
HAL Id: hal-00763092
https://inria.hal.science/hal-00763092

Submitted on 11 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of Fault Tolerant NoC-based
Architecture

Manamiary Bruno Andriamiarina, Hayat Daoud, Mostefa Belarbi, Dominique
Méry, Camel Tanougast

To cite this version:
Manamiary Bruno Andriamiarina, Hayat Daoud, Mostefa Belarbi, Dominique Méry, Camel
Tanougast. Formal Verification of Fault Tolerant NoC-based Architecture. First International Work-
shop on Mathematics and Computer Science (IWMCS2012), Mostefa BELARBI - University of Tiaret
- Algeria, Dec 2012, Tiaret, Algeria. �hal-00763092�

https://inria.hal.science/hal-00763092
https://hal.archives-ouvertes.fr


Formal Verification of Fault Tolerant NoC-based

Architecture

Manamiary Bruno Andriamiarina‡, Hayat Daoud∗, Mostefa Belarbi∗, Dominique Méry‡, Camel Tanougast†

∗IBN Khaldoun University, LIM

hayat.daoud@hotmail.fr

master.dept.inf@gmail.com
†Université de Lorraine University, LICM, ISEA

camel.tanougast@{univ-metz, univ-lorraine}.fr
‡Université de Lorraine University, LORIA

Vandœuvre-lès-Nancy, France

dominique.mery@{loria, univ-lorraine}.fr

manamiary.andriamiarina@loria.fr; manamiary-bruno.andriamiarina6@etu.univ-lorraine.fr

Abstract—Approaches to design fault tolerant Network-on-
Chip (NoC) for System-on-Chip(SoC)-based reconfigurable Field-
Programmable Gate Array (FPGA) technology are challenges
on the conceptualisation of the Multiprocessor System-on-Chip
(MPSoC) design. For this purpose, the use of rigorous formal
approaches, based on incremental design and proof theory, has
become an essential step in a validation architecture. The Event-
B formal method is a promising formal approach that can be
used to develop, model and prove accurately the domain of SoCs
and MPSoCs. This paper gives a formal verification of a NoC
architecture, using the Event-B methodology. The formalisation
process is based on an incremental and validated correct-by-
construction development of the NoC architecture.

Keywords-Network on chip, Switch, Adaptive-routing, ma-
chine, context, Model, specification, refinement, Formal proof,
Correct-by-construction.

I. INTRODUCTION

Designs are usually verified by simulation with created

stimuli. This allows the detection of the coarse errors in a

design. However, simulation can not find all possible errors in

a design. This is why we use formal methods, such as Event-

B, and especially the correct-by-construction paradigm [8]

for specifying hardware systems. The correct-by-construction

paradigm offers an alternative approach to prove and derive

correct systems and architectures, through the reconstruction

of a target system using stepwise refinement and validated

methodological techniques [2, 4, 9]. Our goal is to complement

the time consuming simulations in the design flow with a

formal proof method. The prerequisites for the formal develop-

ment of a given microelectronic architecture are the description

and/or the design of the architecture.

The dynamic reconfigurable NoC are adequate and ap-

propriate for FPGA-based systems, where the main problem

arises when components IPs (Intellectual Property) must be set

dynamically at runtime. Given the rapid changes and increas-

ing complexity of MPSoCs (Multiprocessor System on Chip),

constraints of cost and performance, related to the complexity

and the increasing number of modules or IPs interconnected,

must be solved. Current on-chip communication networks

implement data packet transmissions between interconnected

nodes. Sometimes, communications in these networks are

difficult, even impossible. This is the main reason why fault-

tolerant XY routing algorithms (for these networks) have been

introduced [6]. Routers can control if previous switches have

made routing errors (e.g. packet out of the XY path, etc.).

Moreover, new adaptive and fault-tolerant routing techniques,

with error detection and based on the well known XY and turn

model routing schemes [7], have been introduced. Usually,

these designs are verified by simulation, which allows the

detection of coarse errors. However, simulation alone is not

sufficient to improve such architectures [5].

In this article, we use Event-B to specify, verify and prove

the behaviour of NoC architectures.

The paper is organized as follows. Section 2 presents an

overview of the Event-B approach. Section 3 introduces the

studied NoC architecture. Section 4 describes the formal

development of the NoC architecture. Section 5 concludes this

paper along with the future work.

II. EVENT B: STEPWISE DESIGN OF SYSTEMS

We choose Event B [1] as a modeling language, mainly

because of the refinement, which allows a progressive devel-

opment of models. Event B also is supported by a complete

toolset RODIN [10] providing features like refinement, proof

obligations generation, proof assistants and model-checking

facilities.

The Event B modeling language can express safety proper-

ties, which are either invariants, theorems or safety properties

in a machine corresponding to the system. The two main

structures available in Event B are:

• Contexts express static informations about the model.

• Machines express dynamic informations about the model,

invariants, safety properties, and events.

An Event B model is defined either as a context or as a

machine. A machine organises events (or actions) modifying

state variables and uses static informations defined in a con-

text. The general form of an event is expressed as follows ANY



x WHERE G(x, u) THEN u : |(P (u, u′) END and corresponds to the

transformation of the state variable u, which is set to a value u′

satisfying the formula ∃ x .G(x, u)∧P (u, u′), where u is the value

of u before the observation of the event. If the set of events is

denoted E, then the before–after predicate BA(e)(x, x′), where

e is in E, is the previous formula. Proof obligations (INV 1

and INV 2) are produced by the RODIN tool, from events,

to state that an invariant condition I(x) is preserved. Their

general form follows immediately from the definitions of the

before–after predicate BA(e)(x, x′) of each event e of E and

grd(e)(x), which is safety of the guard G(t, x) of event e: (INV1)

Init(x) ⇒ I(x); (INV2) I(x) ∧ BA(e)(x, x′) ⇒ I(x′); (FIS)

I(x) ∧ grd(e)(x) ⇒ ∃y.BA(e)(x, y).

The proof obligation FIS expresses the feasibility of the

event e, with respect to the invariant I. By proving feasibility,

we achieve that BA(e)(x, y) provides an after state whenever

grd(e)(x) holds. This means that the guard indeed represents

the enabling condition of the event.

These basic structures are extended by the refinement of

models which provides a mechanism for relating an abstract

model and a concrete model by adding new events or variables.

This feature allows to develop gradually Event-B models

and to validate each decision step using the proof tool. The

refinement relationship should be expressed as follows: a

model M is refined by a model P , when P simulates M . The

final concrete model is close to the behaviour of real system

that executes events using real source code. The relationships

between contexts, machines and events are illustrated by the

next diagrams, which consider refinements of events and

machines.

I(x) x
ae //

��

x′

��

I(x′)

J(x, y) y ce //

OO

y′

OO

J(x′, y′)

I(x) AM
SEES // AC T hi

J(x, y) CM
SEES //

REFINES

OO

CC

EXTENDS

OO

T hi+1

Fig. 1. Machines and Contexts relationships

The refinement of a formal model allows us to enrich the

model via a step-by-step approach and is the foundation of our

correct-by-construction approach [8]. Refinement provides a

way to strengthen invariants and to add details to a model. It

is also used to transform an abstract model to a more concrete

version by modifying the state description. This is done by

extending the list of state variables (possibly suppressing some

of them), by refining each abstract event to a set of possible

concrete versions, and by adding new events.

We suppose that an abstract model AM with variables x

and invariant I(x) is refined by a concrete model CM with

variables y and gluing invariant J(x, y). Event e is in abstract

model AM and event f is in concrete model CM . Event f

refines event e. BA(e)(x, x′) and BA(f)(y, y′) are predicates of

events e and f respectively; we have to prove the following

statement, corresponding to proof obligation (1):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ ∃x′ · (BA(e)(x, x′) ∧ J(x′, y′))

We have shortly introduced the Event B modeling language

and the structures proposed for organising the development of

state-based models. In fact, the refinement-based development

of Event B requires a very careful derivation process, integrat-

ing possible tough interactive proofs for discharging generated

proof obligations, at each step of development.

III. NOC ARCHITECTURE OVERVIEW

A. NoC Architecture Topology

The topology of a NoC architecture is usually a Mesh. The

network has a grid-like form (see Fig.2): boundary switches

are connected to two or three neighbours, whereas other nodes

are connected to four neighbours.

Fig. 2. A Mesh Topology

B. Structure of a Switch

The role of a switch is to pass data packets between

elements (routers) of a NoC architecture.

Fig. 3. Structure of a Switch

The structure of a switch (see Fig.3) is as follows:

• Input Register: Each incoming packet is stored in an

input register. A specific component, called Routing

logic, computes the next direction of the packet (whether

N, E, S or W; see Fig.3). A maximum of three packets

is allowed per direction. The packets are transmitted to

the output logic. An arbitration policy can be adopted

2



to define priorities between packets stored in the input

registers of a switch, according to the next direction of

the packets. This policy is based on the rules of right

priority (see Fig.4).

Fig. 4. Right Priority

• The Output Logic is made up of a semi crossbar, an out-

put buffer and a finite state machine. The semi crossbar

is composed of three inputs and four outputs. Incoming

packets are stored into inputs according to priorities. If

the neighbours of a switch are not busy, the first output

of the semi crossbar is one of the adjacent switches.

The output buffer consists of registers. These registers

store packets, in the case where more than one packet

choose the same output (direction). The output buffer is

also used when the selected output (direction) is busy

(occ signal). A maximum of three messages can be

stored in a output buffer. The finite state machine (FSM)

manages control signals and its role is also to avoid

packets collisions. Moreover, the finite state machine

(FSM) provides a central logic with informations about

the states of adjacent switches (wait situation, out signal,

etc.).

• The Control Logic manages connections between the

input and output ports of a switch. The Control Logic

also handles the storage of packets that can not be trans-

ferred to next directions, due to occupation signals from

neighbouring switches. Moreover, if the switch can not

store more incoming packets, the Control Logic informs

the neighbours (which have sent the switch packets) that

the switch can not accept any other packets.

C. Routing Process

The XY routing algorithm defines packets transmission:

• Let the source (s) and destination (d) of a packet (p) be

defined by 2D coordinates: (xs,ys) for the source (s) and

(xd,yd) for the destination (d).

• The packet (p) travels first along x dimension, until xs=xd.

Then, the packet (p) travels along y dimension, until

ys=yd.

• If the packet (p) encounters elements unable to transmit

data in x dimension, the routing temporary switches to y

dimension.

• It should be noted that the network can evolve (deletion

of some links, isolation of some switches, etc.), and data

transmission can be disrupted. However, a reconfiguration

mechanism ensures that for each transiting packet, either

a path leading to the destination of the packet always

exists or, if the packet is stored in some node unable

to transmit data, the link between this node and the

destination of the packet will eventually be restored.

IV. MODELING NOC ARCHITECTURE

This section presents the formal development of the NoC

Architecture. However, due to space limitations, we have given

sketch of the modeling. A detailed formal development is

available1. It should be noted that refinement allows us to

break the complexity of the NoC Architecture and perform

our formalisation with different levels of abstraction, step-by-

step (see Fig.5).

Fig. 5. Step-by-step Modeling of NoC Architecture

A. Abstract Specification: xyM0

The first model xyM0 is an abstract description of the service

offered by the NoC Architecture: the sending of a packet (p) by

a switch source and the receiving of (p) by a switch destination.

Fig. 6. Abstraction

A set of switches (NODES), a set of packets (MSG), a function

src, associating packets and their sources, a function dst,

coupling packets and their destinations, are defined in context

xyC0. The machine xyM0 uses (sees) the contents of context

xyC0, and with these, describes an abstract view of the service

provided by the NoC Architecture:

• An event SEND presents the sending of a packet (m), by

its source (s), to a switch destination (d).

1http://www.loria.fr/~andriami/noc-pdf/project.html

3



• An event RECEIVE depicts the receiving of a sent packet

(m) by its destination (d).

Moreover, the model xyM0 allows us to express some properties

and invariants:

ran(received) ⊆ ran(sent)

This invariant expresses that each packet received by a switch

destination has been sent by a switch source.

B. First Refinement (xyM1): Network Introduction

The machine xyM1 refines xyM0 and introduces a network (a

graph) between the sources and destinations of packets. Some

properties on the graph are defined in context xyC1: graph is

non-empty, non-transitive and is symmetrical.

Fig. 7. Adding Network

The events in xyM0 are refined:

• Event SEND: When a source sends a packet, the packet

is put in the network.

• Event RECEIVE: A packet is received by its destination,

if the packet has reached the destination.

New events are also introduced by xyM0:

• Event FORWARD (see Fig.8): in the network, a packet (p)

transits from a node (x) to another node (y), until the

destination (d) of packet (p) is reached.

Fig. 8. Transfer of a Packet (p) between Switches

• Event DISABLE: A node is disabled. The node is not

allowed to communicate with its neighbours (failure,

etc.). During the disabling of some nodes, we ensure

that the packets transiting in the network will eventually

reach their destinations (either after a reconfiguration of

the network or by always letting a path to destinations

available).

• Event RELINK: This event models the reconfiguration of

the network. Disabled nodes are re-enabled: the links

between them and their neighbours are restored, there-

fore allowing communications and packets transfers. The

reconfiguration of the network helps in demonstrating the

safety of data transmission between a switch source and

a switch destination.

The machine xyM1 also presents some properties of the system:

ran(received) ∩ ran(store) = ∅

This invariant demonstrates that a packet (p) sent by a source

is either traveling in the network (store) or is received by a

destination.

C. Second Refinement (xyM12): Channels Introduction

This second refinement decomposes the event FORWARD of

xyM1 into two events:

Fig. 9. Channel Introduction

• A refinement of the event FORWARD depicts the passing

of a packet (p) from a switch (x) to a channel (ch), leading

to a neighbour (y).

• An event FROM_CHANNEL_TO_NODE models the transfer

of a packet (p) from a channel (ch) to a connected switch

(n).

The machine xyM12 also defines some properties:

ran(c) ∩ ran(switch) = ∅

The invariant expresses that each sent packet is either in a

channel or in a switch. A sent packet can not be in a channel

and in a switch at the same time.

D. Third Refinement (xyM13): Output logic Introduction

This refinement allows us to introduce the structure of a

switch gradually. We express, in xyM13, that switches possess

output ports (see Fig.10). The abstract event FORWARD is

further decomposed:

Fig. 10. Adding Output Ports

• The refinement of event FORWARD adds the fact that a

packet (p), which is leaving a switch (x) and heading for

a neighbour (y), first enters the output logic (op) of the

switch (x) leading to (y).

• A new event OUTPUT_BUFFER_TO_CHANNEL models the

transition of a packet (p) from an output port (op) to a

channel (ch) leading to a target switch (n).

Moreover, new properties and invariants are defined in xyM13:

inv1 : ran(chan) ⊆ ran(sent)
inv2 : ran(outputbuffer) ⊆ ran(sent)
inv3 : ran(outputbuffer) ∩ ran(chan) = ∅

The invariant inv1 expresses that each packet transiting in a

channel (ch) has been sent by a source (s); inv2 demonstrates

that each packet transiting in an output port (ch) has been sent

by a source (s); inv3 presents the fact that a packet is either

in an output port or in a channel, the packet can not be in an

output port and a channel between two switches at the same

time.

E. Fourth Refinement (xyM14): Input register Introduction

This refinement (xyM14) adds input ports to the structure of

a switch.

4



Fig. 11. Adding Input Ports

• The event SEND is refined: when a switch source (s) sends

a packet (p), the packet (p) is put in an input port (ip) of

the switch (s).

• The actions described by the abstract event FORWARD are

decomposed:

– The event SWITCH_CONTROL, a refinement of FOR-

WARD, models the passing of a packet (p), from an

input port (ip) of a switch (x), to an output port (op)

leading to a switch (y).

– The event OUTPUT_BUFFER_TO_CHANNEL presents

the transition of a packet (p), from an output port

(op), to a channel (ch) leading to a target switch (n).

– The event FROM_CHANNEL_TO_INPUT_BUFFER

demonstrates the transition of a packet (p) from a

channel (ch) to an input port (ip) of a target switch

(n).

The machine xyM14 also presents properties and invariants:

inv1 : ran(inputbuffer) ⊆ ran(sent)
inv2 : ran(outputbuffer) ∩ ran(inputbuffer) = ∅

inv3 : ran(inputbuffer) ∩ ran(chan) = ∅

The invariant expresses that each packet transiting in an input

port (ip) has been sent by a source (s); inv2 demonstrates that

each packet is transiting either in an output port (op) or an in

input port (ip); inv3 presents the fact that a packet is either in

an input port or in a channel, the packet can not be in an input

port and a channel between two switches at the same time.

F. Fifth Refinement (xyM15): Number of Messages per Switch

This refinement introduces the storage of packets in a

switch: each output port of a switch can store a number of

packets up to a limit (outputplaces) of three messages. Packets

can be blocked in a switch, because of wait or occupation

signals from neighbours.

The event SWITCH_CONTROL is refined, and adds the fact

that following the transition of a packet from an input port of

a switch (x) to an output port, if the switch (x) is not busy

anymore, it sends a release signal to the previous switch linked

to the input port. A new event RECEIVE_BUFFER_CREDIT

models the receiving of a release signal by a switch (n).

G. Sixth Refinement (xyM16): Algorithm XY

The last model xyM16 describes the architecture of the

network (graph): graph has a mesh topology (see Fig.12). A

numerical limit (nsize) is introduced to bound the number of

routers in the dimensions x and y of the network topology; the

network will be a regular 2D-Mesh, with a size (nsize × nsize);

each switch is coupled with unique coordinates (x, y), with

x ∈ [0..nsize− 1] and y ∈ [0..nsize− 1].

Fig. 12. A regular Mesh with 2D-coordinates

This coordinate system allows to be more precise on the

neighbours of each switch, as seen in figure 12. This model

also gives a fine-grained description of the structure of a switch

(see Fig.13):

• A switch has generally four output ports and four input

ports (usually labelled N, S, E and W), used for commu-

nication with neighbours.

• However, two more cases are distinguished:

– Boundary switches in the corner have only two

output ports and two input ports (N-E, N-W, S-E,

S-W).

– Other boundary switches have three output ports and

three input ports (N-S-E, N-S-W).

Fig. 13. Switches: Structure and Links

Moreover, this concrete model also introduces the XY routing

algorithm:

D : destination. Coordinates (Dx, Dy)

C : current node. Coordinates (Cx, Cy)

if (Cx > Dx) :

return W; (Case 1)

if (Cx < Dx) :

return E; (Case 2)

if ((Cx = Dx) ∨ ((Cx > Dx) ∧ W is blocked) ∨

((Cx < Dx) ∧ E is blocked)) :

if (Cy < Dy) :

return N; (Case 3)

if (Cy > Dy) :

return S; (Case 4)

The cases of the XY routing algorithm are matched with

refinements of event SWITCH_CONTROL:

• SWITCH_CONTROL_LEFT models Case 1: a packet (p) is

transmitted, from an input port of a switch (x), to an

output port, leading to a neighbour (y), located at W. This

event is triggered if the x-coordinate of the destination

(d) (of the packet(p)) is inferior to the x-coordinate of

the current node (x).

5



• SWITCH_CONTROL_RIGHT models Case 2: a packet (p)

is transmitted, from an input port of a switch (x), to an

output port, leading to a neighbour (y), located at E. This

event is triggered if the x-coordinate of the destination

(d) (of the packet(p)) is superior to the x-coordinate of

the current node (x).

• SWITCH_CONTROL_UP models Case 3: a packet (p) is

transmitted, from an input port of a switch (x), to an

output port, leading to a neighbour (y), located at N. This

event is triggered if the y-coordinate of the destination (d)

(of the packet(p)) is superior to the y-coordinate of the

current node (x), and either, if the x-coordinate of the

destination (d) is equal to the x-coordinate of the current

node (x), or if the packet (p) can not transit along the

x-axis.

• SWITCH_CONTROL_DOWN models Case 4: a packet (p)

is transmitted, from an input port of a switch (x), to an

output port, leading to a neighbour (y), located at S. This

event is triggered if the y-coordinate of the destination

(d) (of the packet(p)) is inferior to the y-coordinate of

the current node (x), and either, if the x-coordinate of the

destination (d) is equal to the x-coordinate of the current

node (x), or if the packet (p) can not transit along the

x-axis.

V. CONCLUSION

This paper presents an incremental development of a

Network-on-Chip Architecture, using the Event B formalism.

The formalization of the architecture is presented from an

abstract level to a more concrete level in a hierarchical

way. The complexity of the development is measured by the

number of proof obligations which are automatically/manually

discharged (see table I).

Model Total Auto Interactive

xyC0 3 3 100% 0 0%

xyC1 6 6 100% 0 0%

xyC12 0 0 100% 0 0%

xyC13 0 0 100% 0 0%

xyC14 1 1 100% 0 0%

xyC15 5 0 0% 5 100%

xyM0 26 25 96.15% 1 3.85%

xyM1 38 28 73.68% 10 26.32%

xyM12 72 45 62.5% 27 37.5%

xyM13 74 37 50% 37 50%

xyM14 67 23 34.33% 44 65.67%

xyM15 24 14 58.33% 10 41.67%

xyM16 26 18 69.23% 8 30.77%

Total 342 200 58.48% 142 41.52%

TABLE I
SUMMARY OF PROOF OBLIGATIONS

We remark that for context xyC15 and machine xyM14, there are

more interactive proofs that automatic ones. This is explained

by the fact that a majority of these interactive proofs are

quasi-automatic: the proofs did not need tough efforts (neither

importing hypotheses or simplifying goals, etc.), the mere

usage/running of provers (provided by the RODIN platform)

allowed us to discharge these obligations. Contrary to the

verification by simulation only, our work provides a framework

for developing the Network-on-Chip Architecture and the XY

routing algorithm using essential safety properties together

with a formal proof that asserts its correctness.

As a part of our future efforts, we consider the translation

of the most concrete (detailed and close to algorithmic form)

model into an intermediate language, from which hardware

description (e.g. in VHDL) can be extracted. Moreover, we

note that the first levels of the Event B design of the NoC Ar-

chitecture express general cases of routing methologies and fall

in the interesting domain of reusable and generic refinement-

based structures [3, 9]. We plan to investigate further on this

domain of genericity and reusability of proof-based models.

ACKNOWLEDGMENT

This work has been financed by the joint project STIC-

Algérie 2011-2013 between the Université de Tiaret and the

research group MOSEL/VERIDIS on the formal developent

of FPGA circuits.

REFERENCES

[1] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
2010.

[2] J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and
incremental development of ieee 1394 tree identify protocol. Formal

Asp. Comput., 14(3):215–227, 2003.
[3] M. B. Andriamiarina, D. Méry, and N. K. Singh. Revisiting Snapshot

Algorithms by Refinement-based Techniques. In PDCAT. IEEE Com-
puter Society, 2012.

[4] R.-J. Back and K. Sere. Stepwise refinement of action systems.
Structured Programming, 12(1):17–30, 1991.

[5] D. Cansell, C. Tanougast, and Y. Beviller. integration of the proof
process in the design of microelectronic architecture for bitrate mea-
surement instrumentation of transport stream program mpeg-2 dvb-t.
2004.

[6] S. Jovanovic, C. Tanougast, and S. Weber. A new high-performance
scalable dynamic interconnection for fpga-based reconfigurable systems.
pages 61–66, 2008.

[7] C. Killian, C. Tanougast, F. Monterio, and A. Dandache. Online routing
fault detection for reconfigurable noc. In International Conference on

Field Programmable Logic and Applications, 2010.
[8] G. T. Leavens, J.-R. Abrial, D. S. Batory, M. J. Butler, A. Coglio,

K. Fisler, E. C. R. Hehner, C. B. Jones, D. Miller, S. L. P. Jones,
M. Sitaraman, D. R. Smith, and A. Stump. Roadmap for enhanced
languages and methods to aid verification. In S. Jarzabek, D. C. Schmidt,
and T. L. Veldhuizen, editors, GPCE, pages 221–236. ACM, 2006.

[9] D. Méry. Refinement-based guidelines for algorithmic systems. Int. J.

Software and Informatics, 3(2-3):197–239, 2009.
[10] Project RODIN. Rigorous open development environment for complex

systems. http://www.eventb.org/, 2004-2010.

6


