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Abstract:
Parameter estimation from experimental data is a crucial problem in quantitative modeling
of biochemical reaction networks. An especially important issue, raised by the complexity of
the models and the challenging nature of the experimental data, is parameter identifiability.
Despite several approaches proposed in the systems biology literature, no agreement exists on the
analysis of structural and practical identifiability, and the relations among the two. In this paper
we propose a mathematical framework for the analysis of identifiability of metabolic network
models, establish basic results and methods for the structural and practical identifiability
analysis of the class of so-called linlog models, and discuss the results on the basis of an artificial
example.

1. INTRODUCTION

Kinetic models of biochemical reaction systems usually
contain a large number of parameters, many of which are
difficult to measure in a direct way. This makes parame-
ter estimation from experimental data a crucial problem
for quantitative systems biology [Ashyraliyev et al., 2009,
Crampin, 2006]. For all but the simplest systems, param-
eter estimation is a difficult problem. Models contain a
large number of variables, whose dynamics evolve on dif-
ferent time-scales and are described by complex, nonlinear
rate equations. Moreover, the available experimental data
usually consist of noisy and incomplete measurements,
obtained under different conditions and by means of het-
erogeneous experimental methods.

These difficulties have stimulated the use of approximate
kinetic models, with rate equations following, for exam-
ple, linear, piecewise-linear, linlog, or power-law kinet-
ics [de Jong, 2002, Heijnen, 2005]. In general, these models
have less parameters to estimate and, in many cases, pa-
rameter estimation can be reduced to linear or orthogonal
regression [Nikerel et al., 2009]. Therefore, approximate
kinetic models have been chosen and successfully used for
the quantitative modeling of both metabolic networks and
gene regulatory networks [Heijnen, 2005].

We are interested in how approximate kinetic models
help addressing the key problem of the identifiability of
biochemical networks in a principled and scalable way. We
focus on the case where the structure of the model is fixed
by a priori knowledge on the network (i.e. the chemical
species considered and the reactions among them), and
discuss the identifiability of the model parameters. That
is, we are interested in the problem of unambiguously
reconstructing the unknown parameter values from the
observed network behavior.
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A distinction is usually made between structural (or a
priori) and practical (or a posteriori) identifiability [Ljung,
1999, Walter and Pronzato, 1997]. Structural identifia-
bility is an intrinsic property of the model family, guar-
anteeing that unique parameter reconstruction would be
possible from perfect observations of the system response
to an arbitrarily rich set of inputs. Practical identifiability
refers to the ability of estimating unknown parameter
values from the available experimental data within a pre-
specified degree of accuracy. In classical control theory, this
concept is essentially related to the notion of persistence
of excitation (see e.g. Ljung [1999] for the case of linear
dynamical systems). However, in a biological context, this
notion requires at least some nontrivial adaptation, and
no agreement on the concepts of structural and practical
identifiability exists.

The aim of this paper is to discuss identifiability of kinetic
models of metabolism from a rigorous theoretical stand-
point. While most of our definitions are of general applica-
bility, identifiability results will be developed primarily for
approximate kinetic models known as linlog models [Visser
and Heijnen, 2003], whose pseudo-linear form enables us
to apply tools from linear algebra and estimation theory in
a straightforward manner. Similar results can be derived
easily for many other approximate kinetic model classes in
pseudo-linear form, such as the linear, loglin and general-
ized mass-action kinetic models [Delgado and Liao, 1992,
Hatzimanikatis and Bailey, 1997, Savageau, 1976].

The contributions of the paper are as follows. First of all,
we provide precise definitions and links between structural
and practical identifiability of kinetic network models.
Then, based on this solid mathematical foundation, our
analysis provides tools that are applicable to the currently
available data sets, e.g., those obtained by means of recent
high-throughput methods in biology [Ishii et al., 2007].



This sets the stage for rigorous kinetic model reduction,
which will be addressed separately in another paper.

The paper is organized as follows. In Section 2 we discuss
kinetic models as well as linlog and related approxima-
tions. In Section 3 we discuss the notions of structural
and practical identifiability, and provide readily applicable
methods for the identifiability analysis of linlog models.
Results are illustrated throughout by means of a small
example. Conclusions and perspectives of the work are
reported in Section 4. Proofs of theoretical results are
rather straightforward and are omitted in the interest of
space.

2. PARAMETER ESTIMATION IN LINLOG AND
RELATED MODELING FRAMEWORKS

The dynamics of biochemical reaction networks are de-
scribed by kinetic models having the form of systems
of ordinary differential equations (ODEs) [Heinrich and
Schuster, 1996]. In this paper we focus on kinetic models
of metabolism, where the rate functions describe enzyme-
catalyzed reactions. This leads to models of the general
form:

ẋ = N · v(x, u, e), (1)
with x(0) = x0 ∈ R

nx

≥0, where x ∈ X ⊆ R
nx

≥0 denotes the

vector of (nonnegative) internal metabolite concentrations,
u ∈ U ⊆ R

nu

≥0 the vector of external metabolite concentra-
tions, e ∈ E ⊆ R

m
>0 the vector of enzyme concentrations,

and v : R
nx+nu+m
≥0 → V , with V ⊆ R

m, the vector of

reaction rate functions. N ∈ Z
nx×m is a stoichiometry

matrix.

Kinetic modeling formalisms differ in the choice of rate
functions. Examples of classical functions in enzyme ki-
netics are the Michaelis-Menten, reversible Michaelis-
Menten, and Monod-Wyman-Changeux rate laws [Hein-
rich and Schuster, 1996]. Approximate formalisms simplify
the mathematical form of the rate laws, in particular
the nonlinear dependency of the reaction rates on the
metabolite concentrations. Moreover, they usually assume
all reactions to follow the same simplified kinetic format,
thus giving a uniform structure to the models. For one
type of approximate kinetic formalism, so-called linear-
logarithmic (linlog) models, below we show that the pa-
rameter estimation problem can be formulated as multiple
linear regression. A brief discussion of how this can be
equally done for a number of other well-known approxi-
mate formalisms is reported at the end of the section.

The linear-logarithmic (linlog) approximation [Heijnen,
2005, Visser and Heijnen, 2003] expresses the reaction
rates as proportional to the enzyme concentrations and to
a linear function of the logarithms of internal and external
metabolite concentrations,

v(x, u, e) = diag(e) ·
(
a+Bx · ln(x) +Bu · ln(u)

)
, (2)

where diag(e) is the square diagonal matrix with the ele-
ments of e on the diagonal, and the logarithm of a vector
means the vector of logarithms of its elements. Concavity
of the function with respect to metabolite concentrations,
and the fact that Bx and Bu are in direct relationship with
the so-called system elasticities [Heijnen, 2005, Heinrich
and Schuster, 1996] make linlog modelling a very conve-
nient (local) approximation of metabolic kinetics. For con-

ciseness, in the sequel we shall often drop the dependence
of v on (x, u, e) from the notation.

The identification of metabolic networks in the linlog
formalism amounts to estimating the (generally unknown)
parameters a ∈ R

m, Bx ∈ R
m×nx and Bu ∈ R

m×nu from
experimental data. In most experiments, concentrations
of enzymes and external metabolites are under (partial)
control of the experimentalist, and the concentrations of
internal metabolites and metabolic fluxes are measured
after the system has relaxed to the steady state

N · v(x, u, e) = 0. (3)

In accordance with this, we shall assume that, from each
of q ∈ N experiments, the data are (noisy) measurements
(ṽk, x̃k, ũk, ẽk) of (vk, xk, uk, ek), where the latter satisfy
vk = v(xk, uk, ek) and (3), with k = 1, . . . , q. Clearly
the restriction to steady-state measurements limits the
informativity of the data and may affect the identifiability
of the models, as will be apparent in later sections.

For the purpose of parameter estimation, it is convenient
to rewrite (2) in the form of a regression model:

(v/e)T =
[
1 ln(x)T ln(u)T

]
· [a Bx Bu]

T
(4)

where the ratio of two vectors (here v/e) denotes element-
wise division. Let us use an upperbar to denote the mean of
a quantity over its q experimental outcomes, for instance:
v/e = (1/q)

∑q

k=1 v
k/ek. By the linearity of (4), it holds

that

(v/e)
T
=

[

1 ln(x)
T

ln(u)
T
]

· [a Bx Bu]
T
. (5)

This allows one to rewrite (4) as a mean-removed model
(
v

e
−

(v

e

))T

=

[
ln(x)− ln(x)

ln(u)− ln(u)

]T

·

[
(Bx)T

(Bu)T

]

. (6)

We can now define the following estimation problem.

Problem 1. Given the data matrices







(
ṽ1

ẽ1
−

(
ṽ
ẽ

))T

...
(

ṽq

ẽq
−
(
ṽ
ẽ

))T








︸ ︷︷ ︸

, W̃

,







(
ln(x̃1)− ln(x̃)

)T (
ln(ũ1)− ln(ũ)

)T

...
...

(
ln(x̃q)− ln(x̃)

)T (
ln(ũq)− ln(ũ)

)T







︸ ︷︷ ︸

, Ỹ

find parameters B , [Bx Bu]
T
minimizing |||W̃ − Ỹ ·B|||,

for some convenient (matrix) norm ||| · |||. We fix this to
be the Frobenious norm.

Notice that the parameter vector a no longer appears in
the regression problem, but that an estimate of it can be

recovered from estimates of B = [Bx Bu]
T
via Eq. (5).

In practice, the experimental measurement error on
the normalized fluxes v/e is often significantly larger
than that on metabolite concentrations. In light of
this [Berthoumieux et al., 2011] we consider the linear

model W̃ = W + ε = Y · B + ε, where W and Y are
the noiseless versions of W̃ and Ỹ , respectively. ε ∈ R

q×m

is assumed to be a zero-mean Gaussian matrix with inde-
pendent columns, each with q-dimensional positive definite
covariance matrix Var(ε·i) = Σε·i , i = 1, . . . ,m. Thus, the
problem is equivalent to the m least-squares problems of
minimizing ||W·i−Y ·B·i||Σε

·i
over B·i, with i = 1, . . . ,m,



where || · ||Σε
·i
is the Σε·i -weighted L2-norm (i.e., for w ∈

R
q, ||w||Σε

·i
=

√

wTΣ−1
ε·i w), and W·i and B·i are the ith

columns of W and B, respectively. That is, the parameter
estimation problem splits up into m smaller estimation
problems, one for each reaction i, with i = 1, . . . ,m.

In turn, each reaction i depends only on a (known)
subset of metabolites. In this case, the elements of B·i

corresponding to the metabolites not involved in the
reaction can be set to zero, and the least-squares problem
can be reduced accordingly. If C(i) ⊆ {1, . . . , nx + nu}
denotes the indices of the relevant values in B.i, then the
regression problem becomes

min
BC(i)i

||W·i − Y·C(i) ·BC(i)i||Σε
·i
, (7)

where the meaning of BC(i)i follows from the above and
Y·C(i) is the submatrix of Y formed by the columns indexed
by C(i).

Similar parameter estimation problems can be formu-
lated for other approximate modeling formalisms, such
as models linear in metabolite concentrations [Delgado
and Liao, 1992], log-lin models [Hatzimanikatis and Bai-
ley, 1997], and generalized mass-action models [Savageau,
1976]. Thus, the results that will be discussed below for
linlog models can be adapted straightforwardly to the ap-
proximate kinetic modeling formalisms mentioned above.
On the contrary, most results are not applicable to for-
malisms where parameter estimation cannot be reduced
to linear regression, such as classical Michaelis-Menten ki-
netics and convenience kinetics [Liebermeister and Klipp,
2006].

3. IDENTIFIABILITY OF LINLOG MODELS

The problem of identifiability refers to the ability to un-
ambiguously extract parameter values of a model structure
from experimental data. Here we focus on linlog models.
We shall first discuss the problem from the perspective
of structural identifiability. For practical purposes, this is
equivalent to answering the question whether each param-
eter can be uniquely reconstructed from arbitrarily rich
and errorless data sets. Structural identifiability forms the
basis for studying practical identifiability, i.e. the ability
to estimate parameter values from real data sets, which
will be discussed further below.

The system, described by Equations (1)–(3), is parametrized
by the parameter vector p = [a Bx Bu] ∈ P ⊆
R

m×(nx+nu+1). For simplicity, let us make the standing
assumption thatN diag(e)Bx is invertible for all p ∈ P and
e ∈ E (generalizations are possible). For varying values
of p, this defines a class of models Mp mapping inputs
(e, u) ∈ E×U to outputs (Jp(e, u), xp(e, u)) ∈ V ×X, the
latter being the steady-state values of v, x (in accordance
with metabolic control analysis standards [Heinrich and
Schuster, 1996], symbol J is used in place of v for steady
state fluxes). More precisely, we have

Mp : E × U → V ×X : (e, u) 7→
(
Jp(e, u), xp(e, u)

)
(8)

where, plugging (2) into (3) to express lnxp(e, u), and
writing e in place of diag(e) for shortness,

{
Jp(e, u) = e · (a+Bx · lnxp(e, u) +Bu · lnu),
lnxp(e, u) = −(NeBx)−1 ·Ne · (a+Bu · lnu).

(9)

Since we are observing the system in steady state, inputs
and outputs are not time-varying signals but just fixed
vectors.

In agreement with Section 2, where the identification
problem is split into the identification of each reaction
separately, we look at the identifiability of the parameters
of the generic ith reaction, and say that a model is
identifiable if all its reactions are.

3.1 Identifiability from a structural perspective

We adapt the definition from Ljung [1999] to our context
as follows.

Definition 1. A reaction i of model Mp is identifiable at
p∗ if there exists I ⊆ E × U such that, for all p ∈ P ,

(
(Jp)i, xp

)
|I =

(
(Jp∗)i, xp∗

)
|I ⇒ pi = p∗i . (10)

Here Jp and xp are seen as vector functions of e and u,
subscript “i” indicates the ith element (row) of the vector,
and “|I” indicates the restriction of the functions on I.
Turned another way, a reaction i is considered identifiable
for a particular model parametrization p∗ if no p ∈ P
with pi 6= p∗i exists such that the velocity of the reaction
predicted by Mp and Mp∗ from identical steady state
concentrations is identical for all possible system inputs.
Note that this definition is applicable to any form of
the reaction rates (2) (provided suitable definition of the
parameters p).

How can we apply Definition 1 to the analysis of identifi-
ability of linlog models? The following proposition estab-
lishes the link between this definition and the uniqueness
of the solution to Problem 1 (in the form (7)). Given
the input set I = {(e1, u1) , · · · , (eq, uq)} and a “true”
parameter vector p∗, let Jk

∗ and xk
∗ denote the outputs

Jp∗(ek, uk) and xp∗(ek, uk), respectively, with k = 1, . . . , q.

Proposition 1. A reaction i of Mp is identifiable at p∗ if
and only if there exists I ⊆ E × U such that the solution
of the equation W ∗

·i = Y ∗B·i, with

W ∗
·i =

[(
J1
∗

e1
−
(
J∗

e

))

i
· · ·

(
Jq
∗

eq
−
(
J∗

e

))

i

]T

,

Y ∗ =

[
lnx1

∗ − lnx∗ · · · lnxq
∗ − lnx∗

lnu1 − lnu · · · lnuq − lnu

]T

,

is unique in the parameters B.i = ([Bx Bu]i.)
T . In turn,

this happens if and only if Y ∗
·C(i) (the submatrix of Y ∗

formed by the columns indexed by C(i)) is full column-
rank.

Clearly this condition is equivalent to the uniqueness of the
solution of (7), the difference being that the identifiable
parameter vector pi also contains the element ai.

A standard approach for studying the rank of Y ∗
·C(i) is the

Singular Value Decomposition (SVD)

Y ∗
·C(i) = U · diag(s1, s2, ..., snb

) · V T (11)

with nb = |C(i)|, U ∈ R
q×nb and V ∈ R

nb×nb orthonormal
matrices and s1 ≥ · · · ≥ snb

≥ 0 the singular values
of Y ∗

·C(i). In the presence of dependencies between the

columns, there exists an index r with 1 ≤ r < nb such



that sr+1 = · · · = snb
= 0, and Y ∗

·C(i) is of rank r. In order

to illustrate the identifiability properties of a metabolic
reaction, consider the following example.

Example 1. Consider the negative feedback network struc-
ture shown in Figure 1(a). The network includes n = 2
internal metabolites, no external metabolites, and m = 3
reactions (enzymes). The network structure and linlog
model parameters are

N =

[
1 −1 0
0 1 −1

]

, a =

[
a1

0.0297
0.0296

]

, Bx =

[
−0.0938 B21

0.0286 −0.0073
0 0.0287

]

,

(with Bx = BT ) where different values of a1 ∈ R≥0 and
B21 ∈ R≥0 (the coefficient that determines the strength
of the feedback regulation) will be considered. For all
values of the enzyme concentrations ei > 0, with i =
1, 2, 3, and all a1, B21 ∈ R≥0, the equation Nv(x, e) =
N diag(e)(a + Bx lnx) = 0 yields a unique steady-state
solution lnx = −(N diag(e)Bx)−1N diag(e)a. One first
observation is that different values of a1 and B21 may
lead to very different properties of the matrix Y ∗ even
when this remains full rank, i.e. the system is structurally
identifiable. For a1 = 0.0297 and two different values of
B21, scatter plots of the steady state solutions lnx from
1000 randomly generated samples of e are reported in
Figures 1(b) (B21 = −0.0073, weeker feedback action)
and 1(c) (B21 = −7.2961, stronger feedback action). In
Figure 1(b), steady-state metabolite concentrations are
spread over a two-dimensional region, while in Figure 1(c)
they are essentially aligned along a one-dimensional line.
SVD analysis reveals that, in the latter case, s2 ≪ s1,
which hints at an ill-conditioned estimation problem. This
point will be further developed in the next example.
Second, some pathological parameterizations may give rise
to a nonidentifiable model. Indeed, if a is in the span of
Bx, then the unique solution of N diag(e)(a+Bx lnx) = 0
corresponds to the value of lnx satisfying Bx lnx = −a,
i.e. it is independent of e. Thus, no matter the number of
experiments q, the rank of Y ∗ is at most 1 (for a = 0, the
solution is lnx = 0, i.e. Y is the zero matrix which has
rank 0). Thus, in the light of Proposition 1, the model
is not identifiable. In our example, this is the case for
a1 = −7.5491 and B21 = −7.2961.

From the example above, it is clear that, for some specific
values of the parameters, a model may be non-identifiable
even if it is identifiable for non-pathological parametriza-
tions. In the light of this, a convenient generalization of
Definition 1 to the identifiability of a network structure
can be obtained following Walter and Pronzato [1997], who
state that a model in Mp is identifiable if it is identifiable
at almost every p∗ ∈ P (in the sense of the Lebesgue
measure on P ). Whence, the negative feedback network
structure of Example 1 is identifiable in the sense of Walter
and Pronzato. The identifiability criterion of Definition 1
does not hold for the “rare” parameter combinations p∗

such that a ∈ span(Bx). A second observation, following
from the example above, is that our theoretical definition
of identifiability is actually too restricted to be practi-
cally useful. If we look at Figure 1(c), we see that strong
collinearities exist between the metabolite concentrations
x1 and x2. This makes the informativity of the experiments
limited. Again, we will analyze later the implications of
this on the achievable parameter estimation performance.
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Fig. 1. An example of a small metabolic network with
negative feedback. (a) Structure of the network. (b)-
(c) Steady-state metabolite concentrations from 1000
randomly generated enzyme concentrations, for (b)
a1 = 0.0297, B21 = −0.0073 and (c) a1 = 0.0297,
B21 = −7.2961 (see Example 1). Main figures are
crops of the scatter plots of the data (blue markers)
with equally scaled axes, emphasizing the shape of
the data clouds. All generated data points are shown
in the inset scatter plots (red markers), in arbitrary
axes.

Moreover, the definition assumes that the measurements
are not corrupted by noise, which is even less realistic.
We therefore need to weaken the definition of identifia-
bility in order to make it more suitable for applications
to actual data on metabolism. While taking into account
realistic assumptions on the experimental datasets, i.e.,
measurements available in a limited amount and affected
by experimental error, this notion of identifiability should
draw upon the theoretical notion of model identifiability
discussed above.

3.2 Identifiability from a practical perspective

Let I be a fixed set of q inputs (external metabolites
and enzyme concentrations), and let O be the set of the
correponding system outputs (fluxes and steady-state con-
centrations of internal metabolites determined by Mp∗).
Consider the problem of estimating the parameters B·i of
reaction i given observations of I and O affected by mea-
surement error. An estimator B̂·i of B·i is a function of the
observations of I and O, well-defined for every possible (a
priori unknown) value of p∗ ∈ R

nb (compare [Ljung, 1999,
§7.4]). Since, due to noise, the observations are stochastic

variables, B̂·i is itself a stochastic variable. Therefore, one
cannot hope to estimate B·i exactly, but only within a
certain degree of approximation, except possibly for a
few “adverse” outcomes of the measurement error. In this
spirit, we define identifiability in terms of the existence
of an estimator satisfying prespecified statistical require-
ments. In doing this, we restrict attention to the nonzero
entries of B·i, i.e., BC(i)i. Let Bi ⊂ R

nb be a bounded
neighbourhood of the origin, and let α ∈ (0, 1).

Definition 2. For a given I ⊆ E×U , a reaction i of Mp is
identifiable at p∗ with uncertainty Bi and confidence level
1− α if there exists an estimator B̂C(i)i such that

Pp∗ [B̂C(i)i −BC(i)i ∈ Bi] ≥ 1− α, (12)

where Pp∗ is the probability measure induced by Mp∗ . 1

1 Strictly speaking, a better version of Definition 2 would require
that condition (12) holds for all p∗ within a sufficiently large subset
of P . This would automatically rule out trivial definitions of B̂C(i)i



In this view, the experimentalist, or the modeler, sets the
requirements (estimation accuracy and confidence level)
that the estimates must fulfill in order to be useful, via the
a priori specification of Bi and α. Then, the possibility
of fulfilling (12), i.e. the practical identifiability of the
model, depends on the system itself and on the richness
of the input set I. In general, the larger the I, the tighter
the requirements that one can fulfill (i.e. the smaller the
values of Bi and α for which practical identifiability in the
sense of Definition 2 holds). Note that this is conceptually
different from what suggested by Raue et al. [2009], where
the definition of practical identifiability only requires that
the uncertainty on the parameter estimates (as defined
via the profile likelihood) is bounded (though arbitrarily
large) for a specific (not necessarily optimal) choice of the
estimator. In an alternative view, one may start from a
given input set I, and look for the choices of α and Bi

that ensure satisfaction of (12). Here in turn, one may fix
α and look for the Bi that makes (12) achievable, or fix
the acceptable estimation uncertainty Bi and establish at
what confidence level α this performance can be attained.

In all cases, the natural questions that arise are how
Definition 2 can be verified in practice, how this notion
of identifiability depends on the structural system identifi-
ability discussed in the previous section, and what Bi may
look like. To answer these questions one needs to further
specify the properties of the data, i.e., the (stochastic)
“measurement model”. Recall from Section 2 the following
assumptions. The metabolite concentrations forming Y
are measured without error. For i = 1, . . . , q, the noisy
versions W̃.i of the W·i obey the model

W̃·i = W·i + ε·i = Y·C(i)BC(i)i + ε·i, (13)

with ε·i ∼ N (0,Σεi) and Σεi > 0. The following proposi-
tion answers the questions above.

Proposition 2. If a reaction i of Mp is identifiable at p∗

in the sense of Definition 1 then, for every α ∈ (0, 1), it
is identifiable in the sense of Definition 2 with confidence
level at least 1 − α for any uncertainty set Bi containing
the (1 − α)-confidence ellipsoid of a zero-mean Gaussian
distribution with variance (Y T

·C(i)Σ
−1
εi

Y·C(i))
−1.

The proof relies on the use of minimum variance estima-
tors, as dictated by standard results in linear estimation
theory [Ljung, 1999, Appendix II]. From now on, estima-
tion will be performed based on this type of estimator.
Observe that Bi implicitly depends on the choice of inputs
I via the structure of W·i and Y·C(i). Typically, the larger
q, the smaller Bi for a fixed α. We argue that similar
identifiability results can be derived even in cases where
the noise is not Gaussian and metabolite measurements
are affected by stochastic error, at the price of a much
more complicated characterization of Bi. Finally, one may
speak about identifiability of the whole model, e.g. by re-
quiring that each reaction is individually identifiable with
a given confidence level α and uncertainty set Bi ∈ R

m×nb .
Alternatively, one may require that all reactions be simul-

such as B̂C(i)i , BC(i)i (which makes the reaction identifiable for
any α and Bi but cannot be built without the knowledge of BC(i)i

itself). Unfortunately, this is not a good choice in general, in that the
uncertainty set Bi may severely depend on p∗, as we shall see later on
in Example 2. Hence we stick to Definition 2 with the understanding
that any such triviality is avoided.

taneously identifiable with confidence level 1 − α and a
suitably defined joint uncertainty set.

There is a clear link between Definition 2 and singular
values of the regression matrix Y·C(i), i.e., the rank analysis
of the previous section. Assume for simplicity that all error
terms have the same variance Σεi = σ2I, with σ > 0. From
Proposition 2, if BC(i)i is identifiable with uncertainty Bi

and confidence 1 − α, then there exists an estimator (the
minimum variance estimator) such that, with probability
1−α, the estimates of BC(i)i will lie in an ellipsoid centered
at BC(i)i with axes length proportional to the square

roots of the singular values of σ2(Y T
·C(i)Y·C(i))

−1, i.e., to

σ[s−1
1 , . . . , s−1

nb
] (as before, sl denotes the lth singular

value of Y·C(i), l ∈ {1, . . . , nb}). If these eigenvalues are
vastly different, the ellipsoid is skewed in the direction
of the singular vectors of Y T

·C(i)Y·C(i) associated to the

smallest singular values of Y·C(i). In this sense, if a data
matrix Y·C(i) is ill-conditioned (s1 ≫ snb

), i.e., some data
vectors are nearly collinear, parameter BC(i)i appears as
nonidentifiable even if rank(Y·C(i)) = nb (that is, even if
snb

> 0). In other words, this makes it possible to detect
that, for some r < nb, discrepancies between values of
sr+1, · · · , snb

and s1 can make the estimates of BC(i)i

solving regression poorly determined.

Example 2. To illustrate the implications for parameter
identifiability of a poorly conditioned data matrix, con-
sider the parameter estimation results from noisy and fi-
nite datasets for the two different identifiable parametriza-
tions of the model of Example 1. As in Example 1, data-
points were simulated from random values of enzyme con-
centrations. Noise was added to W by drawing values
from normal distributions with standard deviations pro-
portional to the corresponding elements of W . Two differ-
ent dataset sizes (q = 20 and q = 100) and two different
noise levels (20% and 50%, meaning that 99% of the noise
samples fall within 20% and 50% of the corresponding
values in W ) were tested, for a total of 4 experimental
scenarios for each model parameterization. For each sce-
nario, 100 datasets were simulated and the corresponding
estimates drawn for reaction 1 are reported in the scatter
plots of Figure 2(a) (a1 = 0.0297 and B21 = −0.0073)
and 2(b) (a1 = 0.0297 and B21 = −7.2961).

An immediate observation is that the shape of the 95%-
confidence ellipse of the parameter estimates is different
for the two different model parameterizations. While es-
timation accuracy for B11 and B21 is comparable in the
case of smaller feedback (B21 = −0.0073), the shape of
the uncertainty ellipse becomes very skewed in the case
of stronger feedback (B21 = −7.2961). In particular, in
this case, estimation accuracy is much higher for B11 than
for B21 regardless of the features of the dataset (note
the change in the scale of the vertical axes of the plots
from Figure 2(a) to Figure 2(b)). As apparent from the
plots, larger and/or less noisy datasets improve estimation
performance. However, ameliorating the estimation of B21

requires extremely large/high-quality datasets. In other
words, estimating the model (i.e. all its parameters) ac-
curately requires a significant increase in the experimental
effort, even if most parameters are easy to estimate (see
also Gutenkunst et al. [2007]). Following upon Example 1,
it is also apparent that the skewed estimation uncertainty
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Fig. 2. Estimates of the parameters (Bx)1· = [B11 B21 ],
mediating the effects of x1 and x2 in reaction 1,
from simulated steady-state data, for a linlog model
of the network of Figure 1(a) with two different
parametrizations: (a) a1 = 0.0297, B21 = −0.0073;
(b) a1 = 0.0297, B21 = −7.2961. In each panel,
scatter plots are reported for four different experimen-
tal scenarios specified by the couple (% noise level,
number of datapoints q): (20%, 20) (blue), (20%, 100)
(green), (50%, 20) (red), (50%, 100) (magenta). 95%-
confidence ellipses are drawn for each scenario (solid
lines). Reference parameter values are indicated by
horizontal and vertical dotted lines, and are given in
Example 1 (see Example 2 for other details).

is related to the poor conditioning of the data matrix Y
in the case of stronger feedback (the shape of the ellipsoid
is determined by the ratio of the singular values of Y ). In
terms of practical identifiability, assuming a modeler has
set a maximum allowable uncertainty B1 for some confi-
dence level α, it is clear that in this case the system will not
be practically identifiable (even if the model is structurally
identifiable at the given p∗), unless B1 is large enough, i.e.
rather sloppy estimates are deemed acceptable.

4. CONCLUSIONS

In this paper we have discussed the notion of structural
and practical identifiability for quantitative dynamical
metabolic network models. Assuming a fixed model struc-
ture, we have introduced definitions of general applica-
bility for the identifiability of the model parameters a
priori and a posteriori from a given dataset. In the relevant
case of approximate linlog modeling, using standard tools
from linear algebra and estimation theory, we have linked
the two concepts, provided conditions for structural and
practical identifiability, and methods for testing these con-
ditions in practice. Concepts and results were illustrated
by a simple example. Current research directions include
model reduction, as well as methods for handling missing
data entries and noise on metabolite concentrations.

REFERENCES

M. Ashyraliyev, Y. Fomekong Nanfack, J.A. Kaandorp,
and J.G. Blom. Systems biology: Parameter estimation
for biochemical models. FEBS J., 276(4):886–902, 2009.

S. Berthoumieux, M. Brilli, H. de Jong, D. Kahn, and
E. Cinquemani. Identification of linlog models of
metabolic networks from incomplete high-throughput
datasets. Bioinformatics, 27(13):i186–i195, 2011.

E.J. Crampin. System identification challenges from sys-
tems biology. In Proc. 14th IFAC Symp. Syst. Identif.
(SYSID 2006), pages 81–93, Newcastle, Australia, 2006.

H. de Jong. Modeling and simulation of genetic regulatory
systems: A literature review. J. Comput. Biol., 9(1):67–
103, 2002.

X. Delgado and J.C. Liao. Metabolic control analysis using
transient metabolite concentrations. Biochem. J., 285:
965–72, 1992.

R.N. Gutenkunst, J.J. Waterfall, F.P. Casey, K.S. Brown,
C.R. Myers, and J.P. Sethna. Universally sloppy pa-
rameter sensitivities in systems biology models. PLOS
Computational Biology, 3(10):e189, 2007.

V. Hatzimanikatis and J.E. Bailey. Effects of spatiotempo-
ral variations on metabolic control: Approximate analy-
sis using (log)linear kinetic models. Biotechnol. Bioeng.,
54(2):91–104, 1997.

J.J. Heijnen. Approximative kinetic formats used in
metabolic network modeling. Biotechnol. Bioeng., 91
(5):534–45, 2005.

R. Heinrich and S. Schuster. The Regulation of Cellular
Systems. Chapman & Hall, 1996.

N. Ishii, K. Nakahigashi, T. Baba, M. Robert, T. Soga,
A. Kanai, T. Hirasawa, M. Naba, K. Hirai, A. Hoque,
P.Y. Ho, Y. Kakazu, K. Sugawara, S. Igarashi,
S. Harada, T. Masuda, N. Sugiyama, T. Togashi,
M. Hasegawa, Y. Takai, K. Yugi, K. Arakawa, N. Iwata,
Y. Toya, Y. Nakayama, T. Nishioka, K. Shimizu,
H. Mori, and M. Tomita. Multiple high-throughput
analyses monitor the response of E. coli to perturba-
tions. Science, 316(5824):593–7, 2007.

W. Liebermeister and E. Klipp. Bringing metabolic net-
works to life: Convenience rate law and thermodynamic
constraints. Theor. Biol. Med. Model., 3:41, 2006.

L. Ljung. System identification, theory for the user.
Prentice Hall PTR, 1999.

I.E. Nikerel, W.A. van Winden, P.J.T. Verheijen, and J.J.
Heijnen. Model reduction and a priori kinetic parameter
identifiability analysis using metabolome time series for
metabolic reaction networks with linlog kinetics. Metab.
Eng., 11(1):20–30, 2009.

A. Raue, C. Kreutz, T. Maiwald, J. Bachmann,
M. Schilling, U. Klingmüller, and J. Timmer. Struc-
tural and practical identifiability analysis of partially
observed dynamical models by exploiting the profile
likelihood. Bioinformatics, 25(15):1923–29, 2009.

M.A. Savageau. Biochemical Systems Analysis: A Study
of Function and Design in Molecular Biology. Addison-
Wesley, 1976.

D. Visser and J.J. Heijnen. Dynamic simulation and
metabolic re-design of a branched pathway using linlog
kinetics. Metab. Eng., 5(3):164–76, 2003.

E. Walter and L. Pronzato. Identification of parametric
models. Springer, 1997.


