T. J. Alumbaugh and X. Jiao, Compact Array-Based Mesh Data Structures, pp.485-503, 2005.
DOI : 10.1007/3-540-29090-7_29

M. W. Beall and M. S. Shephard, A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE, International Journal for Numerical Methods in Engineering, vol.15, issue.9, pp.1573-1596, 1997.
DOI : 10.1002/(SICI)1097-0207(19970515)40:9<1573::AID-NME128>3.0.CO;2-9

M. Botsch, OpenMesh ? a generic and efficient polygon mesh data structure, OpenSG Symposium, 2002.

S. Campagna, L. Kobbelt, and H. Seidel, Directed Edges???A Scalable Representation for Triangle Meshes, Journal of Graphics Tools, vol.22, issue.6, 1998.
DOI : 10.1145/282918.282923

D. Canino, Mangrove Topological Data Structure

W. Celes, G. H. Paulino, and R. Espinha, A compact adjacency-based topological data structure for finite element mesh representation, International Journal for Numerical Methods in Engineering, vol.41, issue.13, pp.1529-1556, 2005.
DOI : 10.1002/nme.1440

G. Damiand, Combinatorial Maps, CGAL User and Reference Manual. 4.0. CGAL Editorial Board, 2012.
DOI : 10.1201/b17403

URL : https://hal.archives-ouvertes.fr/hal-00457234

G. Damiand, Contributions aux Cartes Combinatoires et Cartes Généralisées: Simplification, Modèles, Invariants Topologiques et Applications " . HabilitationàHabilitation`Habilitationà Diriger des recherches, 2010.

G. Damiand, Linear Cell Complex, CGAL User and Reference Manual. 4.0. CGAL Editorial Board, 2012.

L. De-floriani, L. Kobbelt, and E. Puppo, A Survey on Data Structures for Level-of-Detail Models, Advances in Multiresolution for Geometric Modelling Series in Mathematics and Visualization, p.523, 2007.
DOI : 10.1007/3-540-26808-1_3

D. P. Dobkin and M. J. Laszlo, Primitives for the manipulation of threedimensional subdivisions, Proceedings of the third annual symposium on Computational geometry. SCG '87, pp.86-99, 1987.

H. Edelsbrunner, Algorithms in combinatorial geometry, pp.0-387, 1987.
DOI : 10.1007/978-3-642-61568-9

D. Floriani and A. Hui, A scalable data structure for three-dimensional non-manifold objects, Symposium on Geometry Processing, 2003.

D. Floriani and A. Hui, Data Structures for Simplicial Complexes: An Analysis And A Comparison, Symposium on Geometry Processing, 2005.

D. Floriani and A. Hui, Shape Representations Based on Simplicial and Cell Complexes, Eurographics 2007 -State of the Art Reports Prague: Eurographics Association, 2007.

R. V. Garimella, Mesh data structure selection for mesh generation and FEA applications, International Journal for Numerical Methods in Engineering, vol.79, issue.4, pp.451-478, 2002.
DOI : 10.1002/nme.509

M. Granados, Boolean Operations on 3D Selective Nef Complexes: Data Structure, Algorithms, and Implementation, Lecture Notes in Computer REFERENCES Science, vol.2832, pp.654-666, 2003.
DOI : 10.1007/978-3-540-39658-1_59

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. W. Gross and P. R. Kotiuga, Data Structures for Geometric and Topological Aspects of Finite Element Algorithms, Progress In Electromagnetics Research, vol.32, pp.151-169, 2001.
DOI : 10.2528/PIER00080106

P. Knupp, L. Subcase, and S. A. Mitchell, Integration of Mesh Optimization with 3D All-Hex Mesh Generation, 1999.

M. Lage, CHF: A Scalable Topological Data Structure for Tetrahedral Meshes, XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05), pp.349-356, 2005.
DOI : 10.1109/SIBGRAPI.2005.18

F. Ledoux, J. Weill, and Y. Bertrand, GMDS: A Generic Mesh Data Structure, 17th International Meshing Roundtable. United States, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00488328

P. Lienhardt, Topological models for boundary representation: a comparison with n-dimensional generalized maps, Computer-Aided Design, vol.23, issue.11, pp.59-82, 1991.
DOI : 10.1016/0010-4485(91)90100-B

M. Mäntylä, An Introduction to Solid Modeling, pp.0-88175, 1987.

J. Möbius and L. Kobbelt, OpenFlipper: An Open Source Geometry Processing and Rendering Framework, Lecture Notes in Computer Science, vol.6920, pp.488-500
DOI : 10.1007/978-3-642-27413-8_31

P. Murdoch, The spatial twist continuum: A connectivity based method for representing all-hexahedral finite element meshes, Finite Elements in Analysis and Design, vol.28, issue.2, pp.137-149, 1997.
DOI : 10.1016/S0168-874X(97)81956-7

J. Remacle and M. S. Shephard, An algorithm oriented mesh database, International Journal for Numerical Methods in Engineering, vol.31, issue.2, pp.349-374, 2003.
DOI : 10.1002/nme.774

J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Computing and Visualization in Science, vol.1, issue.1, pp.41-52, 1997.
DOI : 10.1007/s007910050004

E. , S. Seol, and M. S. Shephard, Efficient distributed mesh data structure for parallel automated adaptive analysis, In: Eng. with Comput, vol.223, pp.197-213, 2006.

B. Stroustrup, The C++ programming language (3, pp.1-910, 1997.

T. J. Tautges, MOAB-SD: integrated structured and unstructured mesh representation, Engineering with Computers, vol.49, issue.3, pp.286-293, 2004.
DOI : 10.1007/s00366-004-0296-0

M. Teillaud, Three Dimensional Triangulations in CGAL, 1999.

I. J. Trotts, Simplification of tetrahedral meshes, Proceedings Visualization '98 (Cat. No.98CB36276), pp.287-295, 1998.
DOI : 10.1109/VISUAL.1998.745315

K. J. Weiler, Radial Edge Structure: A Topological Representation for Nonmanifold Geometric Boundary Modeling, Geometric Modeling for CAD Applications, pp.3-36, 1988.