Formal Concept Analysis Applied to Transcriptomic Data

Mehwish Alam 1 Adrien Coulet 1 Amedeo Napoli 1 Malika Smaïl-Tabbone 1
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : Identifying functions or pathways shared by genes responsible for cancer is still a challenging task. This paper describes the preparation work for applying Formal Concept Analysis (FCA) to biological data. After gene transcription experiments, we integrate various annotations of selected genes in a database along with relevant domain knowledge. The database subsequently allows to build formal contexts in a flexible way. We present here a preliminary experiment using these data on a core context with the addition of domain knowledge by context apposition. The resulting concept lattices are pruned and we discuss some interesting concepts. Our study shows how data integration and FCA can help the domain expert in the exploration of complex data.
Type de document :
Communication dans un congrès
What can FCA do for Artificial Intelligence (FCA4AI) (ECAI 2012), Aug 2012, Montpellier, France. 2012
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00760993
Contributeur : Mehwish Alam <>
Soumis le : mardi 4 décembre 2012 - 16:47:06
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24
Document(s) archivé(s) le : mardi 5 mars 2013 - 04:15:10

Fichier

FCA4AI.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00760993, version 1

Collections

Citation

Mehwish Alam, Adrien Coulet, Amedeo Napoli, Malika Smaïl-Tabbone. Formal Concept Analysis Applied to Transcriptomic Data. What can FCA do for Artificial Intelligence (FCA4AI) (ECAI 2012), Aug 2012, Montpellier, France. 2012. 〈hal-00760993〉

Partager

Métriques

Consultations de la notice

450

Téléchargements de fichiers

253