

∫
Ω

∇u · ∇ (m · ∇u) dx dt−
∫ T

S

∫
∂Ω

∂nu (m · ∇u) dσ dt = 0.

(2.10)

Proof. For a proof of this identity, we refer for instance to Refs. 13, 14. We just

mention that it is based on the identity∫ T

S

∫
Ω

(
∂2
t u−∆u

)
(m · ∇u) dx dt = 0

Let us point out that the condition ψ0 in H1/2(Σ) is necessary to have u(t, .) in

H2(Ω) and to have (2.10) well-defined.
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2.2. Proof of the exponential energy decay

In this section, we set m(x) = x − x0 where x0 ∈ Rd (d = 2, 3 denotes the space

dimension). We suppose that x0 is chosen such that

Γ = {x ∈ ∂Ω,m.n ≤ 0} (2.11)

and

Σ = {x ∈ ∂Ω,m.n ≥ 0}. (2.12)

Remark 2.1. The existence of x0 is guaranteed if Γ is the exterior boundary of

a star-shaped domain ω. Indeed, we can then choose x0 inside ω such that ω is

star-shaped with respect to x0 and (2.11) is satisfied (remark that n is the interior

normal with respect to ω). Moreover, since Σ surrounds Γ, x0 is inside the domain

delimited by Σ. Since Σ is convex, this domain is star-shaped with respect to all its

point and in particular to x0, so that (2.12) is satisfied.

In that case, we know that div m = d. For the sake of simplicity, we suppose

that d = 3 but there is no difficulty to obtain the same result for d = 2.

To prove that there exists a positive constant C that satisfies (2.2), we only have

to find an upper bound of

1

2

∫ T

S

∫
Ω

(
|∂tu|2 + |∇u|2

)
dx dt

since we already know from Lemma 2.3 that∫ T

S

∫
Σ

κ

2
|ψ|2 dσ dt ≤ 1

αmin
E(S).

Lemma 2.6. Let (u0, u1, ψ0) ∈ V . Then, we have

1

2

∫ T

S

∫
Ω

(
|∂tu|2 + |∇u|2

)
dx dt = −

[∫
Ω

∂tu ((m · ∇u) + u) dx

]T
S

+
1

2

∫ T

S

∫
∂Ω

(m · n)
[
|∂tu|2 − |∇u|2

]
dσ dt+

∫ T

S

∫
∂Ω

∂nuu dσ dt

+

∫ T

S

∫
∂Ω

∂nu (m · ∇u) dσ dt.

(2.13)

Proof. From Lemma 2.5, we know that[∫
Ω

∂tu (m · ∇u) dx

]T
S

− 1

2

∫ T

S

∫
∂Ω

(m · n) |∂tu|2dσ dt+
1

2

∫ T

S

∫
Ω

div m|∂tu|2dx dt+∫ T

S

∫
Ω

∇u · ∇ (m · ∇u) dx dt−
∫ T

S

∫
∂Ω

∂nu (m · ∇u) dσ dt = 0.
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Moreover, we can check that

∂j (m · ∇u) = (m · ∇) ∂ju+∇u · ∂jm for j = 1, 2, 3;

and since m(x) = x− x0, we get

∇ (m · ∇u) = (m · ∇)∇u+∇u.

Consequently, we have∫ T

S

∫
Ω

∇u · ∇ (m · ∇u) dx dt =

∫ T

S

∫
Ω

|∇u|2 dx dt+

∫ T

S

∫
Ω

((m · ∇)∇u) · ∇u dx dt

=

∫ T

S

∫
Ω

|∇u|2 dx dt+
1

2

∫ T

S

∫
Ω

m · ∇|∇u|2 dx dt

=

∫ T

S

∫
Ω

|∇u|2 dx dt+
1

2

∫ T

S

∫
∂Ω

(m · n) |∇u|2 dσ dt

−1

2

∫ T

S

∫
Ω

div m|∇u|2 dx dt.

Therefore, since div m = 3, we get[∫
Ω

∂tu (m · ∇u) dx

]T
S

− 1

2

∫ T

S

∫
∂Ω

(m · n) |∂tu|2dσ dt+
3

2

∫ T

S

∫
Ω

|∂tu|2dx dt

−1

2

∫ T

S

∫
Ω

|∇u|2dx dt+
1

2

∫ T

S

∫
∂Ω

(m · n) |∇u|2dσ dt

−
∫ T

S

∫
∂Ω

∂nu (m · ∇u) dσ dt = 0

which is equivalent to

3

2

∫ T

S

∫
Ω

|∂tu|2dx dt−
1

2

∫ T

S

∫
Ω

|∇u|2dx dt =

−
[∫

Ω

∂tu (m · ∇u) dx

]T
S

+
1

2

∫ T

S

∫
∂Ω

(m · n) |∂tu|2dσ dt

−1

2

∫ T

S

∫
∂Ω

(m · n) |∇u|2dσ dt+

∫ T

S

∫
∂Ω

∂nu (m · ∇u) dσ dt.

(2.14)

Moreover, we have ∫ T

S

∫
Ω

(
∂2
t u−∆u

)
u = 0

which implies that[∫
Ω

∂tuu dx

]T
S

−
∫ T

S

∫
Ω

|∂tu|2 dx dt+

∫ T

S

∫
Ω

|∇u|2 dx dt−
∫ T

S

∫
∂Ω

∂nuu dσ dt = 0.
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Then, adding this equation to (2.14), we obtain[∫
Ω

∂tuu dx

]T
S

+
1

2

∫ T

S

∫
Ω

|∂tu|2 dx dt+
1

2

∫ T

S

∫
Ω

|∇u|2 dx dt−
∫ T

S

∫
∂Ω

∂nuu dσ dt =

−
[∫

Ω

∂tu (m · ∇u) dx

]T
S

+
1

2

∫ T

S

∫
∂Ω

(m · n) |∂tu|2dσ dt

−1

2

∫ T

S

∫
∂Ω

(m · n) |∇u|2dσ dt+

∫ T

S

∫
∂Ω

∂nu (m · ∇u) dσ dt.

Finally, we arrive at

1

2

∫ T

S

∫
Ω

(
|∂tu|2 + |∇u|2

)
dx dt = −

[∫
Ω

∂tu ((m · ∇u) + u) dx

]T
S

+
1

2

∫ T

S

∫
∂Ω

(m · n)
[
|∂tu|2 − |∇u|2

]
dσ dt+

∫ T

S

∫
∂Ω

∂nuu dσ dt

+

∫ T

S

∫
∂Ω

∂nu (m · ∇u) dσ dt,

which completes the proof of Lemma 2.6.

In the following, the letter C will be used to denote any positive constant.

Lemma 2.7. We have

I =
1

2

∫ T

S

∫
Γ

(m · n)
[
|∂tu|2 − |∇u|2

]
dσ dt

+

∫ T

S

∫
Γ

∂nuu dσ dt+

∫ T

S

∫
Γ

∂nu (m · ∇u) dσ dt ≤ 0.

Proof. We know that u = 0 on Γ, so that ∇Γu = 0 and ∂tu = 0 on Γ. Moreover,

since ∇u = ∇Γu+ (∇u · n)n, ∇u = (∇u · n)n on Γ. Then we get

I = −1

2

∫ T

S

∫
Γ

(m · n) |∂nu|2 dσ dt+

∫ T

S

∫
Γ

(m · n) |∂nu|2 dσ dt

=
1

2

∫ T

S

∫
Γ

(m · n) |∂nu|2 dσ dt.

By hypothesis, m · n is negative on Γ. Therefore, we obtain I ≤ 0.

Lemma 2.8. There exists C > 0 such that∫ T

S

∫
Σ

∂nu (m · ∇u) dσ dt− 1

2

∫ T

S

∫
Σ

(m · n) |∇u|2 dσ dt ≤ CE(S).
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Proof. Since m · n > 0 on Σ, we have

∂nu (m · ∇u) =
√
m · n (m · ∇u)

∂nu√
m · n

.

Therefore, if we set R = max
x∈Σ
|m(x)|, we get

|∂nu (m · ∇u) | ≤ 2R
|∂nu|√
m · n

√
m · n
2
|∇u|

≤ R2

m · n
|∂nu|2 +

m · n
4
|∇u|2

≤ C|∂nu|2 +
m · n

4
|∇u|2

From this inequality, we deduce that∫ T

S

∫
Σ

∂nu (m · ∇u) dσ dt− 1

2

∫ T

S

∫
Σ

(m · n) |∇u|2 dσ dt

≤ −1

4

∫ T

S

∫
Σ

(m · n) |∇u|2 dσ dt+ C

∫ T

S

∫
Σ

|∂nu|2 dσ dt,

which implies that∫ T

S

∫
Σ

∂nu (m · ∇u) dσ dt− 1

2

∫ T

S

∫
Σ

(m · n) |∇u|2 dσ dt ≤ C
∫ T

S

∫
Σ

|∂nu|2 dσ dt,

(2.15)

since m.n ≥ 0 on Σ.

The proof of the lemma is thus completed if we prove that∫ T

S

∫
Σ

|∂nu|2 dσ dt ≤ CE(S). (2.16)

We know that ∂nu = −∂tu− κ
2ψ on Σ. Since κ > 0 on Σ, we can write

|∂nu|2 ≤ κ
(
κ

2
|ψ|2 +

2

κ
|∂tu|2

)
.

Then, if κmax denotes the maximum of κ on Σ, we get∫ T

S

∫
Σ

|∂nu|2 dσ dt ≤
κmax

αmin
E(S) + 2

∫ T

S

∫
Σ

|∂tu|2 dσ dt.

But, according to Lemma 2.3, we have∫ T

S

∫
Σ

|∂tu|2 dσ dt ≤ CE(S)

which ends the proof of (2.16). Therefore, plugging (2.16) in (2.15), we obtain∫ T

S

∫
Σ

∂nu (m · ∇u) dσ dt− 1

2

∫ T

S

∫
Σ

(m · n) |∇u|2 dσ dt ≤ CE(S),

which ends the proof of Lemma 2.8.
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Lemma 2.9. There exists a constant C > 0 such that

1

2

∫ T

S

∫
Σ

(m · n) |∂tu|2 dσ dt ≤ CE(S).

Proof. By definition of R, we have |m · n| ≤ R. Therefore,

1

2

∫ T

S

∫
Σ

(m · n) |∂tu|2 dσ dt ≤
R

2

∫ T

S

∫
Σ

|∂tu|2 dσ dt,

and by applying (2.6), we get

1

2

∫ T

S

∫
Σ

(m · n) |∂tu|2 dσ dt ≤ CE(S).

Lemma 2.10. There exists a constant C > 0 such that∫ T

S

∫
Σ

∂nuu dσ dt ≤ CE(S).

Proof. On Σ, ∂nu = −∂tu− κ
2ψ. Therefore,∫ T

S

∫
Σ

∂nuu dσ dt =

∫ T

S

∫
Σ

(
−∂tu−

κ

2
ψ
)
u dσ dt;

= −1

2

[∫
Σ

|u|2 dσ
]T
S

−
∫ T

S

∫
Σ

κ

2
ψudσ dt;

= −1

2

∫
Σ

|u(T )|2 dσ +
1

2

∫
Σ

|u(S)|2 dσ −
∫ T

S

∫
Σ

κ

2
ψudσ dt;

≤ 1

2

∫
Σ

|u(S)|2 dσ −
∫ T

S

∫
Σ

κ

2
ψudσ dt.

Using the continuity of the trace operator, we know that there exists a constant

C > 0 such that ∫
Σ

|u(S)|2 dσ ≤ C‖u(S)‖2H1(Ω).

From the Poincaré inequality (2.9), we thus get that there exists a positive constant

C such that

‖u(S)‖2H1 ≤ C
∫

Ω

|∇u(S)|2 dx.

Finally, we obtain∫ T

S

∫
Σ

∂nuu dσ dt ≤ CE(S)−
∫ T

S

∫
Σ

κ

2
ψudσ dt.
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Now, there is still to control −
∫ T

S

∫
Σ

κ

2
ψudσ dt. Since γ > κ

4 , ψ satisfies

ψ =
(κ

4
− γ
)−1

(∂tψ − ∂tu) on Σ.

We thus get

−
∫ T

S

∫
Σ

κ

2
ψudσ dt = −

∫ T

S

∫
Σ

κ

2

(κ
4
− γ
)−1

(∂tψ − ∂tu)u dσ dt

= −
∫ T

S

∫
Σ

κ

2

(κ
4
− γ
)−1

∂tψudσ dt+

∫ T

S

∫
Σ

κ

2

(κ
4
− γ
)−1

∂tuu dσ dt

= −
∫ T

S

∫
Σ

κ

2

(κ
4
− γ
)−1

∂tψudσ dt+
1

2

∫
Σ

κ

2

(κ
4
− γ
)−1 [

|u|2
]T
S
dσ

which gives rise to

−
∫ T

S

∫
Σ

κ

2
ψudσ dt =

1

2

∫
Σ

κ

2

(κ
4
− γ
)−1 [

|u|2
]T
S
dσ

+

∫ T

S

∫
Σ

κ

2

(κ
4
− γ
)−1

ψ∂tu dσ dt −
∫

Σ

κ

2

(κ
4
− γ
)−1

[ψu]
T
S dσ.

(2.17)

First, we know that

1

2

∫
Σ

κ

2

(κ
4
− γ
)−1 [

|u|2
]T
S
dσ =

1

2

∫
Σ

κ

2

(κ
4
− γ
)−1

|u(T )|2 dσ

−1

2

∫
Σ

κ

2

(κ
4
− γ
)−1

|u(S)|2 dσ,

and since γ > κ
4 and κ > 0,

1

2

∫
Σ

κ

2

(κ
4
− γ
)−1

|u(T )|2 dσ ≤ 0,

which implies that

1

2

∫
Σ

κ

2

(κ
4
− γ
)−1 [

|u|2
]T
S
dσ ≤ 1

2

∫
Σ

κ

2

(
γ − κ

4

)−1

|u(S)|2 dσ

≤ κmax

4αmin

∫
Σ

|u(S)|2 dσ

Then, according to Lemma 2.4, we get that there exists a positive constant C such

that

1

2

∫
Σ

κ

2

(κ
4
− γ
)−1 [

|u|2
]T
S
dσ ≤ CE(S). (2.18)

Moreover, using Lemma 2.3, we know that∫ T

S

∫
Σ

κ

2

(κ
4
− γ
)−1

ψ∂tu dσ dt ≤ CE(S). (2.19)
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Regarding the last term in (2.17), we have

−
∫

Σ

κ

2

(κ
4
− γ
)−1

[ψu]
T
S dσ

=

∫
Σ

κ

2

(
γ − κ

4

)−1

ψ(T )u(T ) dσ −
∫

Σ

κ

2

(
γ − κ

4

)−1

ψ(S)u(S) dσ

≤ 1

αmin

∣∣∣∣∫
Σ

κ

2
ψ(T )u(T ) dσ +

∫
Σ

κ

2
ψ(S)u(S) dσ

∣∣∣∣ .
Now, using the Cauchy inequality, we get

|ψ(T )u(T ) + ψ(S)u(S)| ≤ 1

2

(
|ψ(T )|2 + |u(T )|2 + |ψ(S)|2 + |u(S)|2

)
.

Therefore,

−
∫

Σ

κ

2

(κ
4
− γ
)−1

[ψu]
T
S dσ

≤ 1

2αmin

∫
Σ

(κ
2
|ψ(T )|2 +

κ

2
|u(T )|2 +

κ

2
|ψ(S)|2 +

κ

2
|u(S)|2

)
dσ.

(2.20)

By definition of E , we immediately have∫
Σ

(κ
2
|ψ(T )|2 +

κ

2
|ψ(S)|2

)
dσ ≤ (E(T ) + E(S)) (2.21)

and, according to Lemma 2.4, there exists a constant C > 0 such that∫
Σ

(κ
2
|u(T )|2 +

κ

2
|u(S)|2

)
dσ ≤ C (E(T ) + E(S)) . (2.22)

Thus, since t 7−→ E(t) is decreasing, E(T ) ≥ E(S) and from (2.20), (2.21) and (2.22)

we infer that

−
∫

Σ

κ

2

(κ
4
− γ
)−1

[ψu]
T
S dσ ≤ CE(S) (2.23)

Finally, according to (2.17) and the successive estimates (2.18), (2.19), (2.23), we

obtain

−
∫ T

S

∫
Σ

κ

2
ψudσ dt ≤ CE(S)

which proves that ∫ T

S

∫
Σ

∂nuu dσ dt ≤ CE(S)

and completes the proof of Lemma 2.10.

Lemma 2.11. We have

−
[∫

Ω

∂tu ((m · ∇u) + u) dx

]T
S

≤ CE(S).
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Proof. We know that

−
[∫

Ω

∂tu ((m · ∇u) + u) dx

]T
S

= −
∫

Ω

∂tu (m · ∇u)|t=T dx−
∫

Ω

∂tuu|t=T dx

+

∫
Ω

∂tu (m · ∇u)|t=S dx+

∫
Ω

∂tuu|t=S dx.

Moreover, we have
−
∫

Ω

∂tu (m · ∇u)|t=T dx ≤ C
(∫

Ω

|∂tu|t=T |
2 dx+

∫
Ω

|∇u|t=T |
2 dx

)
,∫

Ω

∂tu (m · ∇u)|t=S dx ≤ C
(∫

Ω

|∂tu|t=S |
2 dx+

∫
Ω

|∇u|t=S |
2 dx

)
,

and 
−
∫

Ω

∂tuu|t=T dx ≤ C
(∫

Ω

|∂tu|t=T |
2 dx+

∫
Ω

|u|t=T |
2 dx

)
,∫

Ω

∂tuu|t=S dx ≤ C
(∫

Ω

|∂tu|t=S |
2 dx+

∫
Ω

|u|t=S |
2 dx

)
.

Using the Poincaré inequality (2.9) and that E decreases, we obviously get

−
[∫

Ω

∂tu ((m · ∇u) + u) dx

]T
S

≤ CE(S),

which ends the proof.

Theorem 2.1. There exists a positive constant C such that for all 0 ≤ S < T <

+∞, ∫ T

S

E(u, ∂tu, ψ)dt ≤ CE(S). (2.24)

Proof. From Lemma 2.6 to Lemma 2.11, we get

1

2

∫ T

S

∫
Ω

(
|∂tu|2 + |∇u|2

)
dx dt ≤ CE(S). (2.25)

Combining (2.25) with the result of Lemma 2.3, we get∫ T

S

∫
Σ

κ

2
|ψ|2 dσ dt ≤ CE(S). (2.26)

We then obtain

1

2

∫ T

S

∫
Ω

(
|∂tu|2 + |∇u|2

)
dx dt+

1

2

∫ T

S

∫
Σ

κ

2
|ψ|2 dσ dt ≤ CE(S) (2.27)

and the proof of Theorem 2.1 is completed.
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Theorem 2.2. There exists a positive constant C such that for all initial data in

V with ψ0 ∈ H1/2(Σ),

E(u, ∂tu, ψ) ≤ e−(t−C)/CE(u, ∂tu, ψ)|t=0
. (2.28)

Proof. In Theorem 2.1 we have shown that there exists a positive constant C such

that for all 0 ≤ S < T < +∞,∫ T

S

E(u, ∂tu, ψ)dt ≤ CE(u, ∂tu, ψ)|t=S .

Letting T to +∞, we get∫ +∞

S

E(u, ∂tu, ψ)dt ≤ CE(u, ∂tu, ψ)|t=S , (2.29)

which implies that

d

ds

(
eS/C

∫ +∞

S

E(u, ∂tu, ψ)dt

)
≤ 0.

The map S 7−→ eS/C
∫ +∞

S

E(u, ∂tu, ψ)dt is thus decreasing and, using Gronwall

lemma, we get

eS/C
∫ +∞

S

E(u, ∂tu, ψ)dt ≤
∫ +∞

0

E(u, ∂tu, ψ)dt.

Besides, when we apply (2.29) for S = 0, we get∫ +∞

0

E(u, ∂tu, ψ)dt ≤ CE(u, ∂tu, ψ)|t=0
.

Therefore,

eS/C
∫ +∞

S

E(u, ∂tu, ψ)dt ≤ CE(u, ∂tu, ψ)|t=0
. (2.30)

Moreover, since E is positive∫ +∞

S

E(u, ∂tu, ψ)dt ≥
∫ S+C

S

E(u, ∂tu, ψ)dt,

and since E decreases∫ S+C

S

E(u, ∂tu, ψ)dt ≥
∫ S+C

S

E(u, ∂tu, ψ)|t=S+C
= CE(S + C). (2.31)

Consequently, by plugging (2.30) into (2.31), we obtain

eS/CE(u, ∂tu, ψ)|t=S+C
≤ E(u, ∂tu, ψ)|t=0

,

which implies that for all t > 0

E(u, ∂tu, ψ) ≤ e−(t−C)/CE(u, ∂tu, ψ)|t=0
.
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We have thus established that the energy of the continuous problem is expo-

nentially decreasing under two conditions. The first one requires more regularity

on ψ0. Indeed, ψ0 must be in H1/2(Σ) while it is sufficient to have ψ0 in L2(Σ) to

prove that the problem is well-posed7. From a practical point of view, that is not

annoying because we choose ψ0 = 0 on Σ. Indeed, the initial data u0 and u1 are

compactly supported inside Ω. Their traces are thus vanishing on Σ, which implies

that ψ0 = 0 on Σ, according to the compatibility condition ∂nu0 +u1 + κ
2ψ0 = 0 on

Σ that must be satisfied in V . The condition ψ0 ∈ H1/2(Σ) is thus satisfied. The

second condition concerns the geometrical form of Ω. The energy decay has been

proved under the condition : there exists x0 ∈ R2 such that (x−x0) ·n ≤ 0 on Γ and

(x − x0) · n > 0 on Σ and Σ is convex. It is satisfied if the obstacle is star-shaped

with respect to x0. The exponential decay should be obtained for more general cases

where the obstacle is non-trapping, by using micro-local analysis arguments like in

Ref. 4.

3. Numerical analysis of stability

In Ref. 7, we have presented numerical results showing the exponential decay of a

discrete energy in the case of a circular boundary (i.e. when the curvature is con-

stant). These results confirmed that the condition γ ≥ κ/4 is a necessary condition

for the decay of the energy. We also showed that the decay rate of the energy is

exponential.

Herein our goals are a) to prove the decay of the discrete energy by a stability

analysis (Subsection 3.1); b) to illustrate that condition γ ≥ κ/4 is also necessary

when the curvature is not constant (Subsection 3.2); and c) to estimate the decay

rate of the energy as a function of the curvature of the boundary (Subsection 3.3).

To perform the experiments, we have implemented a numerical scheme cou-

pling the Interior Penalty Discontinuous Galerkin (IPDG) method for the space

discretization with a Leap-Frog scheme for the time discretization. The scheme is

detailed in Ref. 7.

3.1. Discrete stability analysis

In this subsection, we recall the discrete energy presented in Ref. 7 and we show

that it is decreasing under a CFL condition, provided that γ ≥ κ
4 and that the

curvature is assumed constant by edges.

As explained in Ref. 7, the fully discretized scheme we obtain reads as
M

Un+1 − 2Un + Un−1

∆t2
+B

Un+1 −Un−1

2∆t
+Bκ

Ψn+1 + Ψn−1

2
+KUn = 0,

C
Ψn+1 −Ψn−1

2∆t
+ Cκ, γ

Ψn+1 + Ψn−1

2
−DUn+1 −Un−1

2∆t
= 0,

(3.1)

and we will suppose that κ is constant by edges. We recall that the mass matrix M
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and the matrices B, Bκ and C are symmetric positive definite and that the stiffness

matrices D and K are positive.

For n ∈ N, we set

En+1/2 =

(
M

Un+1 −Un

∆t
,
Un+1 −Un

∆t

)
+
(
KUn+1,Un

)
+

1

2

[(
CκΨ

n+1,Ψn+1
)

+ (CκΨ
n,Ψn) ,

] (3.2)

with

Cκ =

( ∑
σ∈Σabs

∫
σ

κ

2
vivj

)
1≤i,j≤M

.

Since M and K are symmetric positive matrices and M is definite, the eigenvalues

of M−1K are real and non-negative.

Let λmax be the maximum of these eigenvalues.

Proposition 3.1. Under the Courant-Friedrichs-Lewy condition (CFL)

∆t <
2√
λmax

, (3.3)

En+1/2 defines a discrete energy.

Proof. To show that En+1/2 defines a discrete energy, we only have to prove that

En+1/2 is positive.

We easily check that

En+1/2 =

((
M − ∆t2

4
K

)
Un+1 −Un

∆t
,
Un+1 −Un

∆t

)
+

(
K

Un+1 + Un

2
,
Un+1 + Un

2

)
+

1

2

[(
CκΨ

n+1,Ψn+1
)

+ (CκΨ
n,Ψn)

]
since(
−∆t2

4
K

Un+1 −Un

∆t
,
Un+1 −Un

∆t

)
+

(
K

Un+1 + Un

2
,
Un+1 + Un

2

)
=
(
KUn+1,Un

)
.

It is obvious that En+1/2 is positive if M − ∆t2

2
K, K and Cκ are positive. We

know that K and Cκ are positive matrices by construction. Moreover since M is a

symmetric positive definite matrix, the positivity of the first matrix is equivalent

to the positivity of I − ∆t2

4
M−1K. Hence, if λmax denotes the largest eigenvalue

of M−1K, I − ∆t2

4
M−1K is positive if

λmax ≤
4

∆t2
.
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Remark 3.1. The eigenvalue λmax depends on the space discretization and satisfies

λmax ' C
h2 when the space step h (i.e. the diameter of the smallest cell) is small

enough. Therefore, the CFL condition (3.3) can be written as

∆t < βh, (3.4)

where β is a constant depending on the geometry of the mesh, on the degree of the

polynomial approximation used for the space discretization, and on the penalization

parameter introduced to stabilize the bilinear form.

The determination of the analytic expression of β for IPDG is still an open

problem. In a recent work1 it has been shown that, on cartesian meshes and when

the penalization parameter is small enough, β ≈ 0.58/
√
d (resp. 0.26/

√
d, 0.15/

√
d,

0.10/
√
d, 0.07/

√
d). for Q1 (resp. Q2, Q3, Q4, Q5 elements), where d denotes the

dimension of the problem. When the penalization parameter α increases, it has been

shown that β ≈ 1
d

√
2

α(p+1)(p+2) . In the numerical experiments we present below, we

consider triangular cells with P1 elements and we have set empirically α = 3 and

β = 0.25.

Remark 3.2. The CFL condition only depends on the matrices M and K and not

on the boundary matrices. This shows that the ABCs do not penalize the CFL.

Proposition 3.2. Under the CFL condition (3.4) and if γ > κ
4 on Σ, the energy

En+1/2 is decreasing.

Proof. We first write the restriction of the second equation of (3.1) on an external

edge σi :

Cσi
Ψn+1
σi −Ψn−1

σi

2∆t
+ Cκ, γσi

Ψn+1
σi + Ψn−1

σi

2
−Dσi

Un+1
Kji
−Un−1

Kji

2∆t
= 0

where Kji is the element containing the edge σi. We multiply this equation by

κi
2

Ψn+1
σi + Ψn−1

σi

2
:(

κi
2
Cσi

Ψn+1
σi −Ψn−1

σi

2∆t
,
Ψn+1
σi + Ψn−1

σi

2

)
+
κi
2

(
Cκ, γσi

Ψn+1
σi + Ψn−1

σi

2
,
Ψn+1
σi + Ψn−1

σi

2

)
−κi

2

(
Dσi

Ψn+1
σi + Ψn−1

σi

2
,
Ψn+1
σi + Ψn−1

σi

2

)
= 0.

We sum on all the exterior edges to obtain(
Cκ

Ψn+1 −Ψn−1

2∆t
,
Ψn+1 + Ψn−1

2

)
=

nf∑
i=1

κi
2

((
Dσi − Cκ, γσi

) Ψn+1
σi + Ψn−1

σi

2
,
Ψn+1
σi + Ψn−1

σi

2

)
.

(3.5)
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Let us now multiply the first equation of (3.1) by
Un+1 −Un−1

2∆t
:(

M
Un+1 − 2Un + Un−1

∆t2
,
Un+1 −Un−1

2∆t

)
+

(
B

Un+1 −Un−1

2∆t
,
Un+1 −Un−1

2∆t

)
+

(
Bκ

Ψn+1 + Ψn−1

2
,
Un+1 −Un−1

2∆t

)
+

(
KUn,

Un+1 −Un−1

2∆t

)
= 0.

(3.6)

Remark that the term
(
Bκ

Ψn+1+Ψn−1

2 , Un+1−Un−1

2∆t

)
can be written as

nf∑
i=1

(
Bκσi

Ψn+1
σi + Ψn−1

σi

2
,
Un+1
Kji
−Un−1

Kji

2∆t

)
.

But

(Bκσi)k,l =

∫
σi

κi
2
wnd−1∗(i−1)+kvnd∗(ji−1)+l

=
κi
2

∫
σi

wnd−1∗(i−1)+kvnd∗(ji−1)+l

=
κi
2

(Dσi)l,k

since we have supposed that κ is constant by edge.

We then have(
Bκ

Ψn+1 + Ψn−1

2
,
Un+1 −Un−1

2∆t

)
=

nf∑
i=1

κi
2

(
Ψn+1
σi + Ψn−1

σi

2
, Dσi

Ψn+1
σi + Ψn−1

σi

2

)
.

By adding (3.5) and (3.6), we get(
M

Un+1 − 2Un + Un−1

∆t2
,
Un+1 −Un−1

2∆t

)
+

(
KUn,

Un+1 −Un−1

2∆t

)
+(

Cκ
Ψn+1 −Ψn−1

2∆t
,
Ψn+1 + Ψn−1

2

)
=

−
(
B

Un+1 −Un−1

2∆t
,
Un+1 −Un−1

2∆t

)
−

nf∑
i=1

κi
2

(
Cκ, γσi

Ψn+1
σi + Ψn−1

σi

2
,
Ψn+1
σi + Ψn−1

σi

2

)
.

(3.7)

Since M is a symmetric matrix, we check that(
M

Un+1 − 2Un + Un−1

∆t2
,
Un+1 −Un−1

2∆t

)
=

1

2∆t

[(
M

Un+1 −Un

∆t
,
Un+1 −Un

∆t

)
−
(
M

Un −Un−1

∆t
,
Un −Un−1

∆t

)]
.

In the same way, since K and C are both symmetric matrices, we obtain(
KUn,

Un+1 −Un−1

2∆t

)
=

1

2∆t

[(
KUn+1,Un

)
−
(
KUn,Un−1

)]
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and(
Cκ

Ψn+1 −Ψn−1

2∆t
,
Ψn+1 + Ψn−1

2

)
=

1

4∆t

[(
CκΨ

n+1,Ψn+1
)
−
(
CκΨ

n−1,Ψn−1
)]

=
1

2∆t

[(
CκΨ

n+1,Ψn+1
)

+ (CκΨ
n,Ψn)

2

−
(CκΨ

n,Ψn) +
(
CκΨ

n−1,Ψn−1
)

2

]
so that (3.7) reads as

1

2∆t

(
En+1/2 − En−1/2

)
= −

(
B

Un+1 −Un−1

2∆t
,
Un+1 −Un−1

2∆t

)

−
nf∑
i=1

κi
2

(
Cκ, γσi

Ψn+1
σi + Ψn−1

σi

2
,
Ψn+1
σi + Ψn−1

σi

2

)
.

Since B and Cκ, γσi are positive definite matrices if γ > κ
4 and κ is positive, we get

1

2∆t

(
En+1/2 − En−1/2

)
< 0,

which ends the proof of the proposition.

3.2. Behavior of the discrete energy in the case of an elliptical

boundary

In this part, we present numerical results that extend the results presented in Ref. 7

to the case of a boundary with a variable curvature. We consider a two-dimensional

domain Ω1, delimited by an exterior boundary Σ1 and by an interior boundary Γ1.

Γ1 is the boundary of an elliptical obstacle of semi-major axis a =2m and semi-

minor axis b =1m centered at the origin. Σ1 is an ellipse of semi-major axis aext = δa

and semi-minor axis bext = δb centered at the origin. The source term F represents

a point source in space set at (0m, 1.3m). Its time variations are represented by a

second-derivative of a Gaussian with a dominant frequency f0 of 1Hz:

F = δx0
2λ
(
λ (t− t0)

2 − 1
)
e−λ(t−t0)2

,

with x0 = (0m, 1.3m), λ = π2f2
0 and t0 = 1/f0.

First, we set γ = κ in order to analyze the behavior of the discrete energy. In

Fig. 2, we depict the evolution of these energy with respect to the time. Obviously,

the energy is first increasing until the source is switched off. Then, it is constant

until the waves reach the external boundary. Finally, the energy is decreasing, which

conforms to Proposition 3.2.

Now, we focus on the sufficient condition γ ≥ κ/4 to see if it may be necessary

to ensure the decay of the energy. To this aim, we have performed two experiments,

one for the critical case γ = 0.25κ and the other one for the case γ = 0.249κ. In Fig.
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Fig. 1. Computational domain

Fig. 2. Energy vs time for γ = κ

3 (resp. in Fig. 4), we represent the evolution of the discrete energy until T = 1000s

(which represents approximately 150 000 iterations) when γ = 0.249κ (resp. when

γ = 0.25κ). Considering only these figures, it seems that both systems are stable,

even when γ < κ
4 . The y-scale has been magnified by a factor 1010 to show there is no

instability. In order to investigate more carefully the stability of the energy, we have

performed the same experiments during a much longer time : T = 35000s (which

represents 4 000 000 iterations). The results are presented in Fig. 5 for γ = 0.249κ

and in Fig. 6), for γ = 0.25κ. It is then clear that the boundary condition is unstable

when γ < κ
4 . Note that the number of iterations we have performed is much larger

than the one needed for practical applications. Nevertheless, it was necessary to

achieve this number in order to exhibit the instabilities in the case γ = 0.249κ.

Moreover, this emphasizes the long-term stability both of the ABCs and of the

numerical scheme.
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Fig. 3. Energy for γ = 0.249κ - y-scale magnified

by 1010
Fig. 4. Energy for γ = 0.25κ - y-scale magnified

by 1010

Fig. 5. Energy for γ = 0.249κ - y-scale magnified

by 1010
Fig. 6. Energy for γ = 0.25κ - y-scale magnified

by 1010

3.3. Analysis of the decay rate of the energy

In Section 2, we have seen that the continuous energy can be controlled by an

exponential decreasing function g(t) which read as

g(t) = exp(−α1t+ α2)).

To check this property, we have computed the evolution of the logarithm of the

discrete energy for γ = κ (see Fig. 7). Note that the energy stops decreasing after

T = 100s, which is due to the fact that it becomes smaller than the round off

error of 10−16. In order to evaluate the rate of the decay α1, we have used a linear

regression method. We have focused on the time interval [0 ; 10], after which the

energy is divided by 1000. In Fig. 8, we compare the evolution of the discrete energy

obtained with γ = κ (blue curve) with the function g (red curve). The two curves are

perfectly superimposed, which illustrates the exponential decay of the energy. Now,

we wish to analyze the dependence of the decay rate with respect to the curvature
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Fig. 7. Evolution of the logarithm of the energy Fig. 8. Exponential decay of the energy

of the boundary. The matter is to show that it is possible to impact on the decay

rate of the solution by changing the location and/or the geometry of the artificial

boundary. This is an interesting property of the ABCs because the solution of time

dependent problem can be used to compute quickly and efficiently the solution to the

Helmholtz equation4. This point deserves attention in particular at high frequency

where the solution to the Helmholtz equation is difficult to compute.

We have computed the decay rate of the energy for six values of δ, 1.5, 2, 3, 4, 5,

6 which represents the distance from the boundary to the obstacle. The results are

presented in Fig. 9. Except the particular cases δ = 1.5 and 2, where the boundary

is very close to the obstacle, the decay rate grows linearly with δ. In Fig. 10, we

compare the previous curve with the function s(δ) = 0.12δ − 1. However, since the

Fig. 9. Decay rate of the energy with respect to

δ

Fig. 10. Comparison with the function s

curvature is not constant, it is not possible to deduce a relation between the decay

rate and the curvature. It is however possible to express this relation as function

of the minimal curvature κmin or of the maximal curvature κmax of the external
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boundary. In this configuration, we have κmin = 1/(2δ) and κmax = 1/δ and two

possible relations for the decay rate α1 are α1 = 0.24/κmin−1 or α1 = 0.12/κmax−1.

In order to analyze this relation more precisely, we have reproduced in Ref. 7 the

same experiments by replacing the elliptical obstacle by a circle of radius 1 and

the elliptical artificial boundary by a circle of radius δ. In this configuration, the

curvature κ is constant and κ = 1/δ. We have obtained that this decay could be

approximated by s(δ) = 0.15δ−1.5 for δ ≥ 3. Then, the relation between the decay

rate and the curvature could be s(δ) = 0.15/κ − 1.5. This relation, which differs

from the two previous ones indicates that it is not possible to express the decay rate

only as a function of κmin or of κmax. Moreover, it not clear that the curvature is

the only parameter impacting on the decay rate. Therefore, it might be interesting

to use the same approach than Komornik12 in order to get an explicit decay rate,

at least in the case of a circle.

4. Conclusion

By combining the results of this work with Refs. 5, 7, we are now in position to

consider that the curvature condition is a good candidate for modeling propagating

acoustic waves. The next step should be to combine the curvature condition with a

condition modeling the evanescent waves. This idea has already been proposed by

Hagstrom et al9,10,11 for plane boundary but has not been generalized to arbitrary

regular convex boundary.

We have already addressed this issue6 but by performing numerical experiments

only. The conclusion is that combining the curvature condition with a Fourier con-

dition improves the accuracy of the solution. The Fourier condition represents the

evanescent waves near the absorbing surface. It depends on a parameter and a math-

ematical study is still needed to determine its optimal value. Following this paper,

the corresponding boundary value problem remains to be studied mathematically

but numerical experiments that have been carried out in Ref. 6 indicate that the

enriched boundary condition is long-term stable. This is an on-going work.

But this condition could also be used as a second-order condition in the har-

monic case. Then, it should be compared with existing condition like the popular

BGT condition8 or the complete second-order condition2. Besides, the new con-

ditions could be used as On-Surface-Radiation-Conditions. Indeed, by introducing

the auxiliary unknown, we are able to write the normal derivative of the scattered

field as a function of the scattered field on the surface of the obstacle. The same

conclusion applies in the time dependent case because the ABC gives a relation

that can be plugged into the retarded potential easily (see Ref. 3).
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