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Abstract. In this paper, we present an improved Laplacian smoothing
technique for 3D mesh denoising. This method filters directly the vertices
by updating their positions. Laplacian smoothing process is simple to
implement and fast, but it tends to produce shrinking and oversmoothing
effects. To remedy this problem, firstly, we introduce a kernel function in
the Laplacian expression. Then, we propose to use a linear combination
of denoised instances. This combination aims to reduce the number of
iterations of the desired method by coupling it with a technique that leads
to oversmoothing. Experiments are conducted on synthetic triangular
meshes corrupted by Gaussian noise. Results show that we outperform
some existing methods in terms of objective and visual quality.

1 Introduction

Denoising is one of the greatest challenges in image processing and computer
graphics. Fast and efficient algorithms are needed to recover noised data (images
and 3D models) while preserving their geometrical structure. Measurements are
perturbed by noise in all real applications. Notably, 3D models acquisition using
scanners. These scanners provide the real scanned object as a 3D digital mesh,
usually represented as a triangular mesh, that can be manipulated by any 3D
processing tool, for many purposes in various fields such as medical imaging,
video games, etc ...

In recent years, various partial differential equations (PDE)-based techniques
have been used for 2D image denoising such as the anisotropic diffusion proposed
by P. Perona et al. [7]. 2D image denoising techniques were adapted for 3D mesh
denoising. Taubin [8] proposed a Laplacian-based technique called Laplacian flow
that repeatedly adjusts the location of each vertex to the geometric center of its
vertex neighborhood. This technique is quite simple and fast but produces an
oversmoothing result. Many anisotropic diffusion methods were proposed such
as the diffusion and curvature flow technique presented in [9], this method gives
better results than the Laplacian flow technique but takes more processing time.

Y. Zhang et al. proposed an efficient diffusion technique [1] based on solving
a nonlinear discrete partial differential equation. M. El Hassouni et al. improved
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this technique [2] by using other diffusion functions such as Laplacian, Reduced
Centered Gaussian and Rayleigh function instead of the Cauchy function.

In this article, we propose a vertex-based method for 3D mesh denoising. The
main idea is to reduce the smoothing effect by introducing a kernel function
in the Laplacian flow expression. Then we present a linear combination of de-
noised instances in order to reduce the number iterations of the desired technique
by combining it with a fast (oversmoothing) technique like the local averaging
method. Experimental results show that the proposed work gives competitive
results in comparison with existing methods while reducing the processing time.

This paper is organized as follows : Section 2 presents the problem formulation.
Section 3 describes the Laplacian smoothing method. In section 4, we present
the proposed work. Section 5 deals with experimental results. Finally, we give
some concluding remarks in Section 6.

2 Problem Formulation

A 3D object is usually presented as polygonal or triangular mesh. A triangle
mesh M denotes a triple M = (V , E , T ) where V = {v1, ..., vk} represents the set
of vertices, E = {eij} denotes the set of edges and T = {t1, ..., tn} denotes the
set of triangles. An edge eij consists of two vertices {vi, vj} and we say that two
vertices vi, vj ∈ V are adjacent if the are connected by an edge eij ∈ E (and we
write vi ∼ vj). We define the neighborhood of a vertix vi, the set of adjacent
vertices v∗i = {vj ∈ V : vi ∼ vj}. The degree of a vertex vi is the number of the
neighboring vertices d(i) = | v∗i |. We denote by t∗i the set of all triangles sharing
a vertex or an edge with a triangle ti ∈ T and by T (v∗i ) the set of triangles of
the neighborhood v∗i .

We denote by n(tj), with tj ∈ t∗i a triangle, the unit normal of tj and by ni

the normal at a vertex vi given by the following formula :

ni =
1
di

∑

tj∈T (v∗
i )

n(tj) (1)

We denote by A(tj) the area of the triangle tj . The mean edge length l of the
mesh is given by :

l =
1
|E|

∑

eij∈E
‖ eij ‖ (2)

Where {
‖ eij ‖=‖ vi − vj ‖ if vi ∼ vj

‖ eij ‖= 0 otherwise

Measurements are perturbed by noise (supposed additive in our case) in all real
applications. This can be formulated by :

v̂ = v + η (3)
Where v̂ is the observed vertex, v is the original one and η is a random noise
process assumed to be Gaussian.
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3 Laplacian Smoothing

Laplacian Smoothing is a very simple PDE-based smoothing approach formu-
lated as follows [8]:

vi ← vi +
∑

vj∈v∗
i

(
vj − vi

di

)
(4)

This process can be done repeatedly to correct the location of each vertex to the
geometric center of its neighboring vertices. This approach is simple and fast,
however, it produces an oversmoothing result after few iterations.

Note that the Laplacian Smoothing is just a special case of the Weighted
Laplacian Filter [11], also called Local Averaging:

vi ← vi +
1∑

vj∈v∗
i
wij

∑

vj∈v∗
i

wij(vj − vi) (5)

Where wij are the weights defined as :

wij =

{
> 0 if vj ∈ v∗i
0 otherwise

For wij = 1 if vj ∈ v∗i we retrieve the Laplacian Smoothing update rule,∑
vj∈v∗

i
wij = di.

4 Proposed Method

In this section, we present at first an improved version of the Laplacian technique
by introducing a kernel function. Then, we propose a linear combination of two
denoised instances in order to reduce the number of iterations.

4.1 Kernel Based Laplacian Smoothing

The proposed approach consists in introducing a kernel function g to attenuate
the added term, hence, overcome the oversmoothing problem.

The update rule is given by :

vi ← vi +
∑

vj∈v∗
i

(
vj − vi

di

) (
g(|∇vi|)

ρ

)
(6)

Where

|∇vi| =

⎛

⎝
∑

vj∈v∗
i

‖ vi√
di

− vj√
dj

‖2
⎞

⎠
1/2

(7)
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g is a kernel function and ρ is a parameter to estimate, it can be either a scalar
or a 3D vector (x,y,z). In this paper, we are going to use ρ as a scalar.
Another update rule can also be used, inspired by [1]:

vi ← vi +
∑

vj∈v∗
i

(
vj − vi

di

) (
g(|∇vi|) + g(|∇vj |)

ρ

)
(8)

The same functions in [2] can be used as a kernel function. Note that for the
following ρ value applied to the equation (8), we retrieve the formula presented
in [1] :

⎧
⎪⎨

⎪⎩

ρ =
√

didj

di+
√

didj+β

β =
−vj

√
didj+vidi

vj−vi

The update rule (6) is the one that will be evaluated in this paper.

4.2 Linear Combination

The following method consists in combining 2 techniques using the following
linear formula :

M̃ = αM̃1 + (1 − α)M̃2, α ∈ [0, 1] (9)

Where M̃1 is the denoised mesh with the method 1 and M̃2 and denoised mesh
with the method 2.

This technique can be used to reduce the number of iterations of the desired
technique by coupling it with a fast method that leads quickly to oversmoothing
(like the Local Averaging).

The only combining approach that will be evaluated in this paper is the Local
Averaging.The version used is the same one in [10]. Other combinations may give
better results.

5 Experimental Results

This section presents simulation results where the proposed method is applied
to 3D models contaminated by an additive zero-mean Gaussian noise.
For ease to use, we developed a simple Graphical User Interface using Mat-
lab/Java and the toolbox graph [10]. The 3D objects used in this section are
presented in Figure 1. To quantify the performance of the proposed method
in comparison with other 3D mesh denoising techniques, we compute the face-
normal error metric [4] given by :

Efne =
1

A(M̂)

∑

t̂i∈T̂

A(t̂i) ‖ n(ti)− n(t̂i) ‖
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Where n(tj) and n(t̂i) are the unit normals, A(t̂i) is the area of the triangle t̂i
and A(M̂) is the total area of the mesh defined by the following formula :

A(M̂) =
∑

t̂i∈T̂

A(t̂i)

We also use the visual error metric given by :
{

Eve = 1
2m

(∑m
i=1 ‖ vi − v̂i ‖2 +

∑m
i=1 ‖ I(vi)− I(v̂i) ‖2

)

I(vi) = vi − 1
di

∑
vj∈v∗

i
vj

This metric is computed on mesh vertices.

Fig. 1. 3D meshes used for experimentation : (a) mushroom (226 vertices), (b) nefertiti
(299 vertices)

For all methods, parameters have been tuned experimentally in order to get
the best trade-off between the visual error and the face-normal error for each
technique. Also, We choose to report results only for one Kernel function and one
noise level for each processed object. Here, use Laplacian as a Kernel function
for all experiments with (c = 2).

Fig. 2. Mesh denoising results for the mushroom instance. (a) Noisy 3D model σ² =
0.0015, (b) Laplacian smoothing (1 iteration), (c) Local Averaging (1 iteration), (d)
Improved vertex-based diffusion (5 iterations), (e) Kernel-based Laplacian (1 iteration,
ρ = 0.65) , (f) Linear combination : Local Averaging (1 iteration) + improved vertex-
based diffusion, (3 iterations, α = 0.53), (g) Linear-combination : Local averaging (1
iteration) + kernel-based Laplacian (3 iterations, α = 0.58, ρ = 2)
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Figures 3 and 5 show the visual errors and Face-normal error for compared
denoising methods. We remark that proposed method (kernel based Laplacian
(e)) outperforms the standard Laplacian smoothing (b) and the improved vertex-
based diffusion (d). Note that only one iteration is sufficient in this case, while
5 iterations were needed for the improved vertex-based diffusion. According to
these graphs, linear combination gives better results for the improved vertex-
based diffusion (f) while reducing the number of iterations. Combining proposed
method and local averaging improves slightly the denoising performance.

Fig. 3. Visual Error and Face-normal error for the mushroom object

Fig. 4. Mesh denoising results for the nefertiti instance. (a) Noisy 3D model σ² =
0.001, (b) Laplacian smoothing (1 iteration), (c) Local Averaging (1 iteration), (d)
Improved vertex-based diffusion (3 iterations), (e) Kernel-based Laplacian (1 iteration,
ρ = 0.72) , (f) Linear-combination : Local Averaging (1 iteration) + improved vertex-
based diffusion (1 iteration, α = 0.3), (g) Linear-combination : Local averaging (1
iteration) + kernel based Laplacian (1 iteration, α = 0.28, ρ = 3)
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Figure 2 and 4 are given to assess the visual impact of the denoising. We can
see that for both case the Kernel Based Laplacian processed objects exhibit a
more appealing visual appearance.

Note that Local Averaging using one iteration was the only technique used in
the linear combination scheme. Other combinations may give better results.

Fig. 5. Visual Error error and Face-normal error for the nefertiti object

6 Conclusion

We presented in this paper an kernel-based Laplacian smoothing method for 3D
mesh denoising. The main idea is to reduce the smoothing effect by introducing
a kernel function. Then we proposed a linear combination of denoised instances
by different techniques. This method can be used to reduce the number of it-
erations in iterative denoising techniques of the desired method by combining
it with a very fast (oversmoothing) technique like the local averaging method.
Experimental results showed that the kernel-based Laplacian method proposed
outperforms the standard Laplacian technique and the improved vertex-based
diffusion [2] while using only 1 or 2 iterations. The linear-combination technique
gave also good results while reducing the number of iterations. Using other tech-
niques instead of the Local Averaging may give better results.
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