
HAL Id: hal-00760118
https://hal.inria.fr/hal-00760118

Submitted on 3 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compact Proof Certificates for Linear Logic
Kaustuv Chaudhuri

To cite this version:
Kaustuv Chaudhuri. Compact Proof Certificates for Linear Logic. Chris Hawblitzel and Dale Miller.
Second International Conference on Certified Programs and Proofs, Dec 2012, Kyoto, Japan. Springer,
7679, pp.208–223, 2012, Lecture Notes in Computer Science (LNCS). <10.1007/978-3-642-35308-
6_17>. <hal-00760118>

https://hal.inria.fr/hal-00760118
https://hal.archives-ouvertes.fr

Compact Proof Certificates For Linear Logic

Kaustuv Chaudhuri

INRIA, France

http://kaustuv.chaudhuri.info

December 3, 2012

Abstract

Linear logic is increasingly being used as a tool for communicating reasoning agents in

domains such as authorization, access control, electronic voting, etc., where proof certificates

represent evidence that must be verified by proof consumers as part of higher protocols.

Controlling the size of these certificates is critical. We assume that the proof consumer is

allowed to do some search to reconstruct details of the full proof that are omitted from the

certificates. Because the decision problem for linear logic is unsolvable, the certificate must

contain at least enough information to bound the search: we show how to use the sequence

of contractions in the sequent proof for this bound. The remaining content of the proof, in

particular the information about resource divisions, can then be omitted from the certificate.

We also describe a technique for giving a variable amount of additional search hints to the

proof consumer to limit its non-determinism.

1 Introduction

A proof certificate is a way for a proof producer to convey certainty about a theorem to a proof
consumer. It is the embodiment of a compromise between the size of the certificate (which di-
rectly correlates to the difficulty of processing, transmitting, and storing the certificate) and the
complexity of checking (and hence trusting) it. A fully detailed proof can be very large, but it
might be checkable by a simple and trustworthy checker (the so-called De Bruijn Criterion). On
the other extreme, the certificate might just record a “yes”, and the consumer must reconstruct
the entire proof. This paper explores some of the spectrum between these two extremes and
provides some guidelines for producing certificates that have a tunable amount of detail. Of par-
ticular interest is the kind of certificate where the level of detail can be modified by intermediaries
between the ultimate producer and consumer, an idea that is at the heart of the “marketplace
of proofs” concept [16].

To be simple and concrete, this paper considers this question for classical linear logic, which
is undecidable even in the propositional fragment [15]. The ideas readily extend to the first-order
and to intuitionistic and classical logic, where many of the issues are simpler. The underlying
proof system will be a sequent calculus. Sequent calculi are ideally suited for proof-search in many
logics for at least two important reasons: first, the subformula property, which is the sine qua non
of automation; and second, polarity and focusing, wherein the ordinary sequent rules coalesce
into synthetic “macro” forms to make larger logical steps without sacrificing completeness [1].
The careful use of focusing enables a general search strategy to implement a wide variety of
operational strategies directly [8, 6].

1

http://kaustuv.chaudhuri.info

The sequent calculus is nevertheless not an ideal certificate format. It is a simple matter to
build a syntax for fully detailed sequent proofs. If the proof is of an important mathematical
result, then such detailed proofs can perhaps be tolerated as they are unlikely to be consumed
often. Commonly, however, automatically generated proofs are used in domains where the proofs
are intended to convince the consumer of some semantic property of digital artefacts, such as
conformance to security policies. Probably the best example is proof-carrying code (PCC) [18].
Certificates in such domains are meta-information and generally considered to be overhead. For
PCC, the standard technique for reducing the overhead is to specify the search semantics for
the consumer (e.g., by means of a logic programming language) and then to record the choices
needed to guide the consumer in the form of oracle strings. While this may be a good engineering
solution for the specific problem of PCC, oracle strings are an unsatisfactory proof certificate
format in general. The strings must match the operational semantics of the consumer, for one,
which limits the portability and maintainability of proofs. They are also denotationally opaque.

An alternative to the oracles approach—the one used in this paper—is to elide some of
the details in the proof if they can be dependably reconstructed by the consumer. This is to
say that the elision must be such that reconstructing the full sequent proof always remains
at least decidable, and preferably feasible and predictable. A good example of this approach
is the Dedukti system [2] where purely computational steps in a proof are elided because the
consumer is equipped with a general rewrite engine. However, we want more than just the
ability to omit certain classes of sub-proofs: we want the level of detail in a proof to be fully
variable. Linearity also brings its own problems to such approaches: the key issue is that linear
proofs consume resources,1 so an omitted proof would consume an unknown amount of resources.
Reconstructing the resource divisions is the well known resource management problem [10, 11],
which is unsolvable in general as it is the source of the undecidability of linear logic.

What details are essential in a sequent proof? Every logical rule introduces some connective,
so applying the rule from the conclusion to the premises consumes the principal formula. Of
the structural rules, the only rule that strictly increases the complexity of a sequent is contrac-
tion. The contraction-free fragment of the sequent calculus is manifestly decidable, assuming
the subformula relation is well-founded and no rule has infinitely many premises – reasonable
assumptions for logics where automated reasoning is feasible. The proof-theoretic impact of
restricting or removing the contraction rules is a long studied field (see, e.g., [9]), but the fol-
lowing deceptively simple observation seems to be either missing or vanishingly unpopular in
the literature on proof objects: the sequence of contractions in a sequent proof is a sufficient
certificate.

One reason why this observation might be rare is that it is unclear how to isolate the con-
tractions from the other rules in the sequent calculus. Other proof calculi, such as the calculus
of structures [19, 7], permit inferences in any formula context and thus allow the contraction
rule to permute freely. Separating the contractions from an arbitrary proof is routine in such
formalisms and generally forms the basis of much of their meta-theory. From the perspective
of proof search, this extra permutative freedom is actually detrimental, for the proof search
trees are much more branching. But, once a proof is built, it can be freely reorganized. The
record of contractions is generally much smaller than the full proof—which needs to record the
contractions anyhow—because it lacks all the logical content.

Now, while the contraction rules in the sequent calculus obviously do not permute, what
is important is not the ability to permute but a mechanism to pre-compute the contractions.
This pre-computed information about just the contractions can then be used to control their
application in a general search strategy, so they form a suitable proof certificate. To extract
this information, we require a mechanism for uniquely indexing every subformula in a sequent.

1A resource is a hypothesis that can disappear upon use.

2

This is not particularly hard: we merely give a unique name to every subformula path in the
sequent and perform some additional book-keeping to ensure that the names remain unique
through applications of sequent rules. The contractions then manifest as subformula paths that
can potentially be duplicated; this information can then be used as a bound on search, wherein
every application of contraction “consumes” one of the copies of the replicable subformula paths.

Bounding the contractions in this manner makes proof search (and hence reconstruction in
the consumer) decidable, but it does not necessarily make it feasible. As already mentioned, a
good certificate format should allow a variable level of detail to control the non-determinism in
the consumer. It turns out that, carefully done, the indexing mechanism used for the contractions
can then be exploited in another important manner: the tree of names of the principal formulas in
the sequent proof is also a suitable certificate format. Moreover, this tree can serve as a skeleton
from which to hang the information about contractions. This is the main technical contribution
of this paper.

We begin by limiting ourselves to focused proofs [1, 8, 14]. The essence of focusing is to
reduce the subformula relation to one that clarifies the alternation between invertible (“don’t
care”) and non-invertible (“don’t know”) choices in search. Only these points of phase shift need
to be indexable. Of the phase shifts, the most important ones are those that decide to focus on
a particular formula: the corresponding labels are recorded in the decision tree of labels. This
crystallizes the common intuition that the essence of a focused proof is the sequence of decisions;
the details of the choices inside particular phases of focusing are unimportant. In fact, the other
non-deterministic choices in a proof, viz. the resource distribution and the disjunctive choices,
can be recovered directly from this decision tree. Lastly, at any level in the decision tree we can
simply replace the sub-tree with a bound on the contractions, which gives us certificates with a
variable level of detail.

To summarize, our prescription for obtaining compact proof certificates is as follows: (1) start
from a focused sequent proof; (2) uniquely name every subformula path in the end-sequent; (3)
extract the tree of names for the principal formulas in the decision rules; and (4) replace some
of the sub-trees in this tree by a suitable search bound, such as one on the contractions. We
begin with an overview of the focused sequent calculus (Sect. 2), then we show how to label the
sequents and tame contraction (Sect. 3), and finally we describe how to use the decision trees as
determinizing hints for proof reconstruction (Sect. 4).

2 Background

We use propositional linear logic in this paper, though the technique extends straightforwardly
to the first-order. It also extends to ordinary logic (intuitionistic or classical) where the problems
are simpler than the linear case. Formulas (written A, B, . . .) have the following grammar.

A, B, . . . ::= a A ⊗ B 1 A ⊕ B 0 !A
| a A

&

B ⊥ A & B ⊤ ?A

Atomic formulas are written using a, b, . . . , and the negation of a is written as a. Formulas are in
negation-normal form with each vertical column in the above grammar depicting one De Morgan
dual pair; we write (A)

⊥
for the dual of A. The linear sequent calculus, which we call llk, is

usually presented using one-sided sequents of the form ⊢ Γ, where Γ is a multi-set of formulas.
The rules of this system are in Fig. 1

Looking at the permutations of rules in llk, it is easy to see that some rules can always
permute because they are invertible (i.e., if the conclusion of the rule is true, then so is the
conjunction of its premises), while other (non-invertible) rules permute only in specific circum-
stances. Andreoli famously showed that these permutation properties can be exploited to define a

3

⊢ a, a
ai

⊢ Γ, A ⊢ ∆, B

⊢ Γ, ∆, A ⊗ B
⊗

⊢ 1
1

⊢ Γ, Ai

⊢ Γ, A1 ⊕ A2

⊕
⊢ Γ, A, B

⊢ Γ, A

&

B

& ⊢ Γ
⊢ Γ, ⊥

⊥

⊢ Γ, A ⊢ Γ, B

⊢ Γ, A & B
&

⊢ Γ, ⊤
⊤

⊢ ?Γ, A

⊢ ?Γ, !A !
⊢ Γ, A

⊢ Γ, ?A
?

⊢ Γ, ?A, ?A

⊢ Γ, ?A
ct

⊢ Γ
⊢ Γ, ?A

wk

Figure 1: Rules of llk. In the ⊕ rule, i ∈ {1, 2}.

restricted but complete class of sequent proofs that follow a focusing discipline [1]. The essence of
the discipline is that the ordinary (unfocused) rules of llk naturally coalesce into larger clumps
of derived rules that abstract over the irrelevant details such as the order of application of in-
vertible rules. Focusing was originally an operational device to control the non-determinism in
proof-search in linear logic programming, but it is now seen as a general device for analyzing the
structural properties of proof systems, akin to cut-elimination for the sequent calculus. Focused
proof systems have been formulated for a number of other logics [8, 14] and proof systems [3, 7]
besides its origin in the classical linear sequent calculus.

The standard presentation of focusing for llk is as follows, in broad outline. The non-atomic
formulas of linear logic divide evenly into those that have invertible rules and those that do not;
moreover, the two sets of formulas are De Morgan duals. Following general tradition, we call
the connectives with invertible logical rules negative, and those with non-invertible rules positive.
The atomic formulas can be placed into either class as long as duality is maintained, but we
follow tradition and classify them as positive and their negations as negative. We also adopt
the device of polarization [12], wherein the changes between positive and negative subformulas
is explicitly marked with shift connectives (↓ and ↑). While the choice of a polarized syntax is
usually unnecessary for focusing, we will exploit it for our certificates.

Polarized formulas have the following grammar.

P, Q, . . . ::= a P ⊗ Q 1 P ⊕ Q 0 !N ↓N

N, M, . . . ::= a N

&

M ⊥ N & M ⊤ ?P ↑P

(positive formulas)

(negative formulas)

We will continue to use A, B, . . . to refer to formulas of either polarity. The sequents in the
focused variant of llk, which we call llkf, have one the following two forms.

⊢ Γ; ∆;
[

P
]

(positive sequent with P focused)

⊢ Γ; ∆; Ω (negative sequent with Ω active)

The contexts Γ, ∆ and Ω are all multi-sets of the following kinds of formulas.

Γ ::= · Γ, P ∆ ::= · ∆, P ∆, a Ω ::= · Ω, N

Although all three contexts are multi-sets, semantically the context Γ is unrestricted (admit-
ting weakening and contraction) while ∆ and Ω are linear (admitting neither weakening nor
contraction).

Figure 2 contains the full collection of rules of llkf. The logical rules of llkf are applied
in one of two phases. The positive phase consists of rules applied to positive sequents. Each
such rule has the focused formula in the positive sequent as the principal formula, and if the
operands of the principal connective are also positive then the focus is maintained on them in
their corresponding premises. Likewise, the negative phase consists of rules applied to the active
context of negative sequents. Mediating the two phases are the decision rules

[

lf
]

and
[

uf
]

where particular formulas are granted focus. In the case that the formula is selected from the
unrestricted context Γ, it continues to be present in Γ in the premises, i.e., the rule has a built in
contraction. This is in fact the only form of contraction in the calculus. Instead of a structural

4

Positive Phase

⊢ Γ; a;
[

a
]

[

fi
] ⊢ Γ; ∆1;

[

P
]

⊢ Γ; ∆2;
[

Q
]

⊢ Γ; ∆1, ∆2;
[

P ⊗ Q
]

[

⊗
]

⊢ Γ; ·;
[

1

]

[

1
] ⊢ Γ; ∆;

[

Pi

]

⊢ Γ; ∆;
[

P1 ⊕ P2

]

[

⊕
]

⊢ Γ; ·; N

⊢ Γ; ·;
[

!N
]

[

!
] ⊢ Γ; ∆; N

⊢ Γ; ∆;
[

↓N
]

[

↓
]

Negative Phase

⊢ Γ; ∆, a; Ω

⊢ Γ; ∆; Ω, a

[

nr
] ⊢ Γ; ∆; Ω, N, M

⊢ Γ; ∆; Ω, N

&

M

[&] ⊢ Γ; ∆; Ω

⊢ Γ; ∆; Ω, ⊥

[

⊥
] ⊢ Γ; ∆; Ω, N ⊢ Γ; ∆; Ω, M

⊢ Γ; ∆; Ω, N & M

[

&
]

⊢ Γ; ∆; Ω, ⊤

[

⊤
] ⊢ Γ, P ; ∆; Ω

⊢ Γ; ∆; Ω, ?P

[

?
] ⊢ Γ; ∆, P ; Ω

⊢ Γ; ∆; Ω, ↑P

[

↑
]

Decision

⊢ Γ; ∆;
[

P
]

⊢ Γ; ∆, P ; ·

[

lf
] ⊢ Γ, P ; ∆;

[

P
]

⊢ Γ, P ; ∆; ·

[

uf
]

Figure 2: Rules of llkf. In the
[

⊕
]

rule, i ∈ {1, 2}.

rule of weakening, rules with no premises are altered to admit any number of unrestricted side
formulas.

In order to compare llkf to llk, we must first translate between the two syntaxes – unpo-
larized and polarized.

Definition 1 (Depolarization). Given a polarized formula A, let ⌊A⌋ stand for that unpolarized
formula with all occurrences of ↓ and ↑ removed from A. Extend this definition naturally to
multi-sets of polarized formulas.

Theorem 2 (Soundness and completeness of llkf w.r.t. llk).

• If ⊢ Γ; ∆;
[

P
]

in llkf, then ⊢ ?⌊Γ⌋, ⌊∆⌋ , ⌊P ⌋ in llk.

• If ⊢ Γ; ∆; Ω in llkf, then ⊢ ?⌊Γ⌋, ⌊∆⌋ , ⌊Ω⌋ in llk.

• If ⊢ ⌊Ω⌋ in llk, then ⊢ ·; ·; Ω in llkf.

Proof. There are many ways to prove this theorem. We refer the interested reader to one of the
standard approaches [13, 17, 5].

3 Labelling Subformulas and Taming Contraction

As already mentioned in the introduction, there is a single rule each in llk and in llkf that
causes the set of derivations (including open derivations) of a given sequent to be infinite: con-
traction (ct) in the former, and unrestricted focus (

[

uf
]

) in the latter. The
[

lf
]

rule moves a

positive formula into focus after which its principal connective is consumed, and the
[

nr
]

rule
moves a negative atom into the linear context from which it can never be selected as a principal
formula again. The remaining rules all consume a connective. Therefore, in order to obtain a de-
cidable sub-logic of linear logic for which these proof systems are manifestly decision procedures,
it is these rules of contraction that need to be controlled.

5

To find such a means of controlling contraction, we can look for inspiration at calculi with
more permissive permutations in their inference rules. Generally speaking, such calculi tend to
be calculi of deep inference, wherein there is no strong distinction between sequent and formula,
and inference rules can be applied in any subformula context. The system lsf for classical
linear logic in the focused calculus of structures [7] is perhaps the most closely related system
to llkf in this paper. In lsf (like in nearly every proof system in the calculus of structures),
the contraction rules permute with all rules (including other contractions). Any lsf proof can
therefore be divided into two phases: a bottom part consisting of the contractions, and a top part
that is contraction-free. If the system is designed carefully, as lsf is, then this contraction-free
sub-calculus admits only finitely many (possibly open) derivations of a given formula, and is
therefore decidable.

While it is possible to adopt lsf instead of llkf to represent proofs, this will require a
complicated and not particularly enlightening detour. Instead, we will just transplant the effect
of permuting and separating the contractions to llkf proofs. The mechanism we will use is
labelling the contractions: both the formulas and the inference rules will be modified to admit
labels.

Definition 3. A label (written α, β, . . .) is a non-empty word formed over an infinite set of
atomic labels (written a, b, . . .). Two distinct atomic labels 0 and 1 are always assumed to be
present. We use L to denote the set of all labels, Λ to denote label multi-sets, and αβ to denote
the label formed by concatenating the labels α and β.

The labels will be used to index particular subformulas in a derivation in a labelled version
of llkf, which we call l3kf. Intuitively, a label denotes a path through the subformula relation,
with the formula labelled by αβ being a strict subformula of that labelled by α. Not every
subformula needs to be labelled – those subformulas that do not involve any polarity changes
or boundary conditions can remain unlabelled. Instead, we affix labels only to the shifts, the
exponentials, and the atomic formulas.

Definition 4. Action formulas (written L) and reaction formulas (written R) are given by the
following grammar.

R ::= aa !aN ↓aN L ::= aa ?aP ↑aP

Labelled polarized formulas have the following grammar.

P, Q, . . . ::= R P ⊗ Q 1 P ⊕ Q 0

N, M, . . . ::= L N

&

M ⊥ N & M ⊤

Strictly speaking, for tracking contractions we do not need to label any but the ?-formulas.
We choose to label all (re)action subformulas anticipating their use in the next section. For the
rest of this paper, unless indicated, we will work solely with labelled polarized formulas. The
contexts of l3kf are modifications of those of llkf to support labelled formulas.

Γ ::= · Γ,
〈

α:P
〉

∆ ::= · ∆,
〈

α:P
〉

∆,
〈

α:aa
〉

Ω ::= · Ω,
〈

α:N
〉

In addition to these labelled contexts, the focused formula in positive sequents will also be
labelled, written as

[

α:P
]

. From any l3kf sequent we can index particular subformulas using
the labels.

Definition 5 (indexing). Given an l3kf sequent σ and a label α, we write σ(α) for an arbitrary
(re)action subformula of σ such that:

6

Positive Phase

⊢ Γ;
〈

α:aa
〉

;
[

β:ab
]

[

fi
] ⊢ Γ1; ∆1;

[

α:P
]

⊢ Γ2; ∆2;
[

α:Q
]

⊢ Γ1, Γ2; ∆1, ∆2;
[

α:P ⊗ Q
]

[

⊗
]

⊢ Γ; ·;
[

α:1
]

[

1
]

⊢ Γ; ∆;
[

α:Pi

]

⊢ Γ; ∆;
[

α:P1 ⊕ P2

]

[

⊕
] ⊢ Γ; ·;

〈

αa:N
〉

⊢ Γ; ·;
[

α:!aN
]

[

!
] ⊢ Γ; ∆;

〈

αa:N
〉

⊢ Γ; ∆;
[

α:↓aN
]

[

↓
]

Negative Phase

⊢ Γ; ∆,
〈

α:aa
〉

; Ω

⊢ Γ; ∆; Ω,
〈

α:aa
〉

[

nr
] ⊢ Γ; ∆; Ω,

〈

α:N
〉

,
〈

α:M
〉

⊢ Γ; ∆; Ω,
〈

α:N

&

M
〉

[&] ⊢ Γ; ∆; Ω

⊢ Γ; ∆; Ω,
〈

α:⊥
〉

[

⊥
]

⊢ Γ; ∆; Ω,
〈

α:N
〉

⊢ Γ; ∆; Ω,
〈

α:M
〉

⊢ Γ; ∆; Ω,
〈

α:N & M
〉

[

&
]

⊢ Γ; ∆; Ω,
〈

α:⊤
〉

[

⊤
]

⊢ Γ,
〈

αa:P
〉

; ∆; Ω

⊢ Γ; ∆; Ω,
〈

α:?aP
〉

[

?
] ⊢ Γ; ∆,

〈

αa:P
〉

; Ω

⊢ Γ; ∆; Ω,
〈

α:↑aP
〉

[

↑
]

Decision

⊢ Γ; ∆;
[

α:P
]

⊢ Γ; ∆,
〈

α:P
〉

; ·

[

lf
] ⊢ Γ,

〈

α0:P
〉

; ∆;
[

α1:P
]

⊢ Γ,
〈

α:P
〉

; ∆; ·

[

uf
]

Figure 3: Rules of l3kf. In the
[

⊕
]

rule, i ∈ {1, 2}.

• α is of the form βγ (with γ possibly empty);

• β labels some contextual element of σ, i.e., the contexts of σ contain an element of the form
〈

β:A
〉

; and

• γ indicates that subformula of A reached by the trail of atomic labels in γ.

For example, if the sequent σ contains the labelled element
〈

α:ab ⊕ ↓c(N

&

cd)
〉

in a context,

then σ(αb) = ab, σ(αc) = N

&

cd, and σ(αcd) = cd. Indexing can be non-deterministic if there
are duplicates of labels in an l3kf sequent. We will generally only work with sequents where
there are no duplicates, which we call standard sequents.

Definition 6. We say that an l3kf sequent σ is standard if for every label α, there is at most
one labelled formula A such that σ(α) = A.

We assume that all l3kf sequents in the the rest of the paper are standard. We shall design
the rules of l3kf in such a way that if the end-sequent is standard, then in every (possibly open)
l3kf derivation of that sequent all intermediate sequents are also standard.

The full set of rules of l3kf is shown in Fig. 3. For the rules involving shifts and exponentials,
the atomic label on the principal formula is appended to the relevant label in the sequent. The
other rules preserve the labels from conclusion to premises. The binary rules

[

⊗
]

and
[

&
]

are
the only rules that cause a complete duplication of the labels in the side formulas; however, if
the conclusion is standard, then each premise of these two rules is individually also standard.
For the

[&]
rule, although the label for the principal formula is duplicated, if the conclusion is

standard then each operand of the

&

will have a disjoint set of atomic labels in its respective
subformulas and hence the premise is also standard.

7

The only rule that differs from the pattern is the
[

uf
]

rule that appends a new atomic label
0 or 1 to the end of the contextual label of the principal formula. Repeated applications of
this rule on the same principal formula will keep one version with a sequence of 0s appended in
the unrestricted context, while the remaining copies will be focused on and decomposed. As we
intend to control this rule, we will impose a global restriction on the number of 0s that can be
appended to a given label: we call this a contraction bound.

Definition 7. A contraction bound B is a total function from L to N that maps all but a finite
set of labels to 0s with the additional property that for every α ∈ L, if B(α) = n > 0 then
B(α0) = n − 1.

Definition 8. Given a contraction bound B, the system l3kf(B) is a proof system consisting
of the inference rules of l3kf (Fig. 3) such that all the instances of the

[

uf
]

rule with principal

formula
〈

α:P
〉

have the property that B(α) > 0.

Remark 9. Any l3kf sequent has only finitely many (possibly open) l3kf(B) derivations, as
the contraction bounds get stricter with more 0s.

Obviously, therefore, l3kf(B) for an arbitrary B is not complete with respect to llkf (nor to
llk) because propositional linear logic is undecidable [15]. Yet, for any (possibly open) llkf

derivation we can indeed construct a B such that the corresponding labelled form of the llkf end-
sequent is provable in l3kf(B). To make this formal, we compare the llkf and l3kf systems
modulo labelling.

Definition 10. Given an l3kf sequent σ, we write unl (σ) for that llkf sequent that: replaces
all instances of

〈

α:A
〉

in σ by A, then erases all labels from the (re)action subformulas of σ.

Theorem 11 (soundness and completeness). 1. For any σ derivable in l3kf(B), the sequent
unl (σ) is derivable in llkf.

2. For any standard σ for which unl (σ) is derivable in llkf, there is a contraction bound B
such that σ is derivable in l3kf(B).

Sketch. Each case follows by a simple induction.

1. If unl (−) is applied to every sequent in every inference rule of l3kf(B), then the result is
an inference rule of llkf.

2. Begin with an empty bound and read the llkf derivation from conclusion upwards. When-
ever

[

uf
]

is applied in the llkf derivation, for the corresponding label α in the l3kf deriva-
tion we set B(α) = 1, then increment the bounds for every prefix of α formed by removing
0s from the end. We then perform this instance of

[

uf
]

in the l3kf(B) derivation. For all
the other rules, the contraction bound remains untouched and the l3kf rule is the obvious
one from Fig. 3.

The above completeness theorem is much more general than needed. As we intend the
contraction bounds to be used in proof certificates for llkf derivations, we may give ourselves
the freedom to choose a labelling for the end-sequent. In fact, we may choose a most parsimonious
simple labelling.

8

Definition 12. An l3kf sequent is said to be simply labelled if there is at most a single occur-
rence of every atomic label in the sequent. In other words, no two contextual elements share a
non-empty label prefix, and every (re)action subformula has a unique atomic label.

It is easy to see that a simply labelled sequent is standard. In an implementation, if the
llkf sequents have some canonical universal representation, then this simply labelled form is
predictable and so the labelled form of the llkf end-sequent need not be recorded in the proof
certificate. Nevertheless, to be general, we will mention the simply labelled forms in the certifi-
cates.

Definition 13. A contraction certificate for an llkf sequent σ is a pair (τ, B) where: (1) τ is
a simply labelled l3kf sequent with unl (τ) = σ; and (2) B is a contraction bound.

Contraction certificates obviously exist even for unprovable llkf sequents. Completeness
(Thm. 11.2) guarantees that any provable llkf sequent will have a corresponding contraction
bound B for which the simply labelled form is provable in l3kf(B). To consume—check—a
contraction certificate is equivalent to constructing this l3kf(B) proof knowing just the end-
sequent and the contraction bound. Now, for any contraction bound B, the system l3kf(B)
is manifestly a decision procedure. After all, l3kf has only finitely many open derivations
(Remark 9). Thus, in order to consume a contraction certificate (τ, B), it is sufficient to enumerate
all l3kf(B) derivations of τ , succeeding if any one of them is an l3kf(B) proof. The llkf proof
of unl (τ) can be reconstructed from this l3kf(B) proof by applying the procedure outlined in
the proof of Thm. 11.1.

To represent the contraction certificate, we require no more space than the product of the
number of labels in the end-sequent and the number of uses of the contraction rule. This will
always be smaller than the full proof (which needs to record the contractions anyhow) because
it omits all the logical content of the proof. However, it is an easy exercise to construct a series
of problems where the number of required uses of contraction grows exponentially, so in the
worst case the contraction certificate will not necessarily improve over the full proof by more
than a polynomial factor. In practical uses of proof certificates, however, the contractions will
only be expected to be used for “facts” from the ambient unrestricted context (in other words,
the axioms in the theory and the lemmas), which is not so pathological. Indeed, in the very
expressive multi-set rewriting fragment of linear logic, the only uses of contraction will be for the
(encoding of the) rewrite rules, and there will be exactly as many contractions as steps in the
trace. The contraction bounds in the corresponding contraction certificates will be considerably
smaller than the full proofs; indeed, the space requirement for the bound will be linear in the
length of the trace.

4 Determinizing Hints

We can potentially declare success at this point, but it is worth noting that consuming a contrac-
tion certificate by enumerating all proofs up to a bound may not be very practical. If the llkf

proof is of a purely MALL formula, then there are no occurrences of
[

uf
]

at all, and hence the
contraction bound will be empty. Since the proof certificate records none of the logical rules, the
reconstruction of the l3kf(B) proof is then at least as computationally expensive as searching
for the MALL proof, which is a PSPACE-complete problem [15]. In this section, we will add
more information to the proof certificates to make reconstruction more deterministic in exchange
for an increase in the size of the certificates. This additional detail in the certificate will be a
tunable parameter: with enough detail, the reconstruction should be completely deterministic,
but a certificate without any detail should still remain consumable.

9

To motivate the additions, let us first consider the kinds of information that are recorded in
a fully detailed proof. For linear logic, we have the following general non-deterministic choices
when searching for an llkf (or an l3kf) proof.

• Choices between multiple rules for the same principal formula, caused by the
[

⊕
]

rule, also
known as disjunctive non-determinism.

• Choices involving splitting the linear context in the
[

⊗
]

rule, also known as multiplicative
non-determinism.

• Choices of foci in the
[

lf
]

and
[

uf
]

rules, or the decision non-determinism.

(In the first-order case, constructing the existential witnesses is also non-deterministic, which
is very similar to the disjunctive case.) None of the other choices matter for focused search.
In particular, the order of application of the rules in the negative phase is immaterial. Every
unfinished premise of a negative llkf (or l3kf(B)) sequent will be neutral (i.e., of the form
⊢ Γ; ∆; ·). Regardless of the order of application of the negative rules there will always be the
same multi-set of neutral premises of a negative sequent.

In order to determinize proof reconstruction, the certificate will have to record these non-
deterministic choices. For disjunctive choices, one of the operands of a ⊕ formula disappears
from the sequent. Recall that in a standard l3kf sequent, every (re)action subformula is indexed
by a unique label. Therefore, for the operand of the ⊕ rule that disappears, so will all the indexes
associated to the subformulas of that lost operand. Since the positive phase must (eventually)
finish2 by one of

[

fi
]

,
[

!
]

or
[

↓
]

, it follows that exactly one of the topmost atomic labels in the
focused ⊕ formula will eventually be mentioned in the derivation above, so the choice made in
the ⊕ rule can be deduced from the indexes in the sequents higher in the proof.

For the multiplicative choices, we can use the input-output interpretation of the linear con-
text [10, 11]. Briefly, the entire linear context is sent to the left premise of an instance of

[

⊗
]

;
this premise consumes as much of the context as it needs and sends the rest to the right premise,
which in turn sends its unconsumed portion “down” the proof. The proof of the end-sequent
is accepted if it is able to consume the entire linear context. The input-output interpretation
thus determinizes the multiplicative non-determinism, i.e., backtracking over different ways of
splitting the context is unnecessary. It is nevertheless not complete: it forces a sequence be-
tween different multiplicative—and semantically concurrent—branches of the proof, and so an
adversarial problem can be constructed for which committing to, say, the left premise before the
right will lead to infinitely deep proofs. This incompleteness is not an issue for us, however, as
the contraction bound makes all derivations finite. No matter which multiplicative branch is
scheduled first, the search procedure on that branch must terminate within the bound. Because
this technique is well known and standard, we omit a more detailed and formal description in
this paper.

This leaves only the focusing decisions. An obvious way to record these is to just extract the
tree of decision rules—which we will call the decision tree (to be formalized presently)—from
the l3kf(B) proof. Because every sequent in the derivation is standard, the contextual label
of the principal formula in the decision rule is unambiguous. Hence, the decision tree can be
straightforwardly built using these labels for the internal nodes. Still, this representation is not
wholly satisfactory: the decision tree is, in the worst case, a constant fraction of the size of the
entire l3kf(B) proof.3 To save space, proof certificates must be allowed to omit portions of the
full tree.

2Reading, as usual, in the direction of conclusion to premises.
3In practice, of course, this fraction will tend to be small because focusing already eliminates much of the noise

in llk proofs.

10

Now, the complete decision tree already contains a record of all the decision rules required to
build a proof, and hence an additional bound such as one on contractions is redundant. But, if
we omit portions of the tree, it does become important to record the contraction bounds so that
reconstruction remains decidable. A single contraction bound for the entire proof can certainly be
recorded in the certificate anyway, but we can avoid the redundancy with the (recorded portion of
the) decision tree by a simple trick. For every unrecorded suffix of the decision tree, we compute
locally the contraction bound of the corresponding sub-proof and make it the leaf of the tree. In
other words, the certificate would contain a prefix of the decision tree, with contraction bounds
at the leaves that correspond to omitted sub-proofs.

It should be intuitively obvious that reconstruction using this representation is decidable, as
every sub-proof is built either deterministically from the record of focusing steps in the tree or
by bounded search using the contraction bounds. It is also clear that proof reconstruction will
get increasingly deterministic as more of the decision tree is recorded. The level of detail in the
certificate thus becomes a tunable parameter that can be tailored to particular needs or even
negotiated between the producer and the consumer.

Let us now crystallize these intuitions with formal definitions.

Definition 14. A decision tree D is a tree where each node: (1) contains a pair
〈

α, Λ
〉

where α
is a label and Λ is a set of atomic labels, and has a finite number (possibly zero) of children; or
(2) contains a contraction bound (Defn. 7) and no children. A decision tree is full if it contains
no nodes with contraction bounds.

The pairs
〈

α, Λ
〉

are interpreted as follows: α is the contextual label of the principal formula of a

corresponding decision rule (
[

lf
]

or
[

uf
]

), and Λ represents the labels of all the reaction formulas—

i.e., the labels of the principal formulas of the
[

fi
]

,
[

!
]

and
[

↓
]

rules—at the boundaries of the
positive phase that immediately follows (reading from conclusion upwards) the decision rule.
Any disjunctive choices made in the positive phase is fully determined by this second component,
as it will only contain the labels corresponding to disjuncts that are selected in the

[

⊕
]

rules.
Technically, this set of labels merely needs to be large enough to disambiguate all the disjunctive
choices made in the positive phase.

Definition 15. A certificate for an llkf sequent σ is of the form
〈

τ, D
〉

where τ is a neutral
simply labelled l3kf sequent with unl (τ) = σ and D is a decision tree. A full certificate is a
certificate with a full decision tree.

To consume (i.e., check) a certificate, we execute the following algorithm.

Definition 16 (checking proof certificates). The following algorithm decides if a given proof
certificate

〈

τ, D
〉

is valid or not. We proceed by induction on the structure of D.

1. If the root node of D contains a contraction bound B, then we enumerate all l3kf(B)
derivation of τ , succeeding if any of them is a proof and failing otherwise.

2. If the root node of D contains
〈

α, Λ
〉

and has children D1, . . . , Dn, then we find
〈

α:P
〉

in τ

(failing if it doesn’t exist) and perform the corresponding decision rule (
[

lf
]

or
[

uf
]

). In the
subsequent positive phase, for all disjunctive choices we select that disjunct whose immediate
reactive subformulas have atomic labels found amongst Λ (failing if both disjuncts meet this
criterion or if neither does). If this phase results in n neutral sequents τ1, . . . , τn, we then
check each certificate

〈

τi, Di

〉

for i ∈ 1..n.

In order for this checking procedure to avoid unnecessary work, the sub-trees in case 2 must
line up precisely with the sub-derivations. This requires that the premises of an inference rule be

11

produced in a predictable order, which in turn requires determinizing the order of application of
the rules in the negative phase. This is easily done by treating the active context Ω as a list instead
of as a multi-set, with the principal formula then always at the head of the list. This is precisely
Andreoli’s original proposal for the negative (or asynchronous) phase in focusing [1]. Note that
this is purely a matter of performance. The checking algorithm can backtrack over all the ways
to match up sub-trees to neutral premises (there are only a finite number of permutations). The
available indexes in the neutral premises and in the sub-trees can also give hints as to the right
match-up.

Theorem 17 (soundness of checking). If the certificate
〈

τ, D
〉

is accepted by the algorithm of
Defn. 16, then unl (τ) is a provable llkf sequent.

Proof. Immediate from Thm. 11 (1).

Theorem 18 (completeness of certification). If σ is provable in llkf, then there is a valid proof
certificate

〈

τ, D
〉

for which unl (τ) = σ.

Sketch. By Thm. 11 (2), there is an l3kf derivation of a τ for some τ with unl (τ) = σ. The full
decision tree from this l3kf derivation gives a suitable certificate.

Observe that checking a full certificate involves no non-deterministic choices at all. There is,
in fact, an order of determinacy among proof certificates, stated below as a theorem. Its proof
is omitted here because it requires a fairly unilluminating sequence of technical lemmas.

Proposition 19 (determinacy). Given two certificates ξ1 =
〈

τ, D1

〉

and ξ2 =
〈

τ, D2

〉

, say that
ξ1 is more deterministic than ξ2 if D2 with all contraction bound nodes removed is a prefix of D1

likewise. Then, checking ξ1 involves fewer non-deterministic choices than checking ξ2.

5 Concluding Remarks

We have given a way of systematically building proof certificates with a variable level of detail
from focused sequent proofs. The main technical device is labelling of particular subformulas,
which is both used to extract pre-computed information about contractions and to obtain a
skeletal form of the proof as a decision tree. We have intentionally limited ourselves to bounded
contraction as the mechanism for eliding detail from the proof certificate. There are obviously
other—even simpler—means of eliding detail: for instance, instead of bounding contractions, we
can just bound the overall depth of the sub-proof. These alternative mechanisms are readily
compatible with the proposed design.

For intuitionistic or classical logic, the situation is generally simpler because of the absence
of resource non-determinism. (Their propositional fragments are generally decidable anyway.)
For the first-order case, the proof certificates would additionally have to depend on first-order
unification in the consumer; alternatively, the decision tree nodes would have to record the
existential witnesses.

As rightly pointed out by the anonymous referees, the claim in this paper of building compact
proof certificates will ultimately have to be validated empirically. To this end, we are in the
process of adapting the LI family of automated proof-producing linear logic provers [4] to function
as “proof-elaborators” that will convert a certificate into a full proof, in essence implementing
the algorithm of Defn. 16.

Acknowledgement: we thank Nicolas Guenot and Lutz Straßburger for many useful discus-
sions on the nature of contraction, and the anonymous referees for their insightful comments.

12

References

[1] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and
Computation, 2(3):297–347, 1992.

[2] M. Boespflug. Conception d’un noyau de vérification de preuves pour le λΠ-calcul modulo.
PhD thesis, Ecole Polytechnique, 2011.

[3] T. Brock-Nannestad and C. Schürmann. Focused natural deduction. In C. Fermüller and
A. Voronkov, editors, LPAR 17, volume 6397 of LNCS, pages 157–171, Yogyakarta, Indone-
sia, 2010. Springer.

[4] K. Chaudhuri. The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie Mellon
University, Dec. 2006. Technical report CMU-CS-06-162.

[5] K. Chaudhuri. Focusing strategies in the sequent calculus of synthetic connectives. In
I. Cervesato, H. Veith, and A. Voronkov, editors, LPAR: International Conference on Logic,
Programming, Artificial Intelligence and Reasoning, volume 5330 of LNCS, pages 467–481.
Springer, Nov. 2008.

[6] K. Chaudhuri. Magically constraining the inverse method using dynamic polarity assign-
ment. In C. Fermüller and A. Voronkov, editors, Proc. 17th Int. Conf. on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR), volume 6397 of LNCS, pages 202–216,
Yogyakarta, Indonesia, Oct. 2010. Springer.

[7] K. Chaudhuri, N. Guenot, and L. Straßburger. The Focused Calculus of Structures. In
Computer Science Logic: 20th Annual Conference of the EACSL, Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 159–173. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik, Sept. 2011.

[8] K. Chaudhuri, F. Pfenning, and G. Price. A logical characterization of forward and backward
chaining in the inverse method. J. of Automated Reasoning, 40(2-3):133–177, Mar. 2008.

[9] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J. of Symbolic Logic,
57(3):795–807, Sept. 1992.

[10] J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic.
Information and Computation, 110(2):327–365, 1994.

[11] J. Hodas, K. Watkins, N. Tamura, and K.-S. Kang. Efficient implementation of a linear
logic programming language. In J. Jaffar, editor, Proceedings of the 1998 Joint International
Conference and Symposium on Logic Programming, pages 145–159, 1998.

[12] O. Laurent. Etude de la polarisation en logique. PhD thesis, Université Aix-Marseille II,
Mar. 2002.

[13] O. Laurent. A proof of the focalization property of linear logic. Unpublished note, May
2004.

[14] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical
logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

[15] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for propositional
linear logic. Annals Pure Applied Logic, 56:239–311, 1992.

13

[16] D. Miller. A proposal for broad spectrum proof certificates. In J.-P. Jouannaud and Z. Shao,
editors, CPP: First International Conference on Certified Programs and Proofs, volume 7086
of LNCS, pages 54–69, 2011.

[17] D. Miller and A. Saurin. From proofs to focused proofs: a modular proof of focalization in
linear logic. In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic,
volume 4646 of LNCS, pages 405–419. Springer, 2007.

[18] G. C. Necula. Proof-carrying code. In Conference Record of the 24th Symposium on Prin-
ciples of Programming Languages 97, pages 106–119, Paris, France, 1997. ACM Press.

[19] L. Straßburger. Linear Logic and Noncommutativity in the Calculus of Structures. PhD
thesis, Technische Universität Dresden, 2003.

14

	Introduction
	Background
	Labelling Subformulas and Taming Contraction
	Determinizing Hints
	Concluding Remarks

