D. Attali, A. Lieutier, and D. Salinas, Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes Computational Geometry: Theory and Applications (CGTA), 2012

D. Attali and A. Lieutier, Optimal reconstruction might be hard, Proceedings of the 2010 annual symposium on Computational geometry, pp.334-343, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00468602

U. Bauer, C. Lange, and M. Wardetzky, Optimal Topological Simplification of Discrete Functions on Surfaces, Discrete & Computational Geometry, vol.33, issue.2, pp.347-377, 2012.
DOI : 10.1007/s00454-011-9350-z

P. Bendich, H. Edelsbrunner, D. Morozov, and A. Patel, Homology and robustness of level and interlevel sets, Homology, Homotopy and Applications, vol.15, issue.1, 2011.
DOI : 10.4310/HHA.2013.v15.n1.a3

F. Chazal, D. Cohen-steiner, and A. Lieutier, A sampling theory for compact sets in euclidean space. Discrete & Computational Geometry, pp.461-479, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00864493

F. Chazal, M. Vin-de-silva, S. Glisse, and . Oudot, The structure and stability of persistence modules, 2012.
DOI : 10.1007/978-3-319-42545-0

URL : https://hal.archives-ouvertes.fr/hal-01107617

F. Chazal and A. Lieutier, Smooth manifold reconstruction from noisy and non-uniform approximation with guarantees, Computational Geometry, vol.40, issue.2, pp.156-170, 2008.
DOI : 10.1016/j.comgeo.2007.07.001

URL : https://hal.archives-ouvertes.fr/hal-00864487

D. Cohen-steiner, H. Edelsbrunner, and J. Harer, Stability of Persistence Diagrams, Discrete & Computational Geometry, vol.37, issue.1, pp.103-120, 2007.
DOI : 10.1007/s00454-006-1276-5

D. Cohen-steiner, H. Edelsbrunner, and J. Harer, Extending Persistence Using Poincar?? and Lefschetz Duality, Foundations of Computational Mathematics, vol.33, issue.1, pp.79-103, 2008.
DOI : 10.1007/s10208-008-9027-z

V. De, S. , and G. Carlsson, Topological estimation using witness complexes, Eurographics Symposium on Point-Based Graphics, pp.157-166157, 2004.

H. Edelsbrunner, Alpha shapes ? a survey, Tessellations in the Sciences: Virtues, Techniques and Applications of Geometric Tilings

H. Edelsbrunner and M. Kerber, Alexander duality for functions, Proceedings of the 2012 symposuim on Computational Geometry, SoCG '12, pp.249-258
DOI : 10.1145/2261250.2261287

H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological Persistence and Simplification, Discrete & Computational Geometry, vol.28, issue.4, pp.511-533, 2002.
DOI : 10.1007/s00454-002-2885-2

H. Edelsbrunner, D. Morozov, and A. Patel, Quantifying Transversality by Measuring the??Robustness of Intersections, Foundations of Computational Mathematics, vol.62, issue.3, pp.345-361, 2011.
DOI : 10.1007/s10208-011-9090-8

A. Hatcher, Algebraic Topology, 2002.

W. Kühnel, Triangulations of manifolds with few vertices Advances in differential geometry and topology, World Scientific, pp.59-114, 1990.

D. Morozov, Homological Illusions of Persistence and Stability, 2008.

P. Niyogi, S. Smale, and S. Weinberger, Finding the homology of submanifolds with high confidence from random samples. Discrete & Computational Geometry, pp.419-441, 2008.

H. Edwin and . Spanier, Algebraic Topology, pp.978-978, 1994.