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Abstract—This paper studies an interactive learning system
that couples internally guided learning and social interaction
for robot learning of motor skills. We present Socially Guided
Intrinsic Motivation with Interactive learning at the Meta level
(SGIM-IM), an algorithm for learning forward and inverse
models in high-dimensional, continuous and non-preset envi-
ronments. The robot actively self-determines: at a meta level
a strategy, whether to choose active autonomous learning or
social learning strategies; and at the task level a goal task in
autonomous exploration. We illustrate through 2 experimental
set-ups that SGIM-IM efficiently combines the advantages of
social learning and intrinsic motivation to be able to produce a
wide range of effects in the environment, and develop precise
control policies in large spaces, while minimising its reliance on
the teacher, and offering a flexible interaction framework with
humans.

I. INTRODUCTION

A. Combining intrinsic motivation and social learning
Humanoid robots, similarly to animal or human infants,

need learning mechanisms which enable them to control their
numerous degrees of freedom in new activities and situations
[1], [2] in order to adapt to their changing environment and
their interaction with humans. Thus, constraints of time and
resources makes the choice of tasks to learn and methods to
adopt crucial. Exploration strategies developed in the recent
years can be classified into two broad interacting families:
1) socially guided exploration [3]–[5]; 2) internally guided
exploration and in particular intrinsic motivation [1], [6] for
meta-exploration mechanisms monitoring the evolution of
learning performances [7]–[9].

Intrinsic motivation and socially guided learning are often
studied separately in developmental robotics. Indeed, many
forms of socially guided learning can be seen as extrinsically
driven learning. Yet, in the daily life of humans, the two
strongly interact, and their combination could on the contrary
push their respective limits (cf. table I).

Intrinsically Motivated Ex-
ploration

Socially Guided Exploration

Pros Independent from human,
broad task repertoire

transfer knowledge from hu-
man to robot

Cons High-dimensionality,
unboundedness

Teacher’s patience & ambigu-
ous input, correspondence
problem

TABLE I: Advantages and disadvantages of the two exploration
strategies.

Social guidance can drive a learner into new intrinsically
motivating spaces or activities which it may continue to

explore alone and for their own sake, but might have dis-
covered only due to social guidance. Robots may acquire
new strategies for achieving intrinsically motivated activities
while observing examples. One might either search in the
neighbourhood of the good example, or eliminate from the
search space the bad example.

Conversely, as learning that depends highly on the teacher
is limited by ambiguous human input or the correspondence
problem [10], and turn out to be too time-consuming. For
example, while self-exploration fosters a broader task reper-
toire of skills, exploration guided by a human teacher tends
to be more specialised, resulting in fewer tasks that are learnt
faster. Combining both can thus bring out a system that
acquires a wide range of knowledge which is necessary to
scaffold future learning with a human teacher on specifically
needed tasks, as proposed in [11]–[13].

Social learning has been combined with reinforcement
learning [12], [13] to complete one task. However, we would
like a system that learns not only for a single goal, but for
a continuous field of goals, or every goals in the task space.

Such a multi-goal system has been presented in [11], [14],
where unfortunately the representation of the environment
and actions is symbolic and discrete in a limited and preset
world, with few primitive actions possible. We would like
to address the problem of multi-task learning in a complex,
high-dimensional and continuous environment. A method
for generalising movements for several tasks was proposed
in [15], [16]. However, the example and target tasks are
determined by the human engineer, and the learner assumes
that it is sufficient to reshape the global movement instead of
learning the whole movement. On the contrary, we learn to
complete more different tasks, might they require different
movements. Moreover, instead of relying entirely on the
teacher, the SGIM-IM also actively determines which task is
interesting to focus on, to better generalise for similar tasks.

B. Formalisation

Let us set the framework of our robot learning in such an
environment. The agent can complete tasks parameterised by
parameters τ ∈ T , by carrying out policies πθ, parameterised
by θ ∈ Rn :

πθ :A →[0, 1]

a 7→πθ(a)
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which associates to an action a the probability that a is the
right action to perform. The performance of a policy πθ at
completing a task τ is measured by:

J :T ×Rn →[0,+∞[

(τ, θ) 7→J(τ, θ) (1)

We define a skill as the function that maps to a task τ
the best policy to complete it:

S : T →Rd

τ 7→argmaxθJ(τ, θ)

The aim of the agent is to find the right policy to complete
every task τ to maximise

I =

∫
τ

P (τ)J(τ, S(τ))dτ (2)

where P (τ) is a probability density distribution over T .
A priori unknown to the learner, P (τ) can describe the
probability of τ occurring or the reachable space or a region
of interest.

We assume that T can be partitioned into subspaces
where the tasks are related, and in these subspaces our
parametrisation allows a smooth variation of J with respect
to τ most of the time, i.e. that S is a piecewise continuous
function.

Our learner improves its skill S to maximise I =∫
τ
P (τ)J(τ, S(τ))dτ both by self-exploring the policy and

task spaces and by asking for help to a teacher, who performs
a trajectory ζd and completes a task τd.

Note that the observed trajectory might be impossible to
the learner to reexecute, and he can only approach it best with
a policy πθd . We have also described our method without
specifying a particular choice of learning algorithm or action,
task or policy representation. These designs can indeed be
decided according to the application at hand.

C. Air Hockey Experimental Setup
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Humanoids 2012Fig. 1: Air Hockey Table: the task space is defined as the top border of the
square. The puck moves in straight line without friction until it hits either
the mallet, the table borders or the obstacle placed on the right.

1) Description of the Environment: Let us illustrate this
formalisation with an example of a simulated square air
hockey table that contains an obstacle (fig. 1). Always
starting with the same position and velocity, the puck moves

in straight line without friction. The effect is the position of
the impact when the puck collides with the top border of the
table. T is thus the top border of the table, mapped into the
[−1, 1] segment, where the subregion hidden by the obstacle
is difficult to reach.

We control the mallet with a parameterised trajectory
determined by 5 key positions θ0, θ1, θ2, θ3, θ4 ∈ [−1, 1]2 at
times t0 = 0 < t1 < t2 < t3 < t4. The executed trajectory
is generated by Gaussian distance weighting:

ζ(t) =

5∑
i=0

wi(t)θi∑5
j=0 wj(t)

with wi(t) = eσ∗|t−ti|
2

, σ > 0 (3)

Therefore, the policy parameter space Rn is of dimension
n = 14 and T of dimension 1. The learner maps which
trajectory of the mallet with parameter θ = (θ1, ..., θ14)
induces a collision with the top border at position τ . This
is an inverse model of a highly redundant mapping, which
is all the more interesting than the obstacle introduces
discontinuities in the model.

2) Demonstrations and Evaluation: We can simulate
a teacher by using the learning data (ζd, τd) taken from
Random and intrinsically motivated learner based on SAGG-
RIAC algorithm [17] as detailed later on. We choose 500
demonstrations so that τd is evenly distributed in [0.5, 1].
The teacher is thus specialised in a restricted domain of T .
The demonstrations of that batch are given to the learner in
a random order.

We assess our agent by measuring how close it can reach
a benchmark set that defines the user’s region of interest. In
this case, the benchmark set is distributed over T = [−1, 1]
and placed every 0.05, to get the mean error at reaching these
benchmark points.

D. Interactive Learning

In initial work to address multi-task learning in a contin-
uous task space in the case of a complex, high-dimensional
and continuous environment, we proposed in [18] the So-
cially Guided Intrinsic Motivation by Demonstration (SGIM-
D) algorithm, where the agent learns by demonstration every
M actions he performs, and otherwise learns by the SAGG-
RIAC algorithm (cf. III-A). The SGIM-D could benefit from
both strategies to explore the task space and the policy space
as studied in [19]. Fig.2 plots at different stages of the
learning, the mean error of the agent at reaching all the points
of the benchmark set, with respect to M . The performance
of the SGIM-D learner for the air hockey game depends on
the period M of the demonstrations. Actually, the SGIM-
D learner is passive with respect to the social interaction
and the teacher, and does not optimise the timing of the
interactions with the teacher. A mechanism that tunes the
parameter M , and manages actively its interaction with the
teacher can improve the performance of SGIM-D.

Indeed, the interaction between the learning agent and
the teacher can be described as the way intentional or
unintentional information flows from the human and the
robot fHR, and from the robot to the human fRH . The
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Fig. 2: Mean error of SGIM-D at reaching all the points of the benchmark
set, with respect to the period of the demonstrations M . We plotted it for
different stages of the learning, with the standard deviation.
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Fig. 3: Data Flow under the Intrinsic Motivation strategy

SGIM-D learner only took advantage of fHR, and neglected
any intentional communication from the robot to the human.
However, an interactive learner who not only listens to the
teacher, but actively requests for the information it needs
and when it needs help, has been shown to be a fundamental
aspect of social learning [14], [20], [21].

Under the interactive learning approach, the robot inter-
acts with the user, combining learning by demonstration,
learning by exploration and tutor guidance. Approaches have
considered extra reinforcement signals [11], action requests
[13], [22] or disambiguation among actions [20]. In [23]
the comparison between a robot that has the option to ask
the user for feedback, to the passive robot, show a better
accuracy and fewer demonstrations. Therefore, requesting
demonstrations when it is needed can lessen the dependence
on the teacher and reduce the quantity of demonstrations
required. This approach is the most beneficial to the learner,
for the information arrives as it needs them, and to the teacher
who does not need to monitor the learning process.

This is why we design an interactive learning algorithm
with an intrinsically motivated robot learner, which decides
itself when it is most beneficial to imitate the teacher. We
first describe the design of our SGIM-IM (Socially Guided
Intrinsic Motivation with Interactive learning at the Meta
level) algorithm, which actively chooses the best learning
strategy between intrinsically motivated exploration and im-
itation learning. Then we show that SGIM-IM efficiently
requests for the teacher’s demonstrations to complete a wide
range of tasks, while being specialised in specific subspaces
through 2 experimental setups: an air hockey game and a
fishing skill learning.
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II. SGIM-IM ALGORITHM

SGIM-IM (Socially Guided Intrinsic Motivation with
Interactive learning at the Meta level) is an algorithm that
merges interactive learning as social interaction, with the
SAGG-RIAC algorithm of intrinsic motivation [17], to learn
local inverse and forward models in complex, redundant,
high-dimensional and continuous spaces.

A. SGIM-IM Overview

SGIM-IM learns by episodes during which it chooses
actively which learning strategy to opt for each episode, be-
tween intrinsically motivated or social learning exploration.

In an episode under the intrinsic motivation strategy (fig.
3), it explores autonomously following the SAGG-RIAC
algorithm [17]. It actively self-generates a goal τg where its
competence improvement is maximal, then explores which
policy πθ can achieve τg best. The SGIM-IM learner explores
preferentially goal tasks easy to reach and where it makes
progress the fastest. It tries different policies to approach
the self-determined task τg , re-using and optimising the es-
timation of J built through its past autonomous and socially
guided explorations. The episode ends after a fixed duration

In an episode under the social learning strategy (fig. 4),
our SGIM-IM learner observes the demonstration [ζd, τd],
memorises this task τd as a possible goal, and mimics the
teacher by performing policies πθ to reproduce ζd, for a fixed
duration. This strategy highlights useful tasks, and teaches
the learner at least one way to complete a new task, whereas
self-exploration has low chance of discovering useful tasks.

The SGIM-IM learner actively decides on a meta level
which strategy to choose according to the recent learning
progress enabled by each strategy. If it has recently made the
most progress in the intrinsic motivation strategy, it prefers
exploring autonomously. Conversely, if the demonstrations
do not enable him to make higher progresses than by au-
tonomous learning (limited teacher, or inappropriate teacher)
it would prefer autonomous exploration.

Its architecture is separated into three layers (fig. 5), that
we describe in the following paragraphs. For the parts, which
are common to SGIM-D, please refer to [18] for more details.

B. Task Space Exploration

This level of active learning drives the exploration of the
task space. With the autonomous learning strategy, it sets
goals τg depending on the interest level of previous goals
(Decide a Goal). With the social learning strategy, it retrieves
from the teacher information about demonstrated effects τd
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Algorithm II.1 SGIM-IM
Initialization: R ← singleton T
Initialization: flagInteraction← false
Initialization: Memo← empty episodic memory
Initialization: ∆S : progress values made by social learning
Initialization: ∆A : progress values made by intrinsic motivation
learning
loop
flagInteraction← Select Strategy(prefS , prefA)
if flagInteraction then

Social Learning Regime
demo ← ask and perceive demonstration
(θd, τd)← Correspondence (demo)
Emulate Goal: τg ← τd
γi ← Competence for τg
Memo ← Imitate Action(θd)
γ ← Competence for θg
Add γ − γi to stack ∆S

else
Intrinsic Motivation Regime
τg ← Decide a goal(R)
γi ← Competence for τg
repeat

Memo ← Goal-Directed Policy Optimisation(τg)
until Terminate reaching of τg
γ ← Competence for τg
Add γ − γi to stack ∆A

end if
R← Update Goal Interest Mapping(R,Memo, τg)

end loop

(Emulate a Goal). Then, it maps T in terms of interest level
(Goal Interest Mapping).

1) Goal Interest Mapping: T is partitioned according
to interest levels. For each task τ explored, it assigns a
competence γτ which evaluates how close it can reach τ :
γτ = max(θ∈Memo)J(τ, θ) where Memo is the list of all
the policy parameters experienced in the past. A high value
of γτ represents a system competent at reaching the goal yg .

T is incrementally partitioned into areas of different size
so as to maximise the difference in competence progress, as
described in [24]. For a region Ri ⊂ T , we compute the
interest as the local competence progress, over a sliding
time window of the δ most recent goals attempted inside Ri:

interesti =

∣∣∣∣∣∣
 |Ri|− δ2∑
j=|Ri|−δ

γj

−
 |Ri|∑
j=|Ri|− δ2

γj

∣∣∣∣∣∣
δ

(4)

2) Decide a Goal: This function uses the interest level
mapping to decide which goal is interesting to focus on.
It stochastically chooses effects in regions for which its
empirical evaluation of learning progress is maximal.

C. Action Space Exploration

This lower level of learning explores the policy parameters
space Rd to build an action repertoire and local models.
With the social learning strategy, it imitates the demonstrated
actions ζd (Imitate an Action), while during self-exploration,
the Goal-Directed Policy Optimisation function attempts to
reach the goals τg set by the Task Space Exploration level,
then, it returns the measure of competence at reaching τd or
τg .

1) Imitate an Action: This function tries to imitate the
teacher with policy parameters θim = θd+θrand with a ran-
dom movement parameter variation |θrand| < ε and πθd the
closest policy to reproduce the demonstration. After a short
fixed number of times, SGIM-IM computes its competence
at reaching the goal indicated by the teacher τd.

2) Goal-Directed Policy Optimisation: This function
searches for policies πθ that guide the system toward the
goal τgby 1) building local models during exploration that
can be re-used for later goals and 2) optimising actions
to reach for the current goal. In the experiments below,
SGIM-IM uses uses locally weighted regression in order
to infer the motor policy parameters corresponding to a
given novel parametrized task, and based on the previously
learnt correspondences between policy and task parameters.
Policy parameters are learned using local optimisation with
the Nelder-Mead simplex algorithm [25] and global random
exploration to avoid local minima, in order to build memory-
based local direct and inverse models, using locally weighted
learning with a gaussian kernel such that presented in [26].

D. Select Strategy

A meta level actively chooses the best strategy based
on the recent progress made by each of them. For each
episode, the learner measures its progress as the difference of
competence at the beginning and the end of the exploration
for the self-determined or the emulated goal, and adds this
progress value to stacks ∆A or ∆S . The preference for each
strategy is computed as the average on a window frame of the
last ns progress values of ∆A and ∆S . Besides, in order to
limit the reliance on the teacher, we penalise the preference
for social learning with a cost factor. The strategies are
selected stochastically with a probability proportional to
their preference (cf. Algorithm II.2). Therefore, autonomous
exploration is preferred if it provided highest competence
progress in the recent past, while social learning is preferred
only if its progress were cost times higher.
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Algorithm II.2 [flagInter] = SelectStrategy(∆S ,∆A)

input: ∆S : progress values made by social learning strategy
input: ∆A : progress values made by intrinsic motivation learn-
ing strategy
output: flagInter : chosen strategy
parameter: nbMin : duration of the initiation phase
parameter: ns : window frame for monitoring progress
parameter: cost : cost of requesting a demonstration
Initiation phase
if Social Learning and Intrinsic Motivation Regimes have not
been chosen each nbMin times yet then
ps← 0.5

else
Permanent phase
wa← average(last ns elements of ∆A)
ws← average(last nselements of ∆S)

cost
ps← min(0.9,max(0.1, ws

ws+wa
))

end if
flagInter ← true with probability ps
return flagInter

We applied our hierarchical SGIM-IM algorithm with 2
layers of active learning to 2 illustration experiments.

III. AIRHOCKEY EXPERIMENT

We first apply SGIM-IM to our air hockey game, described
in I-C.

A. Experimental Protocol

To assess the efficiency of SGIM-IM, we decide to com-
pare the performance of several learning algorithms (fig. 6):
• Random exploration: throughout the experiment, the

robot picks policy parameters randomly in Rd.
• SAGG-RIAC: throughout the experiment, the robot ex-

plores autonomously, without taking into account any
demonstration, and is driven by intrinsic motivation.

• SGIM-IM: interactive learning where the robot learns
by actively choosing between social learning strategy
or intrinsic motivation strategy.

• SGIM-D: the robot’s behaviour is a mixture between
Imitation learning and SAGG-RIAC. When the robot
sees a new demonstration, it imitates the trajectory
for a short while. Then, it resumes its autonomous
exploration, until it sees a new demonstration by the
teacher, which occurs every M actions experimented by
the robot.

For each experiment in our air hockey setup, we let the
robot perform 8000 actions in total, and evaluate its perfor-
mance every 1000 actions. For the air hockey experiment, we
set the parameters of SGIM-IM to: cost = 100 and ns = 20,
and those of SGIM-D to M= 10 and M= 100 which are the
best and worst parameters of SGIM-D according to fig.2.

B. Results

Fig.7 plots the mean distance error of the attempts to
hit the border at the benchmark points, with respect to
the number of actions performed by the mallet. It shows
that SGIM-IM performs significantly better, and faster than
Random exploration or SAGG-RIAC (t-test on the final
distance error with p < 0.05). It divides by a factor of 10

the final error value compared to SAGG-RIAC. Moreover,
its error rate is smaller since the very beginning. SGIM-
IM has taken advantage of the demonstrations very fast to
be able to hit the puck and place it on the top border,
instead of making random movements which have little
probability of hitting the puck, let alone placing it at a
desired position. Its performance is close to SGIM-D with the
best parameters. SGIM-IM manages to tune its percentage
of social interaction so as to take most advantage of the
demonstrations.

0 1000 2000 3000 4000 5000 6000 7000 8000
10−3

10−2

10−1

100
Mean Values of the  Performance Evaluation on the Benchmark Data

Number of Movements Experimented

M
ea

n 
D

is
ta

nc
e 

to
 th

e 
Te

st
 G

oa
ls

 

 
RANDOM
SAGG−RIAC
SGIMD M= 10
SGIMD M =100
SGIMIM

Fig. 7: Evaluation of the performance of the robot with respect to the
number of actions performed, under different learning algorithms. We
plotted the mean distance to the benchmark set with its standard deviation
errorbar.

C. Active Choice of Strategy

As for the strategy adopted, fig.8 shows 3 phases. In the
first part, demonstration requests are useful in the beginning,
as each indicate to the learner which kind of actions can
make the mallet hit the puck to place it in T and induce a
high competence progress value. ∆S � ∆A, but autonomous
learning still makes good progress. As the progress of
autonomous learning decreases, the number of requests for
demonstrations increase for 1500 < t < 4000. . In the second
part, the progress by the social learning strategy decreases
and varies like the progress of autonomous learning. ∆S ≈
∆A. The bootstrapping effect enabled by demonstrations has
decreased. Therefore, preference for autonomous exploration
increases.

In this experimental setting, the learner can quickly im-
prove its performance by a combination of demonstrations
and autonomous exploration. When the demonstrations first
bootstrap autonomous learning, then demonstrations are
preferred to self-exploration and finally, as requests for
demonstrations no longer help improve the robot’s skill, and
it prefers to improve its learning by intrinsic motivation.
The SGIM-IM learner shows an improvement in both the
decrease of the final error value, and the speed of learning, in
this bounded and deterministic environment. Let us illustrate
SGIM-IM in a stochastic environment.
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(summed over 100 bins and averaged over several runs of SGIM-IM) 2/ The
average progress made by social learning and intrinsic motivation strategies
∆S and ∆A

Fig. 9: Fishing experimental setup.

IV. FISHING EXPERIMENT

A. Experimental Setup

In this second experiment, we consider a simulated 6
degrees-of-freedom robotic arm holding a fishing rod (fig.
9). The aim is that it learns how to reach any point on the
surface of the water with the hook at the tip of the fishing
line.
T = [−1, 1]2 is a 2-D space that describes the position of

the hook when it reaches the water. The robot base is fixated
at (0,0). The actions are parametrized motor primitives
defined for each joint by 4 scalar parameters that represent
the joint positions at t = 0, t = η

3 ,t = 2η
3 and t = η. These

4 parameters θ1, θ2, θ3, θ4 generate a trajectory for the joint
by Gaussian distance weighting.

Each of the 6 joints’ trajectories is determined by 4
parameters. Another parameter sets τ . Therefore Rd is a
25-D space. The robot learns an inverse model in a con-
tinuous space, and deals with high-dimensional and highly
redundant models. Our setup is all the more interesting since

Fig. 10: Maps of the benchmark points used to assess the perfor-
mance of the robot and of the demonstrated goals τd.

a fishing rod’s and wire’s dynamics are more difficult to
model than a robotic arm inverse dynamics problem because
the stochasticity distribution is hard to model as it depends
on the actions dynamics. Thus learning directly the effect
of one’s actions is all the more advantageous. Moreover,
its high-dimensionality, redundancy and stochasticity makes
this simulation environment as challenging as a real robotics
setup. A detailed analysis of this simulation environment can
be found in [18].

B. Experimental Protocol

1) Evaluation: After several runs of Random explo-
rations, SAGG-RIAC and SGIM-D, we determined the ap-
parent reachable space as the set of all the 300.000 reached
points in the task space. We then tiled the reachable space
into small rectangles, and generated a point randomly in each
tile. Our benchmark set thus obtained is a set of 358 goal
points in the task space, representative of the reachable space,
and independent of the learning data used (fig. 10).

2) Demonstrations: The human teacher uses kinesthetics
to teleoperate the model in a simulator with the physical
robot (http://youtu.be/Ll S-uO0kD0). The human subject is
presented with a grid of points to reach on the surface of the
water, and he has to place the simulator’s hook nearest those
points. After a habituation phase, we record the trajectories
of each of the joints, and the position of the hook when
touching the surface of the water. We obtained a teaching set
(fig. 10) of 127 samples, that are demonstrated in a random
order, and which the robot can not a-priori repeat exactly.

C. Results

1) Precision in the exploration of the reachable space:
Our SGIM-IM learner parameters are set to: cost = 2 and
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Fig. 11: Evaluation of the performance of the robot with respect to
the number of actions performed, under the learning algorithms: random
exploration, SAGG-RIAC, SGIM-IM, SGIM-D with a demonstration every
M = 30 movements, and SGIM-D with a demonstration every M = 80
movements (to equal the total number of demonstrations of SGIM-IM). We
plotted the mean distance with its standard deviation errorbar.

ns = 15. For every simulation on the fishing experiment
setup, 5000 movements are performed. The error was as-
sessed every 1000 movements. We examine how close the
learner can get to any point of the reachable space in T ,
with respect to the number of actions performed by the robot
(fig. 11), and with respect to the number of demonstrations
given by the teacher (fig. 12b). RANDOM performs the
worst, while SAGG-RIAC decreases significantly the error
value compared to RANDOM (t-test with p < 0.05). Not
only has the asymptotic performance improved, but SAGG-
RIAC also learns faster from the beginning. Requesting
demonstrations every 80 actions performed (SGIM-D M=80)
bootstraps slightly the learning error. In this case, the social
learning strategy only makes up 7% of the total time, with
61 demonstrations requests. SGIM-IM performs better than
SAGG-RIAC (t-test with p < 0.05). The main difference
lies in the beginning of the learning process, where it could
take advantage of the teacher to guide him and discover
the reachable space. With 52 demonstrations requested in
average, SGIM-IM yet performs better than SGIM-D(M=80)
with p < 0.5, owing to its active choice of strategy, that fits
better its needs. If we increase the number of demonstrations
to 162 (SGIM-D M=30), and let the robot adopt the social
learning strategy 20% of the time, they indeed efficiently
bootstrap the autonomous learning. SGIM-IM manages to
request a fair amount of demonstrations and still obtain a
performance in between the 2 SGIM-D parameters.

Not only has the error decreased, but the explored space
has also increased. Fig. 12a plots the histogram of the
positions of the hook τ ∈ T when it reaches the water.
The first column shows that a natural position lies around
τc = (−0.5, 0) in the case of random exploration : most

actions map to a region around τc for the action space does
not map linearly to the task space. As the initial position
of the hook is close to the surface of the water, the robot
needs to lift it with quite specific movements to throw it far
away, whereas most movements would make the hook touch
the water immediately, around the region of τc. The second
column show that SAGG-RIAC has increased the explored
space, and most of all, covers more uniformly the explorable
space. SGIM-D and SGIM-IM emphasise the increase even
further as a broader range of radius covered in the explored
space.

2) Performance of the Interaction: The simple consid-
eration of performance with respect to time spent by the
robot must be completed by considerations about the load
of work for the teacher. A robot that constantly requests
for help would quickly exceed the time and effort a user
is ready to devote to teach. Therefore, we must examine the
performance of the learner with respect to the number of the
demonstrations given. Fig.12b shows that while for the first
demonstrations SGIM-IM and SGIM-D(M=80) perform the
same progress, a difference quickly as SGIM-IM requests
fewer demonstrations. Each demonstration has a better im-
pact on the performance of the robot, as its error plot in 12b
is below the one of SGIM-D.

Indeed, fig.12c shows that the demonstrations are actively
requested in the beginning of the learning process, when
the demonstrations enhance the most progress by showing
how to avoid the central region around τc. The requests
then decrease as the robot acquires a good knowledge of
the explorable space, and can autonomously search around
the already explored localities.

In this fishing experiment, the SGIM-IM learner’s active
choice of learning strategy enabled it to take advantage of the
teacher to request demonstrations, while carefully choosing
when the teacher’s demonstrations enhance the most learning
progress, in order to lessen its dependence on the teacher.

V. DISCUSSION AND CONCLUSION

We showed through 2 illustration experiments that the So-
cially Guided Intrinsic Motivation with Interactive learning
at the Meta level algorithm could learn to complete multiple
tasks in both deterministic and stochastic environments. It
can also manage the interaction with both a human teacher
whose demonstrations can not be exactly reproduced by him,
and a specialised teacher who only gives demonstrations in
a restricted subspace of the task space. In both experiments,
our robot learns efficiently and faster all possible tasks, in
continuous task and action spaces. The robot could learn
high-dimensional models for highly redundant problems,
which constitute a typical issue for humanoid robots who
evolve in continuous and unpreset environments and who
have to control their numerous degrees of freedom with
high redundancy. The SGIM-IM learner can handle its
interaction with human users owing to interactive learning. It
automatically balances learning by imitation and autonomous
learning, by taking in account both its need and the cost of



Sao Mai Nguyen and Pierre-Yves Oudeyer. Interactive Learning Gives the Tempo to an Intrinsically Motivated Robot

Learner, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots, 2012, Osaka, Japan.

RANDOM INPUT 
PARAMETERS

0

0

-1-1

1

1 0-1 1 0-1 1 0-1 1 0-1 1 0-1 1

SAGG-RIAC SGIM-D SGIM-IM

Humanoids 2012

(a) Histogram of the tasks explored by the fishing
rod inside the 2D effects space. Each algorithm is
illustrated by 2 example experiments.

10 20 30 40 50 60

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Mean Error with respect to the Number of Demonstrations Given

Number of Demonstrations Given

M
ea

n 
D

is
ta

nc
e 

to
 th

e 
G

oa
ls

 

 

SGIMIM
SGIM (T=80)

(b) Comparison of the performance of the
robot with respect to the number of actions
performed, of SGIM-IM and SGIM-D (M=80)

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
intrinsic motivation strategy = g,  social learning strategy = r

 

 

Intrinsic Motivation Strategy
Social Learning Strategy

(c) Strategy chosen though time: percentage of
times each strategy is chosen with respect to
the number of actions performed

Fig. 12: Analysis of the fishing experiment.

an interaction, so as to minimise the teacher’s effort and
maximise the impact of each demonstration. It thus offers a
flexible interaction between a robot and the human users.

The Socially Guided Intrinsic Motivation with Interactive
learning at the Meta level algorithm has a 3-layered hierar-
chical structure which includes two levels of active learning.
Based on its exploration in the action space, it actively
chooses in the task space which goals could be interesting
to target, and selects on a meta level between autonomous
learning or social learning strategies. It can actively interact
with the teacher instead of being a passive system. This
structure could easily be extended to take into account more
complex social interaction scenarios, such as an interaction
with several teachers, where the learner can choose who
it should imitate. Future work will study possibilities for
the robot to request for specific demonstrations (show me
a specific kind of movements or show me how to complete
a kind of goals). Moreover, we plan to extend this study
so that humanoid robots can really evolve in our everyday
environments and complete multiple tasks of different nature.
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