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Abstract—Perception of the surrounding environment is one of
the many tasks an automated vehicle has to achieve in complex
and ever-changing surroundings. This typically includes several
distinct sub-tasks, such as map-building, localisation, static
obstacles detection, pedestrian detection,... Some of these tasks
are nowadays very well known, such as map-building, whereas
the perception, localisation and classification of moving objects
from a moving vehicle are in many aspects a work in progress.
In this paper, we propose a vision-based approach built on
the extensive tracking of numerous visual features over time
from a stereo-vision pair. Through on-the-fly environment 3D
reconstruction, based on visual clues, we propose an integrated
method to detect and localise static and moving obstacles,
whose position, orientation and speed vector is estimated. Our
implementation runs at the moment in a slow real-time (9fps),
and should in the future be enclosed in a more complete,
probabilistic pipeline.

We present in the following our proposition for detec-

tion and localisation of independently moving objects from

a moving platform, using only visual clues (stereo-vision

cameras). Independent motion sensors, such as odometers

or IMU units are thus not used in this algorithm, although

they could be integrated to improve overall sensibility and

robustness of the method. This paper is divided in three main

parts. The first one recalls some techniques related to our

implementation. A second part presents our exploitation of

visual clues, and on-the-fly environment 3D reconstruction.

The last part presents informative uses from this initial

reconstruction and filtering, via the detection of navigable

area and the detection, localisation, and size characterization

of independently moving objects.

I. EXISTING TECHNIQUES

The perception of a dynamic environment from a moving

platform has been a broad research subject in the previous

years, tackled by several techniques and associated pros

and cons. We will present in the following an overview of

some of them, as a non-exhaustive list of recent publications

using vision to catch key elements of the environment. Some

techniques are used in our proposition, and we try in this part

to give a comprehensive overview of the state-of-the-art.

As regards intelligent vehicles needs, multiple challenges can

be identified, each tackled by some of the following examples

(order is non-relevant):

1) Ego-motion must be reliably estimated, as a prior to

any further work. This allows for instance coherent

exploitation of the flow of stereo-pairs acquisitions, or

obstacle detection from monovision camera in a planar-

world paradigm.

2) Moving parts must be detected from presumably static

background.

3) Moving and static parts must be localised in space, in

order to identify every possible concern.

The following sections are named according to a brief

resume of their processing pipeline, and can be matched

with this pattern. First and second section (?? and ??)

follow a similar path : ego-motion is firstly estimated (via

a least square optimisation in ?? and a RANSAC (Random

Sample Consensus) in ??). This allows motion detection,

either in cartesian space (via the scene-flow, ??), or in the

picture space (??). Methods differ, but ?? and ?? are jointly

estimated. Section ?? shows a different path : motion detec-

tion can be done prior to any ego-motion estimation, using

typical human prior (pedestrian and cars are the most likely

moving objects in an urban configuration). Pedestrian are first

detected on stereo pairs using HOG (Histogram of Oriented

Gradients) and SVM (Support Vector Machines). Ego-motion

estimation and environment reconstruction (covering ?? and

??) are then jointly processed. A last section, ??, present an

extensive reconstruction of the environment, without moving

object detection.

A. Ego motion compensation and motion detection from

optical flow

Badino et al. presented in 2008 ([?]) an algorithm to detect

moving objects from a moving stereo-rig. Main ideas were

ego-motion estimation from frame to frame, with an addi-

tional multi-frame refinement, over a set of 1200 followed

points (with 2008 hardware, this number could probably be

a lot higher with current hardware). Ego-motion estimation

is done using a least-squares approach, common to many

publications in this field and stemming from photogrammetry

techniques (see [?] or [?] for example for some input on the



subject). Visual tracking uses speed-optimised KLT-tracker

(see original publication from Lucas and Kanade [?]) together

with a coarse-to-fine correlation method. Although specifics

differ, since we intend to reconstruct (and filter) current envi-

ronment to get information about accessible areas as well as

moving objects typology, the principles of our work can very

much be related to this publication. Main tools developed

here should come as no surprise, being very common in

the stereo-vision field, and used for SLAM purposes for

some time (see for example [?] for an initial example of

least-squares motion estimate from stereo-vision frames for

SLAM purposes). We intend to more specifically focus on

perceiving current environment features and improve stereo-

vision accuracy via multi-sampling filtering (see ??).

B. Absolute movement detection from optical flow and ap-

propriate optimisation

Emphasizing movement detection, Agrawal et al. presented

in [?] a strategy based once more on pure visual informations

from a moving stereo pair. In this approach, moving parts

segmentation is however based on the optimisation scheme,

in the disparity space. Coordinates noise is indeed anisotropic

in the 3D cartesian space in case of a stereo-vision input (a

point extensively studied by Blostein ([?]) and which we

use in ??), a fact overlooked by standard SVD (Singular

Value Decomposition) techniques used to gather point-cloud

to point-cloud rigid transformations. This anisotropic noise

stems from image quantization and feature correspondence

to 3D-positions equations, quickly visible using the classical

lens pinhole model. An interesting publication taking into

account this noise distribution anisotropy to compute the rigid

transformation between point clouds can be found in [?],

by Matei et al.. In [?], points from a static background are

selected randomly, on a RANSAC basis : the corresponding

disparity to a random sampling from the set of tracked

points is computed, and inliers are computed in the disparity

space. Random sampling is repeated, and the winning draw

in terms of inliers is kept, in a standard ”Ransac” way.

Non-linear Levenberg-Marquardt least-squares optimisation

is then used to compute the optimal transformation from the

winning draw, supposing a rigid body. Independent motion

is finally detected comparing theoretical disparity (from ego-

motion and past calculus) to the new measure, according to

a correlation threshold.

In our case, motion estimation do not imply a Ransac

strategy, because of the number of reference points involved

(which we suppose to be much higher than the number of

moving points). The method used to detect moving points

is although different, ours being based in the reconstructed

cartesian space, but the results are very comparable.

C. Visual recognition along with environment reconstruction

In a recent publication ([?], Schindler et al proposed a

related framework on top of a similar stereo-vision setup,

with an emphasis on initial pedestrian detection on pictures

thanks to machine learning techniques . Once pedestrian

candidates are located on the stereo pairs acquisitions, other

parts of the picture are supposed to be static points, and

are used to get the vehicle ego-motion using least-square

estimates. Pedestrian detection is based on HOG detection

and SVM classfiers, while corners are detected using Förstner

corner detector ([?]) and used to estimate successive cam-

era poses. Similarly to state-of-the-art monovision SLAM

(Davison, [?]), an extended Kalman filter is used for pose

estimation, robustified by RANSAC point selection and bun-

dle adjustment on a sliding window. This allows in turn the

localisation in the environment of tracked points placed on

identified pedestrians, in this case in a probabilistic frame-

work. Similarly to our approach, this paper present a partial

reconstruction of the environment, over a sliding window,

discarding older frames. We believe this gives an important

short-term information for an intelligent vehicle, allowing

for better recognition of moving objects (standing on the

pavement, or on the road for example), and, as presented

in ??, for an extra source of navigation information (usable

area,..). This approach achieves very convincing results in

pedestrian tracking and localisation, but relies on the initial

accuracy of its HOG-SVM pedestrian detection. We try

in this proposition to adopt a more generic detection and

tracking framework of moving objects, based on the tracking

of a high number of visual features.

D. Dense environment reconstruction

Algorithms from the previous points have in common to be

based on the the tracking of several features, as opposed to a

dense tracking and reconstruction. Schindler et al. use dense

depth maps for enhanced pedestrian depth localisation, but

rely nonetheless on the tracking of discrete features for pose

estimation and environment sliding reconstruction. Lateghan

et al. present in [?] a new approach for dense environment

reconstruction, ensuring few to no features are missed in the

process. This relies on an initial EKF pose estimation (related

to monovision SLAM, once more visible in [?]), robustified

by RANSAC point selection, on a subset of the stereo pairs

visual features. This gives a skeleton of environment features

localisation, on which dense point clouds can be mapped.

An extra improvement on the point cloud reconstruction is

achieved using ubiquitous Kalman filtering for each point.

This approach does not deal with moving objects though,

visual reconstruction being the point for this publication.

Although we try in our proposition to focus on dealing with

mobile objects, we share a common attempt for stereo-vision

point cloud filtering, made possible by temporal tracking of

the visual features. Our reconstruction, while not being dense,

attempts to be ”dense enough” not to miss any interesting

feature. Contrary to the Lategahn approach however, we rely

directly on the whole point cloud to estimate successive cam-

era poses, via standard photogrametry techniques (namely

SVD). In this case we suppose the number of static points is

vastly superior to the number of moving points in the picture,

which ensures a reliable estimation of the vehicle movements.

In case this could not be achieved, an interaction with motion

sensors would however be needed.



II. ON THE FLY ENVIRONMENT RECONSTRUCTION FROM

VISUAL CLUES

In our approach, perception and localisation of moving

objects start with a partial reconstruction of the environment.

This implies to deal with the ego-motion of the vehicle, as

well as to implement 3D perception from our inputs. We

chose to stick to stereo-vision setup for visual spatial per-

ception, because of its intrinsic robustness for the perception

of moving objects from a vehicle standing still, a common

use case in the transportation area in which monocular SLAM

cannot perform.

Visual clues are gathered using a temporal stereo-vision

framework, a variation of recent publications in this field ([?],

[?]). Visual clues at this step are sparse, but numerous (1000

features ensures 20fps, 4000 running currently at 9fps). From

this point, we obtain time-connected 3D points clouds which

can be used to reliably and efficiently estimate ego-motion of

the vehicle using a modified SVD-based routine. This gives a

multi-sampled view of the same scene, visual features being

tracked over time. Next step is a filtering of features position,

based on this multiple sampling, as opposed to constraints-

based filtering commonly applied. Information is in our case

really gathered from the observations, and not stemming from

a smoothing constraint, which we believe improves accuracy.

These ”4D” point-clouds are finally used to detect and track

moving objects, as well as gather informations for ulterior

path-planning tasks (navigable area, static obstacles,..).

Fig. 1. Overall view of the algorithm

A. Temporal stereo-vision

1) Visual processing pipeline: The perception of spatial

features from pictures, relies on the determination of distinct

physical points which can be tracked from one view to

another (being in time or regarding another camera). A lot of

work have been invested in this field, from corners detection

to feature tracking, which we benefited greatly.

We used FAST corner detection, presented by Rosten et al. in

[?] and readily available in OpenCV library. Feature tracking

uses a very common pyramidal KLT setup, whose principles

were initially proposed by Lucas and Kanade in [?].

One pair of pictures is kept in a temporal buffer to improve

tracking reliability over image pairs and time, tracking of

the same visual features over time being a critical step of

our algorithm.

Cycling steps are as follows :

1) Corner detection is applied on current left picture.

Only the needed number of points are initially ran-

domly selected among top features. Every detected

corner (ranked up to the desired number) is to be

tracked at first, whereas after the first loop this number

is reduced to the lost points of the previous loop (100

to 300 points on average), corners successfully tracked

being kept over time.

2) Feature tracking using pyramidal Lucas & Kanade

tracker. This tracking is applied on a loop, one pair

of stereo pictures being kept in the back buffer. Initial

tracking looks for the features from current left picture

to past left picture. The same features are then tracked

on the past right picture (very fast step, the pictures

being rectified), then from the past right to the current

right picture, to finish with a tracking from the current

right to the current left picture (again a very fast step).

3) Tracking coherency check is immediate, consisting

in a comparison of the initial position of the tracked

features to their position found after the tracking loop.

In our experiments, mismatches of more than 0.5 pixels

are rejected. This defines a list of points to be replaced,

needed for the first step.

Overall, these steps take around 60ms per pair of frames

on a Intel Core i7 laptop. This is by far the slowest part of

the algorithm, an extra load being assumed by the doubled

tracking (current-past-current and left-right-left steps). This

however ensures a reliable source of information, and we

considered this is worth the extra time. Compared to other

sensors (laser, range-cameras), this step may seem too slow

and could be a case against the use of vision. One should

however take into account the nature of the information

gathered, every point being tracked in space and time at

the end of this visual processing, contrary to typical laser

acquisition which would for example need ICP to get time

correspondence.

Fig. 2. Example of frame-to-frame feature tracking (FAST keypoints &
pyramidal KLT), leading to Figure ??



B. 3D reconstruction

1) Rigid transformation from connected point clouds:

Following the visual tracking processing, 4D clouds are

available : each and every visual feature tracked gives a set

of positions in space over time. Visibility window over a set

of frames is individual to tracked features, as they disappear

or are lost in an independent manner, an index table needs

to keep track of every visibility change. The first step is

to compute an iterative transformation to account for ego-

motion. Several techniques are readily known for this step,

from Kalman filtering to optimisation techniques, some of

them quickly presented in ??. We chose to adapt the classical

SVD implementation to account for specific stereo-vision

noise, which is a contribution of this paper. This ego-motion

estimation technique is very fast (in the ms range) and can

handle a large number of points, contrary to the Kalman

filter approach. Outliers selection and removal is handled

iteratively to improve estimation robustness, which is detailed

below.

2) Depth-weighted least-squares estimation: A thorough

comparison of four standard algorithms to estimate rigid body

transformation can be found in the paper of Eggert et al.

([?]), whose notations are kept in the following equations.

Considering two point clouds m and d, the error to minimize

under the common L2 norm is written :

Σ2 =

N
∑

i=1

‖di − R̂mi − T̂‖
2

(1)

This translates nicely into the maximization of Trace(R̂ .

H), where H is the correlation matrix defined by the cross

product of mc and dc vector coordinates (centered point

clouds):

H =
N
∑

i=1

mc
i · d

c
i
T

(2)

Trace maximisation is achieved by SVD of the H ma-

trix into the UΛV T product, which defines the maxima

as R̂ = V UT . Translation vector is finally computed by

subtracting the rotated cloud to the reference one. This is

a well known algorithm, very fast for clouds of thousands of

points, and whose precision is comparable to other leading

quaternions technique in standard cases ([?]). Equation ?? is

however questionable in our case, every point of the {m, d}
clouds being given the same weight under the L2 isotropic

norm. It is well known that stereo-vision noise is anisotropic

and dependent on the distance to the pair of cameras (see

[?] for an initial study on stereoscopic noise). This led for

instance some of the work presented in ?? to be computed in

the disparity space (notably independent movement detection

in [?]), where noise is uniformly distributed. We propose

an alteration of equation ?? to uniformly weight points

contribution in the picture space, thresholded to take into

account close points (with z the depth coordinate, and zth
the threshold distance to robustify our norm against close

points) :

ω(z) = max(zth, z) (3)

Σ2 =

N
∑

i=1

‖
dci

ω(diz )
−

R̂mc
i

ω(miz )
‖

2

(4)

(The following SVD-based optimisation resolution steps

keeps the same). Considering stereo-vision equations in the

standard pinhole model, this is an approximation to back-

projecting points onto the picture frame, and computing error

cost in this neat uniform space. Computing time is marginally

superior, but we believe this specific SVD-based declination

is more adapted to stereo-vision noise profile. In addition

to his specific optimisation, the transformation estimation is

robustified by an iterative method, removing worst points (in

terms of L2 norm in matching clouds) until the standard

deviation of matched clouds in the same referential is low

enough. A few iterations (5 at most) and a few hundreds

discarded points are typically enough on KITTI benchmark

sequences ([?]), which keeps computing time within real-time

constraints.

3) Transformation accumulation: Following eq. ??, we

obtain iterative transformations consecutive to ego-motion.

These transformation matrix are incrementally combined in

order to keep an estimation of the motion from frame k to

frame k+l in the back buffer, which is the simplest way to

be able to bring every cloud back to the same referential. At

this point, reconstruction is obviously biased over time, and a

precise optimisation would be required to keep going on (see

for example this extensive review from Triggs et al. [?]). This

could be added to our pipeline, but current results show that

precision is good enough for this reconstruction over a sliding

window of 100 frames, which is enough for current purposes.

Considering real-time computing constraints, a balance must

be stroke depending on cloud accumulation bias and the

possibility to deal with more clouds (to offset prominent

stereo-vision noise at high range via sample accumulation).

In our ”sliding window” approach bias prove to be negligible

(we always work in the current referential of the camera),

but bundle adjustment would be needed in case the filtered

point-clouds had to be kept over time.

4) Cloud filtering via position multi-sampling: At this

point, we get a sampling of every tracked feature xm position

depending on its intrinsic visibility window W(xm) over the

[1,N] sliding reconstruction window.

{xm} = ∀k ∈ W (xm){x̂mk
·

[

Rk Tk

0 1

]

} (5)

This allows for an improved position of the feature over

time, as long as its visibility window extends. This can be op-

posed to common filtering techniques for depth maps, which

inject a priori knowledge in the computation, supposing for

example that the environment consists of smooth edges. In

our case, we effectively get largely uncorrelated samples,

which gives an effective increased information over each

localised point time, without loss of generality. Similarly to



eq. ??, we propose an inverse-depth based weighting over the

{xm} positions, in order to partially account for stereo-noise

specificities. This proved to greatly enhance feature position

convergence over time (see ??) .

x̂m =
1

N (W (xm))

W (xm)
∑

k

{xm}k ·
1

depthxk

(6)

III. POINT CLOUD EXPLOITATION

A. Navigable space detection

Building on the point cloud at our disposal, we use a

RANSAC (see Fischler and Bolles [?]) based strategy to

detect the ground, supposing vehicle attitude and camera

calibration is not known. Informations are still only picture-

based, and we suppose to begin with that the ground is in the

lower part, and mostly horizontal. RANSAC is very robust,

but can be long in a big sampling space, so our strategy is

divided in two steps :

• If the previous iteration did not converge, RANSAC

sampling basis is the lower third part of the filtered point

cloud. Every draw consists of 3 points, from which a

plane is computed, driving to a number of inliers being

selected. The best draw in terms of inliers is kept. Limit

can be set on the expected ground slope, provided the

vehicle attitude towards ground is well known.

• If the previous iteration did converge (inliers within

a given range above a threshold), computation can be

greatly speed up. Cloud-to-cloud transformation is used

on the previous plane equation. RANSAC sampling

basis is then selected around this transformed past plane

(+/-1m in our experiments), and the same typical non-

linear optimizing strategy is applied.

Ground selection interest is twofold : for once, it gives a

simple means for selecting most interesting moving objects,

the one susceptible to enter in collision. On the other hand, it

gives an estimate of the navigable area (which may need to be

crossed checked with prior data, depending on the considered

vehicle and playground), that is where to go. This step initial

implementation costs around 10 to 15 ms on a laptop, but

this could be sped up considering its highly parallel nature

(multi-threaded sample inlier computation). This step can be

compared to numerous free space detection publications ([?],

[?]), although our approach certainly is heavier because of

the current scene reconstruction.

B. Moving objects detection

We try in this step to detect any independent motion,

without any prior separating moving points from static ones

(contrary to [?]). This is made difficult by stereo-vision

noise, which can lead to strong sample-to-sample motion

on static points, especially at a long range. Agrawal et al.

propose a disparity-based detection, once ego-motion has

been reliably estimated ([?]), but we have at this point

more information : our features are tracked on a subset of

the overall integrating sliding window, which translates into

several tenth of successive positions in the same referential ;

and we have some clues about the environment configuration.

The detection strategy follows several steps, in order to refine

from the initial point cloud counting 50 000 points to a more

manageable number of refined candidates.

• Initial candidates are taken among the ”worst” points of

the cumulated cloud, in terms of L2 norm. We compute

the standard deviation for the whole cloud, points whose

distance to their filtered counterparts (weighted mean) is

above a threshold times this standard deviation for a few

consecutive frames are selected. At this point, moving

objects are actually among this candidate points, as well

as noisiest points (long range). σk,l is in this case the

standard deviation computed between the clouds (k, l)

back in the same referential.

σk,l = STDi∈{k,l}(x̂ik − x̂il) (7)

STD{k,l}({x{k,l}}candidates) > σk,l (8)

• We then compute the autocovariance between the be-

ginning and the end of the set of positions at disposal

for every candidate. This effectively differentiates noisy

static points to their moving counterparts, up to long-

range stereovision bias.

• Selected moving points are then, for example, restricted

to the ground neighbourhood. Initial segmentation is

done on a closeness basis (K-Means clustering and

Global Nearest Neighbour approach).

C. Output example and (lack of) benchmarking

In the following example, we use the data set from New

College ([?]) gathered from a two-wheel moving platform.

We believe this shows a difficult exercise, the amount of ego-

motion (including pitch and roll) being arguably superior to

most four-wheeled vehicles. Speed is however on the low

side, which proved positive for our approach, as initial tests

using the just released KITTI Vision Benchmark Suite ([?])

tend to show higher speeds and low sampling rate could be

challenging. We did not at the time have any ground-truth

as regards moving object detection and localisation, and the

KITTI benchmark would help a lot in this field.

An example of a moving object detection and localisation,

with estimated speed vectors, can be found in Figure ??.

In this 3D output, incremented visual features are drawn in

green, while detected speed vectors are in red. Stereo cameras

are ”Point Grey Bumbleebee”, running at 20 Hz and with a

512x384 grayscale definition.

Our method effectively detects and localises all moving

pedestrians of the dataset, provided detection threshold is low

enough and triggers false detections (this benchmark does not

have a ground truth as regards pedestrian position over time).

This dataset is however arguably a simple one as regards

pedestrian presence, less than 10 people being visible over a

few minutes. This proposition is however a first step in the

detection chain, and should be coupled in the future with a

probabilistic grid framework.



Fig. 3. Algorithm output. Vectors drawn in red for moving object. Ground
points are in blue. Vehicle trajectory is also visible at the bottom end, in red

We did not have enough time to fully exploit KITTI bench-

mark, which is to our knowledge the first benchmark provid-

ing extensive ground truth over the detection and tracking of

moving object. An example of on-the-fly reconstruction of

the current environment is however visible in Figure ??.

Fig. 4. Camera input leading to Figure ??

Fig. 5. Algorithm output. Scene is from above, vehicle just turned right,
gathered trajectory is in red. Reconstrution runs at 9fps

IV. CONCLUSIONS

We present in this paper an integrated means of envi-

ronment reconstruction and moving object detection, over

a sliding window. While not aimed at visual mapping, our

approach allows a noticeable increase in objects localisation

accuracy over time, and effectively detects and localises

moving objects from a moving stereo rig in their envi-

ronment. Computing cost allows for real-time prospects,

but this approach needs observability over time to estimate

ego-motion and filtering, and high-speed operations would

probably be challenging.

REFERENCES

[1] H. Badino, U. Franke, C. Rabe, and S. Gehrig, “Stereo-vision based
detection of moving objects under strong camera motion,” in Inter-

national Conference on Computer Vision Theory and Applications.
Citeseer, 2008, pp. 253–260.

[2] D. Eggert, A. Lorusso, and R. Fisher, “Estimating 3-D rigid body
transformations: a comparison of four major algorithms,” Machine

Vision and Applications, vol. 9, no. 5-6, pp. 272–290, Mar. 1997.
[3] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle

Adjustment A Modern Synthesis,” Vision algorithms: theory and

practice, vol. 34099, pp. 153–177, 2000.
[4] B. D. Lucas and T. Kanade, “An Iterative Image Registration Tech-

nique with an Application to Stereo Vision,” Imaging, vol. 130, pp.
121–129, 1981.

[5] K. Konolige and M. Agrawal, “FrameSLAM: From Bundle Adjust-
ment to Real-Time Visual Mapping,” IEEE Transactions on Robotics,
vol. 24, no. 5, pp. 1066–1077, Oct. 2008.

[6] M. Agrawal, K. Konolige, and L. Iocchi, “Real-time detection of
independent motion using stereo,” in Motion and Video Computing,

2005. WACV/MOTIONS’05 Volume 2. IEEE Workshop on, vol. 2.
IEEE, 2007, pp. 207–214.

[7] S. D. Blostein and T. S. Huang, “Error analysis in stereo determination
of 3-D point positions,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, no. 6, pp. 752–765, 1987.
[8] B. Matei, “Optimal rigid motion estimation and performance evaluation

with bootstrap,” Vision and Pattern Recognition, 1999. IEEE, no. 2,
1999.

[9] K. Schindler, A. Ess, and B. Leibe, “Automatic detection and tracking
of pedestrians from a moving stereo rig,” ISPRS Journal of, 2010.

[10] W. Förstner and E. Gülch, “A fast operator for detection and precise
location of distinct points, corners and centres of circular features,”
in Proc. ISPRS intercommission conference on fast processing of

photogrammetric data. ISPRS Intercomission Workshop, Interlaken,
1987, pp. 281–305.

[11] A. J. Davison, “Real-Time Simultaneous Localisation and Mapping
with a Single Camera,” London, pp. 0–7, 2003.

[12] H. Lategahn, A. Geiger, and B. Kitt, “Visual SLAM for Autonomous
Ground Vehicles,” Robotics, pp. 1732–1737, 2011.

[13] P. Lenz, J. Ziegler, A. Geiger, and M. Roser, “Sparse Scene Flow
Segmentation for Moving Object Detection in Urban Environments,”
Intelligent Vehicles Symposium (IV), 2011, pp. 926 – 932, 2011.

[14] E. Rosten and T. Drummond, “Fusing points and lines for high perfor-
mance tracking,” Tenth IEEE International Conference on Computer

Vision (ICCV’05) Volume 1, pp. 1508–1515 Vol. 2, 2005.
[15] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous

Driving? The KITTI Vision Benchmark Suite,” Computer Vision and

Pattern Recognition (CVPR), no. June, 2012.
[16] M. Fischler and R. Bolles, “Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–
395, 1981.

[17] H. Badino, U. Franke, and R. Mester, “Free space computation using
stochastic occupancy grids and dynamic programming,” in Workshop

on Dynamical Vision, ICCV, Rio de Janeiro, Brazil. Rio de Janeiro:
Citeseer, 2007, pp. 1–12.

[18] D. Pfeiffer, A. Barth, U. Franke, and A. Daimler, “Robust and Precise
3D-Modelling of Traffic Scenes based on Dense Stereo Vision,”
vldb.informatik.hu-berlin.de, vol. 1.

[19] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The
New College Vision and Laser Data Set,” The International Journal

of Robotics Research, vol. 28, no. 5, pp. 595–599, May 2009.


