G. Alessandrini, E. Beretta, E. Rosset, and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.29, issue.44, pp.755-806, 2000.

L. [. Alessandrini, L. Piero, . A. Rondiaf03-]-r, J. J. Adams, and . Fournier, Stable determination of corrosion by a single electrostatic boundary measurement, Sobolev spaces, pp.973-984, 2003.
DOI : 10.1088/0266-5611/19/4/312

E. [. Alessandrini and . Sincich, Detecting nonlinear corrosion by electrostatic measurements, Applicable Analysis, vol.46, issue.1-3, pp.107-128, 2006.
DOI : 10.1112/blms/26.4.353

URL : http://arxiv.org/abs/math/0406575

J. [. Bellassoued, M. Cheng, and . Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging, Journal of Mathematical Analysis and Applications, vol.343, issue.1, pp.328-336, 2008.
DOI : 10.1016/j.jmaa.2008.01.066

M. Bellassoued, M. Choulli, and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering???amplitude, Mathematical Methods in the Applied Sciences, vol.12, issue.11, p.2012
DOI : 10.1002/mma.2762

URL : https://hal.archives-ouvertes.fr/hal-00659032

J. [. Bourgeois and . Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains, Egloffe, and C. Grandmont. Stability estimates for a robin coefficient in the two-dimensional stokes system. Accepted for publication in Mathematical control and related field, pp.1745-1768, 2010.
DOI : 10.1002/nme.1620080408

URL : https://hal.archives-ouvertes.fr/hal-00849579

P. [. Boyer and . Fabrie, ´ Eléments d'analyse pour l'´ etude de quelques modèles d'´ ecoulements de fluides visqueux incompressibles, ) [Mathematics & Applications, 2006.
DOI : 10.1007/3-540-29819-3

L. Baffico, C. Grandmont, and B. Maury, MULTISCALE MODELING OF THE RESPIRATORY TRACT, Mathematical Models and Methods in Applied Sciences, vol.20, issue.01, pp.59-93, 2010.
DOI : 10.1142/S0218202510004155

J. [. Bergh and . Löfström, Interpolation spaces. An introduction, 1976.

]. L. Bou10, . J. Bourgeois-[-ccl08-], M. Cheng, J. Choulli, and . Lin, About stability and regularization of ill-posed elliptic Cauchy problems: the case of C 1,1 domains Stable determination of a boundary coefficient in an elliptic equation, M2AN Math. Model. Numer. Anal. Math. Models Methods Appl. Sci, vol.44, issue.181, pp.715-735107, 2008.

I. [. Chaabane, M. Fellah, J. Jaoua, and . Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems, Inverse Problems, vol.20, issue.1, pp.47-59, 2004.
DOI : 10.1088/0266-5611/20/1/003

M. [. Chaabane and . Jaoua, Identification of Robin coefficients by the means of boundary measurements, Inverse Problems, vol.15, issue.6, pp.1425-1438, 1999.
DOI : 10.1088/0266-5611/15/6/303

L. [. Cornilleau and . Robbiano, Carleman estimates for the Zaremba Boundary Condition and Stabilization of Waves, American Journal of Mathematics, vol.136, issue.2, 2011.
DOI : 10.1353/ajm.2014.0014

URL : https://hal.archives-ouvertes.fr/hal-00634867

J. [. Dautray and . Lions, Mathematical analysis and numerical methods for science and technology Physical origins and classical methods, With the collaboration of Philippe Bénilan, 1990.

F. , A. V. Fursikov, and O. Yu, Etude de quelquesprobì emes inverses pour le système de Stokes Application aux poumons, Imanuvilov. Controllability of evolution equations Lecture Notes Series, vol.34, 1996.

G. [. Fabre and . Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Partial Differential Equations, vol.21, pp.3-4573, 1996.
DOI : 10.1080/03605309608821198

J. [. Giaquinta and . Sou?ek, Caccioppoli's inequality and Legendre-Hadamard condition, Mathematische Annalen, vol.17, issue.312, pp.105-107, 1985.
DOI : 10.1007/BF01455535

]. L. Hör85 and . Hörmander, The analysis of linear partial differential operators. III, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1985.

J. [. Lattès and . Lions, Méthode de quasi-réversibilité et applications, Travaux et Recherches Mathématiques, issue.15, 1967.

G. Lebeau and L. Robbiano, Contr??le Exact De L??quation De La Chaleur, Communications in Partial Differential Equations, vol.52, issue.1-2, pp.335-356, 1995.
DOI : 10.1016/0022-0396(87)90043-X

]. A. Lun09 and . Lunardi, Interpolation theory. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes, Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, 2009.

[. Lin, G. Uhlmann, and J. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete and Continuous Dynamical Systems, vol.28, issue.3, pp.1273-1290, 2010.
DOI : 10.3934/dcds.2010.28.1273

P. Phung, Remarques sur l'observabilité pour l'´ equation de laplace. ESAIM: Control, Optimisation and Calculus of Variations, pp.621-635, 2003.
DOI : 10.1051/cocv:2003030

URL : http://archive.numdam.org/article/COCV_2003__9__621_0.pdf

A. [. Quarteroni and . Veneziani, Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations, Multiscale Modeling & Simulation, vol.1, issue.2, pp.173-195, 2003.
DOI : 10.1137/S1540345902408482

]. L. Rob91 and . Robbiano, Théorème d'unicité adapté au contrôle des solutions desprobì emes hyperboliques, Comm. Partial Differential Equations, vol.16, issue.4-5, pp.789-800, 1991.

]. E. Sin07 and . Sincich, Lipschitz stability for the inverse Robin problem, Inverse Problems, vol.23, issue.3, pp.1311-1326, 2007.

C. [. Vignon-clementel, K. E. Figueroa, C. A. Jansen, and . Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.29-32, pp.29-323776, 2006.
DOI : 10.1016/j.cma.2005.04.014