Stability estimates for the unique continuation property of the Stokes system. Application to an inverse problem

Muriel Boulakia 1 Anne-Claire Egloffe 2, * Céline Grandmont 2
* Auteur correspondant
2 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
Abstract : In the first part of this paper, we prove hölderian and logarithmic stability estimates associated to the unique continuation property for the Stokes system. The proof of these results is based on local Carleman inequalities. In the second part, these estimates on the fluid velocity and on the fluid pressure are applied to solve an inverse problem: we consider the Stokes system completed with mixed Neumann and Robin boundary conditions and we want to recover the Robin coefficient (and obtain stability estimate for it) from measurements available on a part of the boundary where Neumann conditions are prescribed. For this identification parameter problem, we obtain a logarithmic stability estimate under the assumption that the velocity of a given reference solution stays far from 0 on a part of the boundary where Robin conditions are prescribed.
Type de document :
Article dans une revue
Inverse Problems, IOP Publishing, 2013
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00760039
Contributeur : Anne-Claire Egloffe <>
Soumis le : lundi 3 décembre 2012 - 18:05:33
Dernière modification le : vendredi 7 décembre 2018 - 01:28:59
Document(s) archivé(s) le : samedi 17 décembre 2016 - 19:09:43

Fichier

continuation_unique_article.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00760039, version 1

Citation

Muriel Boulakia, Anne-Claire Egloffe, Céline Grandmont. Stability estimates for the unique continuation property of the Stokes system. Application to an inverse problem. Inverse Problems, IOP Publishing, 2013. 〈hal-00760039〉

Partager

Métriques

Consultations de la notice

565

Téléchargements de fichiers

245