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Abstract—We propose a new linear-regression model for the
estimation of the path-loss exponent and the parameters of
the shadowing from the propagation-loss data collected by the
mobiles with respect to their serving base stations. The difficulty
consists in deriving the parameters of the distribution of the
propagation loss with respect to an arbitrary base station from
these regarding the strongest one. The proposed solution is based
on a simple, explicit relation between the two distributions in
the case of infinite Poisson network and on the convergence of
an arbitrary regular (in particular hexagonal) network to the
Poisson one with increasing variance of the shadowing. The new
approach complements existing methods, in particular the one
based on COST Walfisch-Ikegami model, which does not allow for
the shadowing estimation and is not suited for indoor scenario.

Index Terms—Path-loss exponent, log-normal shadowing, cel-
lular network, outdoors/indoors, linear regression, hexagonal,
Poisson, comparison.

I. INTRODUCTION

Modeling of the propagation loss is an important element
of the design and performance analysis of wireless systems.
This propagation loss results from various physical mecha-
nisms such as reflection, diffraction, scattering and multi-path
interference; [1, §3.4]. In the statistical approach, the propa-
gation loss is typically modeled by three factors: deterministic
function of the distance, which represents average path-loss on
the given distance in the network, and two random variables,
called shadowing and fading ([2]) normalized to have mean
one, that take into account in a statistical manner the deviation
from this average, observed for each particular pair of emitter
and receiver. The deterministic path loss function is commonly
assumed to be of the form (Kr)β where K,β are constants,
with β called path-loss exponent. Shadowing S, which takes
into account reflection, diffraction, and scattering, is often
assumed to have log-normal distribution, with E[S] = 1,
and parametrized by its variance or, more often, the standard
deviation σdB(S) of S expressed in dB (sometimes called log-
arithmic standard deviation). Fading, that takes into account
additional small-distance-(and-time)-scale variability due to
multi-path interference will not be considered in this paper
(hence we are interested in the propagation-loss averaged over
this small-scale variability).

The parameters of this simple model need to be specified for
every given network scenario. The path-loss exponent β and
the constant K for outdoor communications (when the mobile
is outside a building) are usually taken from generic models
(like Okumura-Hata’s or Walfisch-Ikegami). There are no
well established analogous models for indoor communications
(mobile inside a building). Regarding the shadowing, σdB(S) is
usually estimated from exhaustive, time consuming and costly
real-network measurements.

In this paper we propose a novel approach consisting in
estimation of the path-loss exponent β and some function of
K and σdB(S) of the shadowing (precisely the value of K̃ =

K/
√
E[S2/β ]) directly from the measurements regarding the

propagation loss between base stations (BS) and their served
mobiles, usually collected by the operators.

The method is valid regardless of the (indoor or outdoor)
scenario. For outdoor scenario, our model can be validated
(regarding the path-loss exponent β) and combined (to fix the
normalizing constant K) with Okumura-Hata’s or Walfisch-
Ikegami model, thus allowing to estimate σdB(S) of the
outdoor shadowing without additional real-network measure-
ments.

Even if one does not have any additional information to
estimate separately K and σdB(S), knowing the value of K̃
is enough to express the distribution of many quantities of
interest related to propagation, like path-loss with respect to
the serving BS, or the interference factor.

Our approach is based on the following two facts:
• A sufficiently large Hexagonal (“regular”) network of BS,

subject to sufficiently large variance of the shadowing, is
perceived at a given location statistically in the same man-
ner (we make this precise using Kolmogorov-Smirnov
tests) as some equivalent infinite Poisson (equivalent “ir-
regular”) network of BS without shadowing. This means
that the joint distribution of the propagation-losses from
the strongest BS, second-strongest, and so on, tend to be
equal in the two models.

• For the infinite Poisson network of base stations, there
exists a simple analytical expression for the cumulative
distribution function (cdf) of the propagation loss be-
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tween a given location and the corresponding strongest
BS.

Fitting the expression for the cdf in the equivalent “irregular”
(Poisson) network to the data collected by mobiles, allows
to estimate the path-loss exponent β and the value of K̃.
Moreover, on a doubly logarithmic scale, this fitting boils
down to a simple linear regression problem, with 2/β exponent
being the multiplicative factor.

A. Related works

There are several models for propagation loss in outdoors.
Deterministic (“exact”) techniques, such as the ray tracing [3–
6] are time consuming and require a precise relief and
building data basis. On the other hand, statistical techniques
as Okumura-Hata’s model [7, 8] (usually complemented by
the log-normal shadowing) do not require such relief in-
formation, and give the loss due to distance with a few
number of parameters. Other examples are Spatial Channel
Model [9] proposed by the 3GPP and ITU-Advanced Channel
Model [10]. An intermediate approach consists in providing
parameters describing antennas, buildings, streets, etc, which
allow to construct first statistical models for the relief, from
which macroscopic propagation loss is derived next. This
approach is adopted in COST Walfisch-Ikegami model [11,
§4.4.1].

Taking into account indoor loss is more tricky. Some studies
can be found in [12, 13] that account for the indoor effect
through an additional log-normal random variable, or [14–16],
which take into account building parameters, and finally [3],
which extends the ray-tracing method.

We remark also that, in a completly different scenario of
sensor networks, [17] proposes different path-loss estimation
technique based on the knowledge of the probability distribu-
tion of the inter-sensor distance.

II. MODEL DESCRIPTION AND METHODOLOGY

A. Propagation in Network with Shadowing

Denote by Φ = {Xi}, Xi ∈ R2, a finite or infinite set
of locations of base stations in the network. For a given BS
X ∈ Φ and a given location y ∈ R2 on the plane we denote by
LX(y) the (time-average, i.e., averaged out over the fading)
propagation-loss between BS X and location y. We assume
that LX(y) = (|K(X−y)|)β/SX(y), where K > 0 and β > 2
are some constants and SX(y) is a log-normal random variable
of shadowing with mean 1, for every X ∈ Φ, y ∈ R2. Recall
that such a mean-1 log-normal variable S can be expressed
as S = eµ+σN where N is the standard Gaussian random
variable (with mean 0 and variance 1) with µ = −σ2/2.
Note that path-loss expressed in dB, i.e., dB(LX(y)), where
dB (x) := 10 × log10 (x) dB, is a Gaussian random variable
with standard deviation σdB(S) = σ10/ log 10dB.1

1 The assumption E[S] = 1 is a matter of convention. This convention
is adopted, e.g., in the COST Walfisch-Ikegami model, cf. [11, §2.1.6 and
§4.4.1]. Another option, taken e.g. in [2] is to assume E[dB(S)] = 0dB
which is equivalent to our model with the constant K replaced by eσ/(2β)K.

In what follows we will always assume that the random
fields {SXi(·)} are independent across BSs Xi. Our model
does not require any particular assumption on the stochastic
dependence between variables {SXi(y)} across y for fixed Xi

(since the whole analysis of this paper will regard a given fixed
location y).

B. Serving Base Station

We assume that a given location y ∈ R2 is served by the
BS X∗y ∈ Φ with respect to which it has the weakest path-loss
LX∗

y
(y) , i.e, such that LX∗

y
(y) ≤ LX(y) for all X ∈ Φ, with

any tie-breaking rule. By the definition L∗(y) := LX∗
y
(y) is

the path-loss experienced by a user located at y with respect
to its serving BS.

The distribution of L∗(y), for a “typical” location y in the
network, can be estimated form path-loss data reported by
mobiles to their serving BS, and usually collected by the
operators. The problem is that no analytical form of this
distribution is known for a usual (say regular hexagonal)
architecture Φ of BS. Hence there is no expression to fit the
empirical data for the estimation of parameters. To cope with
this deficiency, we use an infinite Poisson architecture which
allows for an explicit expression of the cdf of L∗(y), as shown
in the next section. The reason for which we can do this is that
any large, regular (as e.g. hexagonal) network, with sufficiently
large variance of the shadowing can be approximated by an
“equivalent” Poisson network, as explained in Section II-E.

C. Poisson Network Architecture

In this section we assume that the BS locations Φ are
modeled by a homogeneous Poisson point process of intensity
λ (BS per unit of surface). We will give an expression for the
cdf of the propagation loss from the serving BS L∗ = L∗(0),
where by the stationarity we have assumed (without loss of
generality) that the mobile is located at the origin y = 0.

Fact 1: For Poisson network with intensity λ and
arbitrary distribution of S we have Pr (L∗ ≥ t) =
exp

[
−λπE

[
S2/β

]
t2/β/K2

]
, provided E[S2/β ] <∞.

Proof: The expression can be derived from [18, Prop. 5.5]
and the general formula for the distribution of the extremal
shot-noise; cf. [19, Prop. 2.13]. 2 The key steps are as follows:

Pr (L∗ ≥ t) = E

[
exp
[ ∑
Xi∈Φ

log1(LXi(0) ≥ t)
]]

= exp

[
−λ
∫
R+

∫
R2

1((K|x|)β/s < t)dxFS(ds)

]
,

where FS(·) is a general cdf of S. Passing to polar coordinates,
and straightforward evaluation of the integrals complements
the proof.
For the normalized (E[S] = 1) log-normal variable S we have
E
[
S2/β

]
= exp[σ2(2− β)/β2].

Remark 2: The result regarding the insensitivity of the
distribution of L∗ in the infinite Poisson model, with respect to
the distribution of S, given the E[S2/β ], can be generalized to

2It can be aslo found in [20, Corollary 7.4.2], or [21, §3.1]).
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any network characteristic that is entirely defined by the col-
lection of propagation losses {LXi(0) = (K|Xi|)β/SXi(0) :
Xi ∈ Φ} experienced by the mobile at the given location (as,
e.g., the value of the signal-to-interference ratio with respect to
the serving station); cf. [18, the proof of Prop. 5.5]. This means
that the infinite Poisson network with an arbitrary shadowing
S is perceived at a given location statistically in the same
manner as an “equivalent” infinite Poisson with “constant
shadowing” equal to sconst = (E[S2/β ])β/2 (to have the
same moment of order 2/β). The model with such a “constant
shadowing” boils down to the model without shadowing
(S ≡ 1) and the constant K replaced by K̃ = K/

√
E[S2/β ].

D. Linear-regression estimation of parameters

We will now show how to estimate the propagation charac-
teristics from measurements of the distribution of the propaga-
tion loss with the best server using Poisson model. We deduce
from Fact 1 that

log (− log (Pr (L∗ ≥ log t))) = log

(
λπE

[
S2/β

]
K2

)
+

2

β
t

= a+ bt , (1)

where b = 2
β and a = log

(
λπE

[
S2/β

]
/K2

)
= log(λπ/K̃2).

Consequently, if the cdf of L∗ is available from measurements
(or simulations), then we may get a and b by a linear regression
between log (− log (Pr (L ≥ t))) and log t. This characterizes
the path-loss exponent β and the constant K̃ to be used with
the ”equivalent” infinite Poisson model without shadowing;
cf. Remark 2. (Note that the mean number of base-stations λ
per unit of surface is known by the operator.)

Regarding the original model with the normalized log-
normal shadowing, the above expression for K̃ gives the
following equation involving the parameters K and σ.

Ke
σ2 β−2

2β2 = K̃ . (2)

Remark 3: In the case of outdoor measurements, the above
linear-regression estimation approach can be validated and
completed by other existing propagation models, for example
the COST Walfisch-Ikegami propagation model [11]. The
validation consists in comparison of the obtained values of
β. Completion consists in using the value of the constant K
given by this complementary method to deduce from (2) the
unknown value of σ (characterizing the shadowing ignored by
COST Walfisch-Ikegami model). Following this approach we
obtain

σdB(S) =
10

log 10

(
2β2

β − 2
log
(K̃
K

))1/2

dB . (3)

E. Approximating Regular Networks with Log-Normal Shad-
owing by Poisson Ones

Having seen how to use Poisson model to estimate the
parameters of the propagation, in this section we will show
why and when one can use this model in the context of a
“regular” network. Due to space constraint, we will consider

only hexagonal network architectures and we will only statisti-
cally compare the empirical (simulated) distribution of L∗ for
such networks to that given in Fact 1 for the Poisson network.3

Consider the hexagonal network ΦNH of N ×N BS located
in the rectangle [−N∆/2, N∆/2)× [−N

√
3∆/4, N

√
3∆/4),

where ∆ is the distance between two adjacent stations, and
serving users located in this rectangle. Note that the density
of such a network is equal to λ = 2/(∆2

√
3). In order

to be able to neglect the boundary effects, let us assume
the toroidal metric (“wrap around” the network, see [18] for
details). Consequently, the distribution of L∗ = L∗(y) does
not depend on the location y. A closed form expression for
this distribution is not known, however, in the case of log-
normal shadowing with sufficiently large values of σdB(S), this
distribution can be approximated (fitted) by the corresponding
expression for the infinite Poisson network given in Fact 1,
and this even for quite small size N of the (finite) hexagonal
network.

To support this claim, we simulate the hexagonal network
and compare the empirical cdf of L∗ to that given in Fact 1
with the same parameters. We observe that the supremum
(Kolmogorov) distance between the two cdf decreases in
σdB(S). To make this observation more quantitative, we per-
form Kolmogorov-Smirnov (K-S) test (which is based on this
distance; cf. [23]) and on Figure 1 we show the values of
σdB(S), in function of β for N = 6, 30, 50, above which the
K-S test does not allow to distinguish the empirical cdf for
the hexagonal model (based on 300 observations) from the
analytical (Poisson case) expression, at the 99% confidence
level, for 9/10 realizations of the hexagonal network. Figure 2
visualizes the goodness of fit for these critical values of σdB(S)

for N = 6 (i.e., 6× 6 = 36 BS network).

III. NUMERICAL EXPERIMENTS

We will apply now the approach described in previous
sections, using simulation and measurement regarding L∗,
realized and collected in the cellular network of Orange in
a certain large city in Europe, with density λ = 5.09km−2.
We shall deduce respectively the outdoor then the indoor
propagation characteristics of this dense urban area.

A. Outdoors

The BS positions are these of the UMTS network of Orange
in a certain large city in Europe, operating with the carrier
frequency of 2.1GHz. The distribution of the outdoor loss L∗

with the serving BS is obtained by simulations carried with
StarWave, a propagation software developed by Orange Labs.4

The linear fitting (1) of the empirical data obtained from these

3We believe, a more general result, regarding convergence of one-
dimensional characteristics of arbitrary (regular in some sense) networks, to
the Poisson limit, when σ → ∞, can be worked out following arguments
similar to these used in the proof of the random-translations convergence
in [22, Theorem 9.4.II].

4This tool uses detailed relief and building’s databases and accounts for the
diffraction, the guided propagation as well as the reflection on the relief.
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Poisson model (dashed lines) for β = 2, 2.5, 3, . . . , 5 (curves from left to
right) and the corresponding critical values of σdB(S) = σdB(S)(β) taken
from Figure 1.

simulations gives the values β = 3.85 and K̃ = 10 461km−1;5.
The curve given on Figure 3 shows all the couples of K and
σdB(S) characterized by (2).

Following Remark 3, we consider also the COST Walfisch-
Ikegami model for the same frequency 2.1GHz; 6. This model
gives the following values β = 3.80, K = 6 910km−1 for
the non-line-of-sight path-loss. Observe that the values of
β obtained by the two approaches are close to each other,

5The 95%-confidence intervals are β ∈ [3.34, 4.54], K̃ ∈
[3 377, 32 404]km−1; the Kolmogorov distance between the empirical cdf
and the estimated theoretical cdf is D = 0.274.

6The other network parameters are: BS antenna height 30m, mobile antenna
height 1.5m, percentage of buildings 70%, nominal building height 25m,
building separation 30m and street width 20m.
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Fig. 3. Standard deviation of the shadowing σdB(S) as function of the
constant K estimated from StarWave (2.1GHz) data for outdoors, by the
linear-regression method; estimated values are β = 3.85, K̃ = 10 461km−1.
The red point designates the values obtained by conjunction of this approach
with the COST Walfisch-Ikegami model.
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Fig. 4. Similar estimation as on Figure 3 from the real data (80%
indoors) collected in a 1.8GHz GSM network of Orange; β = 3.64.
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model for outdoor scenario for this frequency.

which may validate the novel approach for the data under
consideration. Plugging the above value of K into (3) allows
to derive the logarithmic standard deviation of the shadowing
σdB(S) = 11.2dB.

B. Indoors

We consider now the actual users’ data collected in the
GSM network of Orange operating with the carrier frequency
1.8GHz;7. The operator estimates that approximately 80% of
users are indoors and the remaining 20% outdoors. The linear

7In fact the measurements concern the network operating on two frequency
bands 1800MHz and 900MHz. Users connect first on 1800MHz, and in case
of a problem switch to 900MHz. Therefore the reported data may lead to an
underestimation of large values of the propagation loss.
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fitting (1) gives β = 3.64, K̃ = 36 622km−1;8. Figure 4
represents σdB(S) in function of K for these estimates. We are
not aware of any alternative model valid for indoor scenario,
similar to the COST Walfisch-Ikegami model, to validate these
estimates. The following approach to indoor scenario is often
adopted.

Let us assume that indoor conditions do not modify the
path-loss exponent β (which hence remains the same as
for the outdoor communications in the same network) but
modify only the values of the constants K and σdB(S). More
precisely, let us assume that the “overal” propagation loss can
be decomposed as (Koutr)

β/(Sout×Sin), where the constant
Kout and the normalized log-normal Sout correspond to the
outdoor scenario, and Sin is a log-normal random variable,
independent of Sout, with some mean E[Sin] (not necessarily
equal to one, reflecting additional mean indoor penetration
loss) and logarithmic standard deviation σdB(Sin) (reflecting
additional indoor loss variability). This model boils down to
our previous model of Section II-A with K = Kout × Kin,
where Kin = 1/E[Sin]1/β and σdB(S) = σdB(Sout)+σdB(Sin).

Following this approach, we can use the COST Walfisch-
Ikegami propagation model to obtain (for the carrier frequency
1.8GHz) Kout = 5 940km−1. It is also commonly believed
that σdB(Sout) does not depend on the frequency. Hence we
take our previous estimate σdB(Sout) = 11.2dB. These values
are depicted on Figure 4. The method does not allow to fix
Kin and σdB(Sin) but gives only some bounds. Indeed, they
should make K and σdB(S) lie on the curve given on Figure 4,
somewhere between the following two extremes: Kin = 1
with σdB(Sin) = 23.4dB (in which case indoors increases only
the variance of the propagation loss) and Kin = 4.09 with
σdB(Sin) = 0dB (in which case indoors increases only the
mean propagation loss).

IV. CONCLUSION

We have proposed a new method allowing to estimate the
parameters of the usual statistical model of the propagation
loss, including shadowing, using data reported by the mobiles,
regarding their propagation loss with respect to the serving
BS. This complements existing statistical methods Okumura-
Hata’s or COST Walfisch-Ikegami model, by allowing for
shadowing estimation.
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