A robust learning algorithm for evolving first-order Takagi-Sugeno fuzzy classifiers

Abstract : We present in this paper a new method for the design of customizable self-evolving fuzzy rule-based classifiers. The presented approach is based on a first-order Takagi-Sugeno fuzzy inference system. This approach involves first an incremental clustering and adaptation of the premise part of the system, and secondly, an incremental learning of the linear consequents parameters of the system using a modified version of the Recursive Least Square method. We use this method to build an evolving handwritten gesture recognition system. The self-adaptive nature of this system allows starting the learning process by few learning data, to continuously adapt and evolve according to any new data, and to keep robust when introducing a new unseen class at any moment in the life-long learning process.
Type de document :
Communication dans un congrès
Conférence Francophone sur l'Apprentissage Automatique, 2010, Clermont-Ferrand, France. 2010
Liste complète des métadonnées

https://hal.inria.fr/hal-00763299
Contributeur : Abdullah Almousa Almaksour <>
Soumis le : lundi 10 décembre 2012 - 14:56:18
Dernière modification le : mardi 24 avril 2018 - 13:50:58
Document(s) archivé(s) le : lundi 11 mars 2013 - 12:36:02

Fichier

AlmaksourCAP10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00763299, version 1

Citation

Abdullah Almaksour, Eric Anquetil. A robust learning algorithm for evolving first-order Takagi-Sugeno fuzzy classifiers. Conférence Francophone sur l'Apprentissage Automatique, 2010, Clermont-Ferrand, France. 2010. 〈hal-00763299〉

Partager

Métriques

Consultations de la notice

235

Téléchargements de fichiers

124