
HAL Id: hal-00759589
https://inria.hal.science/hal-00759589

Submitted on 1 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PALSE: Python Analysis of Large Scale (Computer)
Experiments

Frédéric Cazals, Tom Dreyfus, Noël Malod-Dognin, Alix Lhéritier

To cite this version:
Frédéric Cazals, Tom Dreyfus, Noël Malod-Dognin, Alix Lhéritier. PALSE: Python Analysis of Large
Scale (Computer) Experiments. [Research Report] RR-8165, INRIA. 2012, pp.16. �hal-00759589�

https://inria.hal.science/hal-00759589
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
1

6
5

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8165
December 2012

Project-Team ABS

PALSE: Python Analysis of

Large Scale (Computer)

Experiments

F. Cazals and T. Dreyfus and A. Lhéritier and N. Malod-Dognin

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

PALSE: Python Analysis of Large Scale
(Computer) Experiments

F. Cazals and T. Dreyfus and A. Lhéritier and N.

Malod-Dognin

Project-Team ABS

Research Report n° 8165 � December 2012 � 13 pages

Abstract: A tenet of Science is the ability to reproduce the results, and a related issue is the
possibility to archive and interpret the raw results of (computer) experiments. This paper presents
an elementary python framework addressing this latter goal.
Consider a computing pipeline consisting of raw data generation, raw data parsing, and data
analysis i.e. graphical and statistical analysis. PALSE addresses these last two steps by leveraging
the hierarchical structure of XML documents.
More precisely, assume that the raw results of a program are stored in XML format, possibly
generated by the serialization mechanism of the boost C++ libraries. For raw data parsing, PALSE
imports the raw data as XML documents, and exploits the tree structure of the XML together
with the XML Path Language to access and select speci�c values. For graphical and statistical
analysis, PALSE gives direct access to Scienti�cPython, R, and gnuplot.
In a nutshell, PALSE combines standards languages (python, XML, XML Path Language) and tools
(Boost serialization, Scienti�cPython, R, gnuplot) in such a way that once the raw data have been
generated, graphical plots and statistical analysis just require a handful of lines of python code.
The framework applies to virtually any type of data, and may �nd a broad class of applications.

Key-words: Experiments, data analysis, statistics, python, scripting

PALSE: Analyse Python de résultats d'expériences à grande
échelle

Résumé : Le caractère scienti�que d'une étude repose sur sa reproductibilité, un problème
lié étant la possibilité d'archiver et d'interpréter aisément les résultats de l'étude. Ce travail
présente un canevas élémentaire traitant ces deux derniers objectifs.

Considérons une chaîne de traitement, faisant intervenir la génération de données, leur analyse
syntaxique (parsing), et leur interprétation graphique et statistique. PALSE gère ces deux derniers
aspects, en tirant pro�t de la structure hiérarchique de documents XML.

Plus précisément, considérons le cas de résultats générés au format XML par un programme
informatique, par exemple par les mécanismes de serialization des librairies C++ boost. Pour
l'analyse syntaxique, PALSE importe les données brutes comme documents XML, et exploite la
structure arborescente d'XML combinée aux langage XML Path pour accéder à des informations
spéci�ques. Pour les manipulations graphiques et statistiques, PALSE fait un appel direct à
Scienti�cPython, R, et gnuplot.

En résumé, PALSE combine des langages standards (python, XML, XML Path Language) et
des outils standards (Boost serialization, Scienti�cPython, R, gnuplot), de telle sorte que lorsque
les résultats ont été générés, leur analyse graphique et statistique ne nécessite que quelques lignes
de code python.

Ce canevas s'applique à virtuellement tout type de données, de telle sorte que PALSE devrait
s'avérer utile pour un large spectre d'applications.

Mots-clés : Expériences, analyse de données, statistiques, python, scripting

PALSE: Python Analysis of Large Scale (Computer) Experiments 3

1 On Data Generation and Analysis in Computational Sci-
ence

In computational Science, complex phenomena are modeled and simulated by involved algorithms
and programs, which themselves often rely on various parameters. Such a complex investigation
strategy raises three core problems. The �rst one is the correctness of software, namely its
ability to meet speci�cations. This is clearly a non trivial issue, since a number of constraints
may be imposed, such as logical constraints, the numerical constraints (numerical correctness is
non trivial, since rounding �oating point representations according to the IEEE 754 standard
may result in erroneous �oating point values reported), or performance constraints (requirements
on the running time may be mandatory, e.g. for real time applications), etc. The second one
relates to the ability to re-generate raw data, a non trivial issue given in particular the numerous
parameters that may be involved, and also to the possible random nature of the phenomena
investigated. This particular motivated the recent Executable Paper Grand Challenge, proposed
by Elsevier. 1 The third one, which is our focus in this note, is concerned with the archival and
the analysis of raw data. Handling raw data indeed raises several issues:

� Raw data perenniality. Make the raw data perennial by ensuring that anyone can make
sense out of them even once decoupled from the program that generated them. This is
non trivial since the executable and scripts / other programs parsing the output need to
co-evolve.

� Raw data availability. Make the perennial raw data accessible, to allow novel analysis by
scientists equipped with di�erent methodological tools.

� Raw data parsing and analysis. Ease the parsing of the raw data, so as to prepare the
graphical and statistical analysis.

2 The PALSE Design

PALSE is a lightweight python framework addressing the issues just discussed. Its design, which
we discuss now, is summarized on Fig. 1.

2.1 Preamble: on Data Formats

PALSE assumes that a given (computer) experiments yields one �le storing the results. To make
these data perennial and foster their availability, PALSE uses XML, since this language is a stan-
dard one, and most importantly, provides an abstract structure amenable to high-level querying
and �ltering operations.

2.2 Raw Data Generation

By raw data we refer to the results of some (computer) experiment�PALSE can be used to handle
data generated by any device, or even manually archived. Archives and their (de-)construction is
a tenet of PALSE, and following the Boost library 2 serialization engines. Following the documen-
tation 3, we use the term "serialization" to mean the reversible deconstruction of an arbitrary

1See http://www.executablepapers.com/
2Boost is a set of peer-reviewed C++ libraries, see http://www.boost.org/
3http://www.boost.org/doc/libs/1_49_0/libs/serialization/doc/index.html

RR n° 8165

http://www.executablepapers.com/
http://www.boost.org/
http://www.boost.org/doc/libs/1_49_0/libs/serialization/doc/index.html

4 Cazals, Dreyfus, Lhéritier, Malod-Dognin

set of C++ data structures to a sequence of bytes. Such a system can be used to reconstitute an
equivalent structure in another program context. That is, an archive refers to a speci�c rendering
of the aforementioned sequence of byte, and PALSE takes as input XML archives. For computer
experiments, the generation of XML data naturally depends on the programming language used,
two of them being of particular interest: C++ and python.

In C++, the boost serialization tools accommodate the native C++ types and the data
structures of the Standard Template Library Fig. 1). In python, the recursive structure of
dictionaries makes conversion of dictionary into an XML tree (and vice-versa) a trivial task.

2.3 Raw Data Parsing and Database Creation

Consider a set of XML archives, one per (computer) experiment. PALSE imports each such �le as
an XML trees. A database corresponds to a set of isomorphic trees corresponding to experiments
generated with varying parameters. Therefore, several databases may be used to accommodate
several sets of parameters, or to store results from di�erent sources. The creation of the trees
from the �les is delegated to the lxml4 library.

2.4 Raw Data Querying

Given the XML trees stored in database(s), the retrieval of the values of interest for graphical
and statistical analysis combines features of the XML and XPath languages.

The XML hierarchical representation. XML provides a hierarchical representation of a
document, which may be seen as a rooted ordered tree of nodes called Elements (Fig. 2, and
the supplemental Fig. 2). Each Element is characterized by a tag-name, and possibly contains
attributes, a text �eld and a number of child Elements � there is also a optional tail string
which is not supported by PALSE):

� The tag-name of an Element e corresponds to the name of the start-tag (< tag−name >)
and the end-tag (< /tag − name >) of e in its XML representation.

� An attribute of an Element e is a variable having a particular value de�ned in its XML
representation with the start-tag of e (< tag − name att =′ value′ >).

� The text �eld of an Element e is de�ned as any text in-between the start-tag and the end-
tag of e in its XML representation, which is not embedded in-between another (start-tag,
end-tag) pair (< tag − name > text − field < /tag − name >).

� All the children of e are the Elements which are de�ned in its XML representation in-
between the start-tag and the end-tag of e (< tag − name >< child − tag − name ><
/child − tag − name >< /tag − name >).

In the sequel, by data value, we refer either to the value of an attribute or of a text �eld.
An Element may be also embedded in a namespace, that is represented by a pair (pre�x, uri).

The uri is a string of characters identifying a name or a resource, and the pre�x is a simple name
associated to the uri. Thus, if an Element e having a tag-name tag is embedded in a namespace
(pre�x, uri), its tag-name is represented in the XML �le by pre�x:tag. However, in the XML
tree, all pre�xes are replaced by their corresponding uri, so that the tag name of the Element
e is represented in the XML tree by {uri}tag. In the sequel, the term name-value-pair refers to
the (tag-name, text-�eld) of a speci�c Element.

4lxml is an easy-to-use library for handling XML and HTML in Python, see http://lxml.de/

Inria

http://lxml.de/

PALSE: Python Analysis of Large Scale (Computer) Experiments 5

The XPath query language. Given an XML document, the XPath language has been de-
veloped to address speci�c parts of this document, see http://www.w3.org/TR/xpath/. We
note that an XPath query always specify a path to one or more Element(s). An XPath may be
speci�ed in three di�erent ways 5:

� (i) a sequence of tag-names only (e.g tag_1/tag_2), denominating all the Elements having
as tag tag_2 and that are children of Elements with tag tag_1.

� (ii) or a sequence of tag-names, each possibly enriched by an attribute name (e.g tag_1/tag_2[@att],
or tag_1[@att]/tag_2), denominating the subset of the Elements previously described, but
having the attribute att.

� (iii) or a sequence of tag-names, each possibly enriched by an attribute name and a value
of this attribute (e.g tag_1/tag_2[@att =′ val′], or tag_1[@att =′ val′]/tag_2), denom-
inating the subset of the Elements previously described, but the attribute att having as
value val.

Functions o�ered in PALSE. The three XPath modes just discussed are used by PALSE func-
tions to query the database, in order to retrieve selected Elements or their data values (either
from text �elds or attributes). Before describing these functions, we note that each of them
operates on the whole database, so that each function returns a list of lists (one per XML tree).

⊲ Function get_all_elements_from_database(xpath_query): targets all the matching Ele-
ments.

⊲ Function get_all_data_values_from_database(xpath_query): targets the list of data val-
ues of elements:

� if the XPath query is of type (i), the data value is the value of the text �eld;

� if the XPath query is of type (ii) or (iii), and is ended by an attribute (whose value is given
or not), the data value is the value of the attribute att.

To target the �rst Element (or data value) only in an XML tree that matches the speci�ed
XPath:

⊲ Function get_leftmost_elements_from_database(xpath_query)

⊲ Function get_leftmost_data_values_from_database(xpath_query)

Finally, given a list of Elements L, a XPath query X, a data value v and a comparator comp,
it is possible to select Elements e of L such that the speci�ed Xpath X from e has a data value
ve positively compared with v using comp, a functionality also provided for basic comparators
(e.g. on integers):

⊲ Function filter_elements_by_data_values_compare_to(L, X, v, comp)

⊲ Function comparators of integers
filter_elements_by_data_values_lower_than_integer(L, X, v)

We also note that upon calling a function returning Elements, the selection can be converted
into strings thanks to the function get_data_values_from_elements(L, X), with L and X
the arguments described above.

5http://docs.python.org/2/library/xml.etree.elementtree.html

RR n° 8165

http://www.w3.org/TR/xpath/
http://docs.python.org/2/library/xml.etree.elementtree.html

6 Cazals, Dreyfus, Lhéritier, Malod-Dognin

2.5 Data Manipulation

The data collected by the previous step typically need to undergo processing before being
amenable to analysis. Since the previous step supplies python lists of strings, PALSE provides
mechanisms to select, sort, and convert these lists into lists of elementary types. Furthermore,
PALSE provides tools for combining lists into dictionaries, for further �ltering using regular ex-
pressions (for strings) or lists of allowed keys or values.

2.6 Data Analysis

The lists just produced are ready for graphical and statistical analysis. PALSE encapsulates func-
tionalities from SciPython and R for computing Pearson, Spearman or Kendall's tau correlations
between the collected values, as well as Mann-Whitney rank-sum test. More generally, any pack-
age interface with python can be used, e.g. gmpy if unlimited-precision integers / rationals /
�oats must be used to ensure numerical correctness, gnuplot-py to generate eye-candy plots and
charts, etc.

Figure 1 The PALSE work�ow. The �ve steps: (1) the native data types of the application(s)
are �rst serialized into XML archives, stored into XML �les. It is assumed that one �le is
generated for each (computer) experiment (2) PALSE loads these XML �les into databases of
XML trees (3) Raw data are extracted from the databases using XPath queries (4) these data
are prepared (sorted, �ltered, ...) (5) the manipulated data are used to perform various data
analyses (statistics, plots, . . .).

Step 2: raw
data parsing

Step 3: raw
data querying

Step 4: data
manipulation

Step 5:
data analysis

Database 1

Database 2

File1

File2

File3

File4

File4

(�, �)

Step1 :
data generation

Databases
of XML trees

Lists and
dictionaries

Plots and
statistics

(◦, ◦)

(�, �)

((•, •, •),
(•, •, •))

(♦, ♦, ♦)

((•, •, •),
(•, •, •),

(•, •, •))

⊲ Native types,
⊲ Lists,
⊲ Vectors,
⊲ Sets,
⊲ Maps,
⊲ User defined
classes
. . .

(namei, valuei)

(namei, valuei)

(namei, valuei)

(namei, valuei)

(namei, valuei)

(�, �)

(◦, ◦)

(�, �)

((•, •, •),
(•, •, •))

(♦, ♦)

((•, •, •),
(•, •, •))

Results Files Databases
of XML trees

Lists
Lists and
dictionaries

Plots and
statisticsData Structures

from C++,
python, . . .

Inria

PALSE: Python Analysis of Large Scale (Computer) Experiments 7

Figure 2 The XML trees handled by PALSE A tree T is recursively de�ned from Elements.

= <tag-name attribute-name=attribute-value> < /tag-name>

XML tree start-tag, and optional
attribute with its value

children:
empty iff is a leaf

end-tag

Element (or node)

tail-string

Not supported
by PALSE

text-field

text field

3 Using PALSE

3.1 Using PALSE to Handle a Custom Computer Application

We illustrate the steps of the PALSE work�ow (Fig. 1) on the problem of mining the relationship
between the number of atoms of a monomeric or large oligomeric protein, and the number of
exposed atoms [1, 2], using in-house computer application Intervor [3]. The details are provided
in the supplemental section 4.1.

3.2 Using PALSE to Query Complex Experimental Data Files

As a second example, we exemplify the ability of PALSE to handle data �les stemming from an
involved experimental process, here �les from the Protein Data Bank (http://www.rcsb.org),
generated thanks to X ray crystallography or NMR experiments. Such �les contain structural
information of macro-molecules and macro-molecular complexes, and are notoriously challenging
to handle due to the complexity of the information provided (with biological, bio-physical, genetic
pieces of information inter-connected).

The code provided in the supplemental section 4.2 shows that PALSE allows dealing with
PDB �les elegantly. As an example, plotting the distribution of the number of atoms observed
in all the (polypeptide) chains of a collection of PDB �les merely requires 15 lines of code. The
dataset used for this illustration consists of the 82 PDB �les, all solved by X ray crystallography,
contributed by J. Janin.

References

[1] C. Chothia et al. Structural invariants in protein folding. Nature, 254(5498):304�308, 1975.

[2] S. Miller, J. Janin, A.M. Lesk, and C. Chothia. Interior and surface of monomeric proteins.
Journal of molecular biology, 196(3):641�656, 1987.

[3] S. Loriot and F. Cazals. Modeling macro-molecular interfaces with intervor. Bioinformatics,
26(7):964�965, 2010.

[4] L. Lo Conte, C. Chothia, and J. Janin. The atomic structure of protein-protein recognition
sites. Journal of Molecular Biology, 285:2177�2198, 1999.

RR n° 8165

http://www.rcsb.org

8 Cazals, Dreyfus, Lhéritier, Malod-Dognin

4 Supporting Information

4.1 Using PALSE to Handle a Custom Computer Application

As a simple illustration, we investigate a simple property of macro-molecular complexes, pro-
cessing the protein complexes from [4], using the Intervor software [3].

More precisely, consider a protein complex involving two partners, say A and B. The surface of
a partner consists of the atoms which are exposed (or equivalently not buried) when the partner
is alone. These atoms are those which may interact with the other partner. Using Intervor [3],
we partition the atoms of a complex as exposed, buried, or interface atoms. The corresponding
C++ code and resulting archive are sketched on Figs. 1 and 2. Finally, PALSE is used to plot
the two statistics of interest (Fig. 4).

Supplemental Figure 1 Palse, step 1: generation of an XML archive. In C++, the
creation of the archive consists of calling the boost serialization algorithms for native C++ types
and for data structures from the Standard Template Library. Note that each call to the function
make_nvp creates a so-called name-value pair.

template<class archive>

void serialize(archive& ar, const unsigned int version)

{

using boost::serialization::make_nvp;

// serialization for a C++ native type

ar & make_nvp("nb_atoms", nb_atoms);

ar & make_nvp("nb_buried_atoms", nb_buried_atoms);

ar & make_nvp("nb_exposed_atoms", nb_exposed_atoms);

ar & make_nvp("nb_interface_atoms", nb_interface_atoms);

// serialization for a std::vector, which counts the number

// of occurrences of the 20 native amino-acid types

ar & make_nvp("AA_count_by_name", residue_count_by_name);

}

Inria

PALSE: Python Analysis of Large Scale (Computer) Experiments 9

Supplemental Figure 2 Example XML archive generated by the code of Fig. 1.

(Protein complex: PDB code 1aip.pdb). This archive is visualized using google-chrome, which
allows inspecting the hierarchical structure. The text circledq in red corresponds to the names
of the so-called name-value-pairs; concatenating these strings yields the path used to retrieve
values in the tree representation of an XML archive.

RR n° 8165

10 Cazals, Dreyfus, Lhéritier, Malod-Dognin

Supplemental Figure 3 Palse, step 2 to 5. Note in particular that all the values associ-
ated with a speci�c path in an XML tree are retrieved using the concatenation of these paths,
e.g. PDB_�le_statistics/nb_atoms to collect the size (in atoms) of all the molecular systems
processed.
Step 2: Create the database of XML trees
res_dir = "%s/mols_archives/LoConte_Janin_JMB99/results/palse-example" % getenv_or_die("HOME")
Lo_Conte_etal_analysis = PALSE_xml_handle(res_dir)
Lo_Conte_etal_analysis.build_Document_Object_Models()

Step 3: retrieve list of data from the concatenated tags of the nodes of the XML trees
Step 4: void, since we do not perform any filtering

list_tool = PALSE_data_handle()

atoms_str = Lo_Conte_etal_analysis.get_leftmost_data_values_from_database("PDB_file_statistics/nb_atoms")
all_atoms = list_tool.convert_txtlist_to_intlist(atoms_str)

exposed_atoms_str = Lo_Conte_etal_analysis.get_leftmost_data_values_from_database("PDB_file_statistics/nb_exposed_atoms")
exposed_atoms = list_tool.convert_txtlist_to_intlist(exposed_atoms_str)

Step 5: perform the plots, compute the statistics

g_atoms = Gnuplot.Gnuplot()

g_atoms('set xlabel \"Number of atoms in the complex\" ')
g_atoms('set ylabel \"Number of exposed atoms\" ')
data_at_exp_at = Gnuplot.Data(all_atoms, exposed_atoms, title='Exposed f(atoms)',with_='points lw 2')
g_atoms.plot(data_at_exp_at)
g_atoms.hardcopy('all_atoms_versus_exposed_atoms.eps',enhanced=1,color=0,fontsize=24)

and Pearson correlation coefficient
correlate = PALSE_statistic_handle()
correlate.pearson(all_atoms, exposed_atoms, 'atoms', 'exposed')

Supplemental Figure 4 Plot produced by the code of Fig. 3 A linear (Pearson) correlation
coe�cient of 0.99 is also obtained, an observation known since [1, 2].

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000 5000 6000 7000

N
um

be
r

of
 e

xp
os

ed
 a

to
m

s

Number of atoms

Exposed f(atoms)

4.2 Using PALSE to Query Files from the Protein Data Bank

This second example illustrates the power of PALSE to handle complex data, to accommodate
namespaces, and to perform various �ltering steps. As an illustration, we plot an histrogram
corresponding to the distribution of the number of atoms found in polypeptide chains of �les

Inria

PALSE: Python Analysis of Large Scale (Computer) Experiments 11

from the PDB. As seen from Fig. 5, the corresponding python code is minimalist. An example
histogram produced from this code is shown on Fig. 6.

Supplemental Figure 5 Example: atoms per chains of PDB entries. Step 1. The
XML databases of input PDB entries are created using the namespaces required by the PDBML
�le format (XML format for the PDB). Step 2. Since there are possibly multiple PDB entries,
chains and atoms are lists of lists: chains is a list of lists of values of an attribute representing
the id of a chain, and atoms is a list of lists of Elements representing an atom_site. Step 3.
For each PDB entry, we �lter the atoms (we discard heteratoms), and then for each chain of this
entry, we count the number of atoms belonging to this chain. Step 4. We plot in a 2D histogram
the registered number of atoms per chain using R. Note that the output format is eps.
#! /usr/bin/python

from PALSE import *

Step 1: Create the database of XML trees
pdb_handler = PALSE_xml_DB()
pdb_handler.add_namespace("PDBx", "http://pdbml.pdb.org/schema/pdbx-v40.xsd")
pdb_handler.load_from_directory("data-pdb-xml")

Step 2: List the chains and atoms of all pdb entries
chains = pdb_handler.get_all_data_values_from_database("PDBx:struct_asymCategory/PDBx:struct_asym[@id]")
atoms = pdb_handler.get_all_elements_from_database("PDBx:atom_siteCategory/PDBx:atom_site")

Step 3: Count the number of atoms per chain
nb_atoms_per_chain = []
for i in range(len(atoms)):

atoms[i] = pdb_handler.filter_elements_by_data_values_equal_to_string(atoms[i], "PDBx:group_PDB", "ATOM")
for chain in chains[i]:

n = len(pdb_handler.filter_elements_by_data_values_equal_to_string(atoms[i], "PDBx:auth_asym_id", chain))
if n > 0:

nb_atoms_per_chain.append(n)

Step 4: Plot a 2D histogram using R
PALSE_statistic_handle.Rhist2d(nb_atoms_per_chain, "hist-atoms-per-chain.eps")

RR n° 8165

12 Cazals, Dreyfus, Lhéritier, Malod-Dognin

Supplemental Figure 6 Plot produced by the code of Fig. 5, using 82 PDB entries.

Histogram of atoms_per_chain

atoms_per_chain

F
re

qu
en

cy

0 500 1000 1500 2000 2500 3000 3500

0
20

40
60

80

4.3 Implementation Overview

In this section, we sketch the main classes of PALSE, and refer the interested user to the com-
mented source code for more details.

Class Python_dico_vs_XML_Etree. A class performing manipulations between python dictio-
naries and XML Etrees. This class is meant to (de-)construct XML archives from python
dictionaries. All its functions are static members.

Class PALSE_xml_DB. A PALSE database consists of a set isomorphic trees coming from XML
archives, which can be queried using the functionality discussed in Sec.2.4.

Class PALSE_DS_manipulator. A class providing functions to manipulate python Data Struc-
tures in general, and lists of strings / native python data types in particular. All its
functions are static members.

Class PALSE_statistic_handle. A class providing elementary statistics and plotting facilities.
All its functions are static members, and resort to low level operations borrowed to gnuplot,
R and scienti�c python.

Inria

PALSE: Python Analysis of Large Scale (Computer) Experiments 13

Contents

1 On Data Generation and Analysis in Computational Science 3

2 The PALSE Design 3

2.1 Preamble: on Data Formats . 3
2.2 Raw Data Generation . 3
2.3 Raw Data Parsing and Database Creation . 4
2.4 Raw Data Querying . 4
2.5 Data Manipulation . 6
2.6 Data Analysis . 6

3 Using PALSE 7

3.1 Using PALSE to Handle a Custom Computer Application 7
3.2 Using PALSE to Query Complex Experimental Data Files 7

4 Supporting Information 8

4.1 Using PALSE to Handle a Custom Computer Application 8
4.2 Using PALSE to Query Files from the Protein Data Bank 10
4.3 Implementation Overview . 12

RR n° 8165

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	On Data Generation and Analysis in Computational Science
	The PALSE Design
	Preamble: on Data Formats
	Raw Data Generation
	Raw Data Parsing and Database Creation
	Raw Data Querying
	Data Manipulation
	Data Analysis

	Using PALSE
	Using PALSE to Handle a Custom Computer Application
	Using PALSE to Query Complex Experimental Data Files

	Supporting Information
	Using PALSE to Handle a Custom Computer Application
	Using PALSE to Query Files from the Protein Data Bank
	Implementation Overview

