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Abstract

Data volume produced by scientific applications increase at a high speed. Some are
expected to produce several petabyte per year. In order to process this amount of
data, the computing power of several hundreds or thousands of machines have to be
used at the same time. Regarding this, one of the biggest challenge is : how to program
these machines in order to make them to collaborate for the same computation ?
One answer brought by Google is the MapReduce paradigm [7]. MapReduce has the
advantage of being quite simple to program for the user and handle on its own the
repetitive or complex tasks like the data transfers between nodes, task scheduling
or handling node failure. These automatic tasks have to be handled in an optimized
way in order to make the framework fast and scalable. This report presents our first
studies towards an efficient scheduling of MapReduce operations. More specifically,
we focused on the scheduling of the data transfers together with the tasks. We present
here an interesting work around this topic and our algorithm which improves their
results.



1 Introduction

Since the dawn of computers, the volume of data to be processed by applications has conti-
nuously increased. This makes the processing requirement always bigger. Nowadays, we have
reached the point where applications may have hundreds of terabytes to petabytes of data to
process. For instance, the Large Synoptic Survey Telescope (LSST) is expected to produce 30
terabyte per night [9], and the Large Hadron Collider (LHC) is expected to produce around 15
petabytes per year [5]. Web indexing has also big requirement on computing power since a lare
amount of new data is produced and updated daily.

Processing huge amount of data is a real challenge by itself since the data have to be spread
over several nodes just as the computation. In order to avoid the pain of reinventing the wheel
for every processing task, some library already exists to help programmers in the production
of parallel and distributed applications, such as MPI [10] which make the usage of the network
simpler. Some framework have also been proposed to provide higher level of abstraction of the
distributed computation such as DIET [4], Dryad [6], BOINC [1| or MapReduce [7]. Providing
a high level of abstraction to the user require the software to be smart. Specifically, for data-
intensive computation, data management and scheduling are the biggest challenges.

Scheduling and resource management has been one of the main research subjects around
Grids and Clouds. The MapReduce programming paradigm introduces new problems and it
raises several research issues linked to data management as well as task scheduling. Below we
mention some preliminary efforts concerning Cloud infrastructures. For Desktop Grids, no clear
research results can be mentioned at this point for scheduling for MapReduce applications, since
simply enabling MapReduce on Desktop Grids is still at an embryonic stage.

2 MapReduce

MapReduce is a framework for distributed computation introduced by Google in 2004. It
aims at performing computation on a large number of nodes (several thousands) for processing
large amount of data. Although the Google’s implementation is not available to the public, some
free implementations exists, especially Hadoop which has been reported to be used by several
organizations such as Yahoo! [11] and Facebook [12].

MapReduce framework is based on the functions Map and Reduce which are commonly used
in functional programming. In functional programming languages map is a high order function, it
usually take a function and a list as argument. Then, map apply the function on every element
of the list, and construct a new list. For instance, map could be use to multiply by 2 every
element of a list. The reduce function (also known as fold) is another high order function which
usually take a function and a list as argument. But unlike map, argument function must take
two arguments, one is the result of a previous call of this function, the other is an element of
the list. This function can be used to sum every element a list.

Within MapReduce, the spirit of these function is still there, but things are a bit different.
It works in three steps as follow as seen on Figure 1.

— The input data is split into records composed of a key and a value. These key/value pairs
are processed by the map function which produce 0, 1 or several key/value pairs. All the
nodes which have been assigned a map task will process concurrently several parts of the
input data. This is called the map phase.

— The data created by the map will then be physically grouped by key. This means that
every node may send some data to every other node. This step is called the shuffle.

— Once the data have been grouped by key, for each key, the reduce function is applied on
the values associated with that key and produce a new set of values for that key. This new
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FIGURE 1: MapReduce Workflow.

set is usually reduced to one single value. Every node which have been assigned a reduce
task will process the data it has received from the mappers. This is called, the reduce
phase.
One classical example of MapReduce application is the wordcount where the user wants to
count the number of occurrence of each word in a large set of documents. For this, the user could
write a map and a reduce function like the pseudo code given in Figure 2.

Map (String key, String value) {
/* key is the document name
*« value is the document contents x/
for each word in value {
output the pair (word, 1);
}
}

Reduce (String key, ListOfInteger list) {
Integer result = 0;
for each value in list {
result += value;

}

output the list (result);

F1aURE 2: Word Count Example.

In this pseudo code, the map function will output one pair (word, 1) per word in the docu-
ment, which means that several pairs will be produced if the same word appear several time.
Then the reduce function just sum the values up, thus counting the number of occurrence for
each word. The final result will be a list of pairs (word, count) which hold the wanted result.

As one may see, it is quite inefficient to produce one pair for each word when a word appear
several times. This issue is addressed by the combiners which is out of the scope of this report.



More information can be found in the Google’s publication.

But to make MapReduce work so easily from the user’s point of view, the framework has to
be optimized on several points. Indeed, it has to be fault tolerant, it should avoid data transfers
between nodes for map computation, and it should schedule the transfers between the Map and
the Reduce functions correctly in order to avoid that two nodes try to transfer the data to the
same other node at the same time. This would increase the transfer time while better solutions
exists.

3 Related Work

There already are some work around scheduling in MapReduce. Most of them focus on locality
of data for the Map computation. For instance, a delay scheduler [13] has been introduced to
improve the data locality by scheduling tasks on the fly. It works by delaying tasks which cannot
be run on a node holding a copy of the data and will allow gradually the data transfer to be
first rack-local, and finally completely remote.

Another approach for this data locality issue is BAR [8] which starts from an initial allocation
of tasks to the nodes for a given data distribution and then tune it to reach a better locality
access. It takes into account various parameters like node workload and network usage to allow
more or less data transfers between nodes.

The divisible load theory [3] is a methodology involving continuous models for dividing
workload over several processing nodes. Using continuous models usually allow simpler solving
of problems than a discreet one, while still giving solutions close to optimal. This divisible load
theory has been applied to MapReduce scheduling by Berlinska and Drozdowski |2|. This is the
work we took as the basis.

4 Description of Previous Work by Berlinska and Drozdowski

4.1 Approach
4.1.1 Overview

In their paper [2], Berlinska and Drozdowski model a whole MapReduce job execution and
aim at optimizing the whole schedule length. This is done by assigning the right amount of data
for each node to process. Moreover, their model include a bandwidth limitation which is taken
into account by carefully and strictly scheduling data transfers between mappers and reducers.

4.1.2 Model

B & D described two views of the same model. The first one describes the MapReduce jobs
in terms of meaningful and actually measurable variables like communication startup time or
computing rate. This is called “microscopic view” in their paper. As this view is quite hard to
manipulate, a “macroscopic view” is derived from the previous one where variables or constant
may actually be composed of several constants.

Table 1 is a list of useful variables used in the model.

In their model there are m nodes performing Map computations over a total of V bytes,
and r nodes performing Reduce operations. For the sake of simplicity they are considered as
distinct sets of machines, thought they could be the same with some transfers shorter than others
because of localhost data transfers.

Map nodes are considered to start in a sequential way. That means that node 1 will spend S
seconds initializing before node 2 can start its own initialization. This initialization step may be
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TABLE 1: Main Variables of the Berlinska and Drozdowski’s Model.

related to the time taken to upload the code to the nodes. For simplicity purpose, S is considered
to be the same among all the nodes. Although not mentioned, most of the results of this report
would still hold for initialization time distinct for each node as long as the startup order of nodes
is the same.

In this model, the bandwidth is limited for each node and is named C (in seconds per
byte). Since the data are supposed to be already present on the computing nodes (as usual in
MapReduce) there is no need to transfer the data to the computing nodes. Only a rebalancing
may be necessary but the time to transfer data for this, is not part of the model.

In addition to the bandwidth limitation, there is a bisection width limitation. That means
that only [ transfers at the same time can occur between the mappers and the reducers. This
can happen in real situation in the case of a switch connecting more nodes that it can handle
data transfers at full speed at the same time, or in the case of a tree-like network for which only
the worst case is taken into account.

Every node i has a computing rate A; expressed in seconds per byte. This is a macroscopic
variable that hides a computation overhead and a data transfer (to read from the disk) in
addition to the actual pure-computing rate.

The «; variable is the amount of data (in bytes) to be processed by the i-th node. These
variables are actually computed by the algorithms in the paper.

Eventually, the « variable is the ratio between the amount of input data to the mappers,
and the amount of output data of the mappers. Its value depends on the kind of computation
performed by the Map operation. It is computed as follows.

output _size
2 —
mput _size

Simplifications and constraints. As a simplification, this paper considers that every mapper
will start to transfer its data to mappers only after the end of the Map computation. Moreover,
each mapper will send the same amount of data to every reducer. This is a strong assumption
but it should statistically be met. This last simplification has the implication that every reducer
will get the same total amount of data (one chunk from every mapper). Thus, the reducer
computation time is not worth mentioning.

Between the Map and Reduce phases there are m * n transfers to perform. The network
model follows the one-port model on both mapper and reducer side. This constraint, in addition
to the bandwidth limitation [, implies that the transfers should be carefully scheduled.



4.1.3 Resolution

The goal is to reduce the completion time. As the previous simplifications say, the compu-
tation time of the reducers is not taken into account. Thus, only the mapper computation time
and the transfer time are to be computed. In order to compute the transfer time, the transfer
scheduling has to be known and deterministic. That’s why Berlinska and Drozdowski chosed a
time-interval based algorithm.

In this algorithm, a transfer from one mapper to one reducer cannot be interrupted. The
length of the time intervals is determined by the largest transfer to do during this interval. And
finally, the [ mappers allowed to transfer at a given time are chosed by a simple round-robin.

This simple algorithm allows to express the completion time as a formula depending on the
previously given parameters. Especially, the time to perform all the transfers depends on the
largest transfer from a mapper to a reducer that occurs in every time-interval. That is why the
«; have to be computed by a linear program.

4.1.4 Issues

Because the number of constraints and variables of the linear program can be quite large.
The number of variables is O(mr/l) and the number of constraint is O(mr). That makes the
scheduler take up to several minutes or hours for a few hundred nodes with LP-solve on an Intel
quadcore at 2.4GHz. This time is not acceptable for a real-life MapReduce framework.

Furthermore, as the parameters of the model may vary, some others parameters are hard to
predict. In particular, the A; (computing throughput) may depend on the data itself. And the
~ parameter (data ratio of the mappers) is just impossible to predict in most cases. A way to
solve this is to continuously update the schedule with respect to the measurements reported by
the nodes. But this can only be useful if the schedule can be recomputed fast enough.
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F1GURE 3: Schedule example as computed by the algorithm of Berlinska and Drozdowski.

And the chosen transfer scheduling algorithm, thought easy to write as a formula, uses
inefficiently the network bandwidth. Figure 3 is a Gantt chart of occupation of mapper nodes as
computed by the algorithm from Berlinska and Drozdowski. In light red is the time where the
nodes are idle, and dark red is the time spent waiting for some transfers to finish. The white
part (just before the green one) is the sequential startup time. In green is the time spent on data
processing, and gray is the time taken to transfer processed data. And what can be seen in this
figure, is that for each time interval, the nodes with a small amount of data to transfer will wait
for the node with the biggest one to finish. Hence, the network usage will drop to 1 transfer at
time towards the end of every time-interval.



5 Description of Our Algorithms

As previously said, the algorithm has to be made more dynamic because of the imprecision
of the forecast that would be made about the computing time. But this dynamicity imply that
the schedule has to be computed fast enough in order to apply its modifications to the physical
system before the computation is done.

The main reason why the problem has to be expressed as a linear program which takes so
much time to solve, is that it the transfer scheduler imply a dependence between every «; for
every time-interval.

5.1 Using a Linear System

One thing that can be remarked with the linear program, is that, sometime, it computes the
a; such that one transfer from the i¢-th machine will end just at the same time when «;41 ends
its computation. Formally, this means that a; and «;4; are computed such that :

vC
1S + o A; + Qi

=({+1)S + a14in

This especially happens when every A; are equals and Srm < vV C, which occurs quite often
since S is usually very small (a second or less) and V' is usually quite big (in the order of TB).
When every A; are equals, the above formula imply that o; < ay1.

In a such case, the a; can be computed by a linear system as follows :

~vC
iS + a; A; + al: =i+ 1)S+ it14it
fori<m
m
ZO&Z' =V
i—1

This system can be solved in O(m) time and O(m) space.

Experiments show that in such a case the linear system compute the same «; as the linear
program except for the float rounding errors. Figure 4(a) shows the schedule computed by
the linear program (correcting some minor bugs from the original algorithm from Berlinska
and Drozdowski), the numbers on the gray transfers are the target reducers for the transfers.
Figure 4(b) shows the schedule computed by the linear system above. As it can be seen, there
is no noticeable difference between the results as long as a; < ;41 holds.

When the condition Srm < vV C does not hold, the results of the linear system are very
different from the ones computed by the linear program. Figure 5(a) shows the behavior of the
linear program on another set of parameters, and Figure 5(b) shows the results of the linear
system. It can be noticed that the completion time is greater with the linear system than with
the linear program. This is mainly due to the gap between the end of computation and the start
of the first transfer. But another transfer scheduler exhibits better performance (see Section 5.2).

It should also be noticed that less nodes are used by the linear system than the linear program.
This is because the computation of the amount of data to process a; may output negative results.
As a result some nodes are eliminated from the computation. This node-elimination implies that
the linear system has to be solved logm times with different number of nodes. The overall
complexity is then O(mlogm).
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FIGURE 4: Schedule examples with a; < a;y1.
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5.2 Transfer Scheduling

Figure 6(a) shows the bandwidth usage over the time just under the classic Gantt schedule
for the time-interval based scheduler. This chart shows a lot of “holes” which could be filled
with a better transfer scheduling algorithm. As a simplification purpose, every mapper does
its transfers in the same order, starting from the reducer 1 to the reducer r. And a transfer
from mapper ¢ to reducer j cannot start before the transfer from mapper ¢ — 1 to reducer j has
finished. The last constraint is an easy way to enforce the constraint that two mappers should
not transfer to the same reducer at the same time while reducing the complexity of scheduling.

In order to avoid a bad bandwidth usage and still enforce the above constraints, a first
heuristic could be to try to perform the transfer of the “latest” nodes as soon as possible, which
means, try to make every node transfer to the same reducer at the same time. But given the
constraints, an implementation of this heuristic could eagily lead to a situation where the first
mapper has been delayed and when it starts its transfers, every other node has to wait for it.
That’s why a better heuristic is to try to keep the quantity ¢ 4+ j among all the nodes constant,
with ¢ the mapper number and j the target reducer for the transfer last started. Which means
that when mapper 1 perform its transfers to reducer 5, mapper 2 would transfer to reducer 4.

Sketch of the algorithm : When a transfer from mapper i to reducer j ends, for every idle
i mapper and its next target reducer ;' compute p; = ¢’ + j'. Then select the nodes with the
lowest previously computed p;. These nodes are considered the most late and their transfers
should start as soon as possible. If several nodes are equally late, then the one with the biggest
«; is chosen because, among all these selected nodes, the ones with the biggest amount of data
to transfer will be most probably the ones to delay the end of all transfers.

This second heuristic should limit the case when dependencies prevent a full bandwidth
usage. And actually, the case does not happen often within the simulations. The result of this
second heuristic can be seen in Figure 6(b) for the case with o; < a;41. In this example, a 30%
improvement has been achieved and the bandwidth usage show no hole and is at its maximum
capacity during the main part of its transfers.

When «; >= ;41 different things happens. First, when the amount of data to be processed
by each node «; is computed by the linear program, it may happen that the maximum network
bandwidth cannot be reached. Figure 7(a) show the original schedule along with its implied
bandwidth usage and Figure 7(b) show the behavior of the new transfer scheduler when the
a; are yet computed by the linear program. It can be seen on the later that the maximum
bandwidth shown by the red line is never reached. Actually, the «; have been computed for the
first time-interval based transfer scheduler. That’s why we obtain such a result. Still, in this
example, it achieves a 16% improvment over the completion time.

When the «; are computed by the linear system and the transfers are scheduled by the
original time-interval based one, the completion time is not much different from the original
transfer scheduler with the «; computed by the linear program. The result can be seen in
Figure 8(a), and shows a performance decrease of less than 1%. Just like the reverse hybrid
case (shown in Figure 7(b)) the computation of the a; has not been designed for this transfer
scheduler. And finally, Figure 8(b) show the result when the amount of data per node «; is
computed by the linear system and the transfers are scheduled by the new algorithm. It achieve
an improvment of 17% as compared to the original algorithm.

5.3 Transfer Preemption

With the previous approach, it appears sometimes that a low priority transfer starts just
before a previously idle node ask for a high priority transfer. This implies that a low priority
transfer prevents a high priority transfer to occur. This is a priority inversion.

11
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One way to fix this priority inversion is to allow transfer preemption. This means that when
a node wants to start a transfer, the scheduler will start it if there is currently less than [
transfers occuring. If the transfer count limit is already reached, then the scheduler will search
for a transfer with a lower priority that will be suspended. This transfer suspension can actually
happen in two cases. The first case is when a mapper finish its computation and want to start
its first transfer, a transfer with a lower priority can be preempted. The second case is when
a mapper ¢ with a large «; cannot transfer its data to reducer j because the mapper ¢ — 1 is
already transferring to the same reducer j. Then the scheduler starts a transfer with a lower
priority from a mapper k, and when the transfer from ¢ — 1 to j is done, then the mapper ¢ can
start its transfer to reducer j7 and mapper ¢ — 1 can start its transfer to reducer j + 1. since
transfers from ¢ and ¢ — 1 have a higher priority than those from k, the transfer from k£ can be
suspended.

In the current model, this algorithm with transfer preemption cannot perform worse than
the previous one. Indeed, the above-mentioned case where preemption happen are times where
a node with big amount of data would wait for a node with a small one. Keeping in mind the
constraints on the order of the transfers, the last transfer will always be the one from mapper m
to reducer r. This implies that the only thing that can happen is the big transfers start earlier
thus making the completion time better.

On Figures 9(a) and 9(b), it can be seen that the algorithm with preemption performs
slightly better since the bandwidth usage is maintained at is maximum capacity a bit longer.
This represent a bit less than 2% improvement. This is, indeed, negligible but cannot be worse
that not preempting transfers in the current model. Actually the model does not take latency
into account, thus, the gain of preempting unimportant transfers may be mitigated by the cost
of the preemption itself.

Moreover, on Figure 9(b), it can be seen that the first transfers do not start just after the
computation as finished whereas the «; have been computed such that the computation would
end just when its first transfer can actually occur. This is due to the fact that the network has
already reached its maximal capacity and is used by transfer with higher or equal priority.

In order to deal with this problem and make the big transfers start as soon as the computation
finishes, we tried to relax the constraints on the order of transfers between nodes. Which means
that when a big transfer is ready, it is allowed to interrupt any other transfer. The resulting
schedule is shown in Figure 10(b). This actually show performance quite similar to the previous
algorithms whose result has been repeated in Figure 10(a) for comparison.

6 Conclusion and Future Work

To conclude, these algorithms for either computing the «a; parameters and for scheduling the
transfers outperform the ones from Berlinska and Drozdowski on several points. The computation
of the «; is faster since it relies on a linear system solved in time O(m) instead of a linear
program. Although in some cases the results are quite different, this does not affect much the
overall performance.

The transfer scheduler also performs better than the one from Berlinska and Drozdowski
since it does as much as possible to maximize bandwidth usage. Moreover, it does not involve
synchronization barriers which would be quite costly in term of latency. On the other side, it is
hard to predict anything and proving anything about it looks non-trivial.

Thus, as a future work, we plan to evaluate in a more in-depth manner the gains and limits
of the transfer algorithms. We also plan to implement these algorithms in a real MapReduce
software and confront the model used to the real world. The main issue we expect is the latency
of the network which is not part of the model. The latency may negligible compared to the time
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needed to do the actual transfers, but the synchronization between the mapper nodes and the
master node may induce an unknown latency. Then we plan on implementing these algorithms
with an iterative schedule recomputation. Indeed, as some parameters are unknown and/or
platform dependent getting them as we get feedback from the computing nodes and adjusting
the forecasted schedule and its platform counterpart. Starting from this, it could be quite easy
to extend the model and software to handle iterative MapReduce computation where the next
iteration starts as soon as possible.
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