Skip to Main content Skip to Navigation
Journal articles

Stochastic dynamics of a finite-size spiking neural network

Hédi Soula 1, 2 Carson C Chow 3
1 BEAGLE - Artificial Evolution and Computational Biology
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information, Inria Grenoble - Rhône-Alpes, LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558
Abstract : We present a simple Markov model of spiking neural dynamics that can be analytically solved to characterize the stochastic dynamics of a finite-size spiking neural network. We give closed-form estimates for the equilibrium distribution, mean rate, variance, and autocorrelation function of the network activity. The model is applicable to any network where the probability of firing of a neuron in the network depends on only the number of neurons that fired in a previous temporal epoch. Networks with statistically homogeneous connectivity and membrane and synaptic time constants that are not excessively long could satisfy these conditions. Our model completely accounts for the size of the network and correlations in the firing activity. It also allows us to examine how the network dynamics can deviate from mean field theory. We show that the model and solutions are applicable to spiking neural networks in biophysically plausible parameter regimes.
Complete list of metadatas
Contributor : Hedi Soula <>
Submitted on : Friday, November 30, 2012 - 6:30:28 PM
Last modification on : Wednesday, July 8, 2020 - 12:43:07 PM

Links full text



Hédi Soula, Carson C Chow. Stochastic dynamics of a finite-size spiking neural network. Neural Computation, Massachusetts Institute of Technology Press (MIT Press), 2006, 19 (12), pp.3262-92. ⟨10.1162/neco.2007.19.12.3262⟩. ⟨hal-00759513⟩



Record views