
HAL Id: hal-00763387
https://inria.hal.science/hal-00763387

Submitted on 10 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Affine Data-Flow Graphs for the Synthesis of Hard
Real-Time Applications

Adnan Bouakaz, Jean-Pierre Talpin, Jan Vitek

To cite this version:
Adnan Bouakaz, Jean-Pierre Talpin, Jan Vitek. Affine Data-Flow Graphs for the Synthesis of Hard
Real-Time Applications. Proceedings of the 2012 12th International Conference on Application of
Concurrency to System Design, Jun 2012, Hamburg, Germany. pp.183-192, �10.1109/ACSD.2012.16�.
�hal-00763387�

https://inria.hal.science/hal-00763387
https://hal.archives-ouvertes.fr

Affine Data-Flow Graphs for the Synthesis of Hard Real-Time Applications

Adnan Bouakaz

University of Rennes 1 / IRISA

Rennes, France

adnan.bouakaz@irisa.fr

Jean-Pierre Talpin

INRIA / IRISA

Rennes, France

jean-pierre.talpin@inria.fr

Jan Vitek

Purdue University

West Lafayette, Indiana, USA

jv@cs.purdue.edu

Abstract—Data-flow models ease the task of constructing
feasible schedules of computations and communications of
high-assurance embedded applications. One key and open issue
is how to schedule data-flow graphs so as to minimize the
buffering of data and reduce end-to-end latency. Most of the
proposed techniques in that respect are based on either static
or data-driven scheduling. This paper looks at the problem
in a different way by considering priority-driven preemptive
scheduling theory of periodic tasks to execute a data-flow
program.

Our approach to the problem can be detailed as follows. (1)
We propose a model of computation in which the activation
clocks of actors are related by affine functions. The affine
relations describe the symbolic scheduling constraints of the
data-flow graph. (2) Based on this framework, we present
an algorithm that computes affine schedules in a way that
minimizes buffering requirements and, in addition, guarantees
the absence of overflow and underflow exceptions over com-
munication channels. (3) Depending on the chosen scheduling
policy (earliest-deadline first or rate-monotonic), we concretize
the symbolic schedule by defining the period and the phase of
each actor. This concretization guarantees schedulability and
maximizes the processor utilization factor.

Keywords-Data-flow graphs, Buffer minimization, Affine re-
lation, Priority-driven scheduling, Linear programming.

I. INTRODUCTION

Embedded systems are playing a crucial role in our life,

they are used in chemical and nuclear plants, aircraft flight

control systems, military systems, etc. The key properties

of such systems are functional determinism and schedule

feasibility. Functional determinism means that, for a given

set of inputs, the system will always produce the same

set of outputs. Schedule feasibility means that the system

will meet its deadlines even in the worst case scenario.

Ensuring those properties is difficult in case shared-memory

and traditional lock-based mutual exclusion protocols are

used for concurrency control. We propose to investigate a

data-flow concurrency model in order to exclude potential

for concurrency errors and race conditions. Furthermore, the

concurrency model we propose aims at simplifying the task

of synthesizing feasible schedules.

In that application and for this aim, data-flow graphs

offer simple modeling concepts to ease the engineering of

software and hardware architectures by waiving the burden

of explicitly specifying schedules for computations and

communications thanks to automated synthesis techniques

that can be developed in that framework [1]. A data-flow

graph models a program by of a set of actors communi-

cating through one-to-one FIFO channels. Hence, concur-

rency can be implemented without explicit synchronization

mechanisms and data races can be avoided at compile-time.

Previous experiments with data-flow modeling for real-time

Java with StreamFlex [2] and FlexoTask [3] demonstrated

its potential to assist software engineering of safety critical

applications with automated code generation techniques.

Case studies additionally helped to learn the need for a

precise semantic and an analytic framework to precisely

determine the size of communication channels between tasks

and to decide schedule feasibility.

In its seminal paper [4], Kahn provides a denotational

semantics of data-flow programs and shows under which

conditions a network of stream processes (so-called KPN)

is deterministic regardless of the way communications and

computations are scheduled in the network (i.e. in a latency-

insensitive manner). Any implementation strategy of KPNs

must obey a Kahn semantics [5] regardless of the chosen

static, data-driven, or demand-driven scheduling policy. In

a data-driven scheduling policy, an actor executes whenever

enough tokens are available on its input ports. In a demand-

driven scheduling policy, an actor executes when its outputs

are needed by another actor. Those scheduling policies tend

to complicate the schedulability analysis.

We consider a model of Affine Data-Flow (ADF) graphs

in which each actor consists of a set of input and output

ports, and ports are connected to each other via one-to-one

FIFO channels. An actor is associated with an activation

clock and executes at each clock tick. Any pair of clocks in

the network can be related by an affine function. This model

makes schedulability analysis straightforward by using real-

time scheduling theory. In addition, by proving that our

model of computation conforms to a Kahn semantics, we

ensure functional determinism.

Related Work

Special cases of KPNs that can be executed with bounded

channels have been extensively studied, especially for cyclo-

static data-flow (CSDF) graphs [6] and synchronous data-

flow (SDF) graphs [7], two well-known frameworks for

embedded system design. Actors of a SDF graph consume

and produce a fixed number of tokens on a given port each

time they are executed. In the CSDF model, this number

of tokens changes from one time to another in a cyclic

manner. A comparison between SDF and CSDF can be

found in [8]. As a generalization of those models, we study a

more expressive class of data-flow graphs, where the number

of processed tokens is described by an ultimately periodic

sequence.

Minimization of buffering requirements in (C)SDF graphs

under throughput constraints has been addressed in previ-

ous work [9]–[11]. In [10], authors present a polynomial

heuristic that computes static-periodic schedules of actors

under throughput constraints in order to minimize buffer

capacities. However, the algorithm does not construct a

global and unique schedule of actors since it results on

as much schedules of an actor as its adjacent buffers. This

problem was tackled in [11].

In a way akin to related works, one of our goals is to min-

imize the size of communication buffers, but our approach

explores a new path which differs in three respects. (1)

The computed buffer capacities are machine-independent:

they are based on symbolic affine schedules of the data-

flow graph. (2) We target classical priority-driven scheduling

policies such as Rate-Monotonic (RM) and Earliest-Deadline

First (EDF) scheduling policies: we guarantee schedulability

conditions under each of these policies by synthesizing the

appropriate timing characteristics of actors (i.e. periods and

phases) in a way that maximizes processor utilization. (3)

We provide more freedom when writing the implementation

code of actors: we do not make any assumption on which

order an actor produces and consumes tokens, i.e. an actor

can consume and produce tokens whenever it wants. This

freedom comes at the price of a more conservative analysis.

In [12], the EDF scheduling theory is applied to a subset

of the Processing Graph model (PGM). In that work, the

execution rates of each node is defined as a function of

the input rates. Their data-flow model was constrained:

data-flows must form acyclic connected graphs, a constant

amount of data can be processed at each execution step,

tokens are written/read atomically, and consumption takes

place after production. In addition, the semantic model is

data-driven, i.e. an actor is executed whenever the number of

accumulated tokens on a channel exceeds a given threshold.

Therefore, an actor cannot be modeled by a periodic task.

Hence, instead of using a periodic task model, RBE task

model is used [13], where scheduling analysis is done

according to a processor demand approach. However, this

results in a more costly pseudo-polynomial complexity than

with the processor utilization approach we adopt.

Finally, the work presented in [14] is closely related

to our approach in that data-flow graphs are scheduled

as periodic task systems. However, the proposed method

applies to acyclic connected CSDF graphs, and the com-

puted buffer capacities are machine-dependent. Also, the

graphs are scheduled on a multi-processor systems, but

our approach can be easily extended to that case by only

changing the bound on the processors utilization factor in

the schedulability test.

Safety-Critical Java

This paper shows how to automatically generate a Safety-

Critical Java (SCJ) application from a data-flow specifica-

tion. In this context, the choice of SCJ [15] is justified by

the built-in priority-driven preemptive scheduler of its virtual

machine. The SCJ specification is a domain-specific API

of Java which aims at the development of qualified safety-

critical applications. To better meet domain-specific safety

requirements, the SCJ specification defines three levels of

compliance, each with a different model of concurrency,

each aiming at applications of specific criticality. In this

paper, we focus on Level 1 SCJ, where the scheduler obeys

a priority-driven preemptive policy. A Level 1 SCJ program

is organized as a sequence of missions. A mission starts

in an initialization phase during which a set of schedu-

lable objects (i.e. periodic and aperiodic event handlers)

are created. These objects are released during the mission

execution phase, and terminated during the cleanup mission.

A schedulable object is a bounded asynchronous event

handler defined by a computation logic and some scheduling

constraints. The computation logic is implemented in the

handleAsyncEvent() method which is executed every

time the schedulable object is released. A simple example

of SCJ applications is the miniCDj benchmark [16]. In

this paper, we more specifically focus on uniprocessor

systems with periodic event handlers (PEHs) and propose

to map each actor in the specification to a PEH in the

implementation.

Plan

The paper is organized as follows. The affine data-flow

model is presented in Section II. Section III outlines the three

important analyses of ADF graphs, namely consistency,

overflow, and underflow analyses. Section IV describes the

synthesis of affine relations and the timing synthesis algo-

rithm. By applying those algorithms on the MP3 playback

case study from [9]–[11], we investigate their accuracy in

Section V. We then present the SCJ code generated for that

application before concluding in Section VI.

II. AFFINE DATA-FLOW GRAPHS

An affine data-flow graph is a disconnected directed graph

of actors. An actor consists of a set of input ports, a set

of output ports, and a firing function. Output ports are

connected to input ports via one-to-one FIFO channels. Each

actor p in the graph is associated with an activation clock p̂

(an infinite ordered set of ticks). Actor p fires at every tick

p̂t, and the execution of its firing function must terminate

before the subsequent tick p̂t+1. So, scheduling of actors is

neither data-driven nor demand-driven, but it will be time-

triggered.

The activation clocks are manipulated as abstract clocks,

i.e. the actual duration between two successive ticks does

not matter and it is not assumed to be constant. Later in this

section, we will specify some relations between activation

clocks.

Self loops are authorized in the graphs because they fit

naturally in a Kahn semantics [4], [17]. They allow modeling

of local variables, however they enforce a precedence rela-

tionship between successive firings of an actor, i.e. an actor

fires only after termination of the previous firing. This will

ensure proper state updates. In the subsequent, we will omit

self loops from the graphs since we have already imposed

the precedence relationship between successive firings.

An actor is usually constrained, for example in [9]–[11], to

read all the required data before executing the firing function

and to write the results only after the execution finishes. We

get rid of this constraint in the ADF model, i.e. an actor may

consume and produce tokens whenever it wants. The rational

behind this choice is to give the designer more freedom when

writing the Java implementation code of the firing functions.

This freedom, however, comes at the price of a conservative

analysis.

The number of tokens consumed or produced during

firings are indicated by some functions called amplitude

functions.

Definition 1 (Amplitude function). An amplitude function,

gx associated with port x, is a bounded integer function

gx : N −→ N such that ∀j ∈ N, αx ≤ gx(j) ≤ βx
1.

During the jth firing, an actor consumes gy(j) tokens

from every input port y, and produces gx(j) tokens on

every output port x. Amplitude functions must be bounded,

otherwise the network of actors cannot be a KPN [17]. An

amplitude function is static in the sense that the number of

consumed or produced tokens is data-independent (it has a

unique argument: its firing count j).

Two activation clocks can be related by a firing relation

which expresses the rate of activation of an actor relative to

another. Firing relations describe an abstract scheduling of

the data-flow graph and can be formally defined as follows.

Definition 2 (firing relation). A firing relation between two

actors p and q is defined by two monotonic functions:

Rp,q,Rq,p : N −→ N such that ∀j ∈ N, Rp,q(j) (resp.

Rq,p(j)) is the number of firings of q (resp. p) that happened

before the jth firing of p (resp. q).

The two monotonic functions must be coherent with each

other, i.e.

∀j ∈ N,Rp,q(j) = j′ > 0 ⇒ Rq,p(j
′ − 1) ≤ j

1for two constants αx = min gx and βx = max gx

∀j′ ∈ N,Rq,p(j
′) = j > 0 ⇒ Rp,q(j − 1) ≤ j′

As said before, the durations between ticks do not matter,

the most important is the relative positioning of ticks. In

Figure 1, Rp,q1(0) = 1 which means that actor q1 fires one

time before the 0th firing of actor p (i.e. before p̂0). Note

that Rp,q1 is equivalent to Rp,q2 but Rq1,p(6) 6= Rq2,p(6).
Indeed, p̂2 is synchronous with the 5th firing of q1 but not

with that of q2. Hence, we need two functions to describe a

firing relation.

�����������	AB�C�

Figure 1. Example of firing relations.

A firing relation must exist between every pair of adjacent

actors in the data-flow graph. However, one may impose fur-

ther firing relations between unconnected actors. Our aim is

to synthesize all the necessary firing relations in accordance

with user-imposed functional and temporal requirements.

A. Correctness of the implementation strategy

In this subsection and in order to guarantee functional

determinism, we investigate whether our MoC conforms to

a Kahn semantics or not. The implementation strategy is

correct if it satisfies the following three correctness criteria

[5]: boundedness, completeness, and soundness.

Boundedness: The implementation strategy is bounded if it

produces a bounded executive whenever this latter exists. A

bounded executive is such that the number of unconsumed

tokens in every internal channel and in every execution step

cannot exceed a constant bound.

Let c = (x, y) be a channel that connects the output port

x of an actor p to the input port y of an actor q. It has

a size equal to h(c) and may be initialized by c̄ tokens.

Boundedness implies that if the producer fires j times and

the consumer fires j′ times, then the number of accumulated

tokens on channel c is less or equal to h(c). Certainly, j and

j′ must be related by a firing relation between p and q.

Let us define a new integer function Gx such that

∀j ∈ N, Gx(j) =
j
∑

i=0

gx(i). This function denotes the total

amount of consumed or produced tokens on port x until the

jth firing of the actor. So, boundedness means that for every

channel c = (x, y) we have that,

∀(j, j′), c̄+Gx(j)−Gy(j
′) ≤ h(c) (2)

An overflow exception will be thrown when an actor

attempts to write to a full channel. If we prove statically that

Equation 2 is satisfied, then we guarantee that the execution

of the data-flow graph will be free from overflow exceptions.

The overflow analysis is presented in details in Section III.

Completeness: It means that the stream produced incre-

mentally on each output converges to the stream specified

by the denotational semantics. Completeness implies that

no process may starve. In our MoC, a process (constructed

from successive firings of an actor) cannot starve because its

corresponding actor fires infinitely according to its activation

clock which is an infinite set of ticks. However, the execution

is not complete if a memory exception is thrown. Overflow

exceptions are excluded by Equation 2, and in order to

exclude underflow exceptions (i.e. when an actor attempts

to read from an empty channel), we have to ensure that: for

every channel c = (x, y), if the consumer fires j′ times and

the producer fires j times, then the number of accumulated

tokens on channel c cannot be negative. Again, here, j′ and

j are related by a firing relation. Formally,

∀(j′, j), c̄+Gx(j)−Gy(j
′) ≥ 0 (3)

It is worth mentioning that Equation 3 may reject some

data-flow graphs. In fact, if there is a (partial) deadlock in a

graph according to the Kahn blocking read semantics, then

its execution may cause an underflow exception.

Soundness: The stream produced on each output is a prefix

of the stream specified by the denotational semantics. This

requirement is clearly satisfied in our MoC.

B. Classes of amplitude functions

If all the amplitude functions are constant (i.e. ∀j ∈
N, gx(j) = αx such that x is a port), then the unclocked

version of the graph is a SDF graph [7].

If all the amplitude functions are periodic (i.e. ∃πx ∈
N+∀j ∈ N, gx(j) = gx(j + πx) such that x is a port), then

the unclocked version of the graph is a CSDF graph [6].

In this paper, we define a more general class of ampli-

tude functions: ultimately periodic functions (i.e. ∃πx ∈
N+ ∃jx ∈ N ∀j ≥ jx, gx(j) = gx(j + πx) such that x is a

port). For conciseness, we use ultimately periodic sequences

(defined below) to denote those amplitude functions.

Definition 3 (Ultimately periodic sequence). Let s ∈ Nω

be an infinite integer sequence. The sequence s is ultimately

periodic if and only if it is composed of a prefix u ∈ N∗

followed by a sequence v ∈ N∗ repeated infinitely. When

this is the case, we write s = u(v).

So, gx = u(v) means that:

∀j ∈ N, gx(j) =

{

u[j] if j < |u|
v[(j − |u|) mod |v|] otherwise

If u ∈ N∗ is a finite integer sequence, then |u| denotes

its length and ||u|| denotes the sum of its elements. For

an amplitude function denoted by an ultimately periodic

sequence s = u(v), we impose that ||v|| > 0.

In the following sections, we will conduct our analyses

on data-flow graphs with ultimately periodic amplitude

functions. We generally manipulate the functions Gx in-

stead of gx. Since gx is a bounded integer function, we

can over- and under-approximate Gx by linear bounds.

If gx = u(v), then we can find λ1, λ2 ∈ Q such that

∀j ∈ N, Glx(j) = ||v||
|v| j + λ1, G

u
x(j) = ||v||

|v| j + λ2, and

Glx(j) ≤ Gx(j) ≤ Gux(j).

Example 1. The input port of actor p2 in Figure 2 is

associated with an amplitude function g = 2, 0, 1(2, 1, 0, 2).
The linear lower bound of G is Gl(j) = 5

4j − 1
4 , and the

linear upper bound is Gu(j) = 5
4j + 2.

It is worth mentioning that to extend the model with other

classes of amplitude functions, only the linear lower and

upper bounds of Gx are required.

Figure 2. Example of affine data-flow graphs.

C. Affine relations

Our data-flow graphs are intended to be executed on one

processor with a priority-driven preemptive scheduler. Each

actor is implemented as a periodic task with a period, a

phase, and a deadline equal to the period.

Let p and q be two actors. Actor p has a period of 25 ms,

while actor q has a period of 15 ms and a phase of 30 ms.

Figure 3 shows the absolute release times of p and q. So,

the jth release of p occurs at 25j ms, while the j′th release

of q occurs at 15j′+30 ms. If we ignore the actual duration

between releases, we obtain a firing relation between actors

p and q. The process of going from a physical time to a

logical one is called time abstraction.

Figure 3. Releases of two periodic tasks.

In the following, we will define a special class of firing

relations called affine relations that allows to abstract the

previous periodic releases of tasks. However, affine relations

are more expressive since the duration between ticks of

clocks is not necessarily constant.

Definition 4 (Affine relation). As defined in [18], an affine

transformation of parameters (n, ϕ, d) applied to the clock

p̂ produces a clock q̂ by inserting (n− 1) instants between

any two successive instants of p̂, and then counting on this

fictional set each dth instant, starting with the ϕth instant.

�������������	��AB�C�D���EF��������	�������EF������

��E����	�

��E��EF

Figure 4. A (3, 4, 5)−affine relation.

Figure 4 shows an example of a (3, 4, 5)−affine relation.

As one can notice, there is a positioning pattern of ticks

that repeats infinitely. We say that p and q are (n, ϕ, d)-
affine-related (or equivalently, q and p are (d,−ϕ, n)-affine-

related), and we have that:

∀j ∈ N,Rp,q(j) =

{

0 if nj ≤ ϕ

⌈nj−ϕ
d

⌉ otherwise

∀j′ ∈ N,Rq,p(j
′) =

{

0 if dj′ ≤ −ϕ
⌈dj′+ϕ

n
⌉ otherwise

The sign ⌈x⌉ refers to the smallest integer not less than

x. Parameters n and d are strictly positive integers while ϕ

can be negative. When defined as before, functions Rp,q and

Rq,p satisfy all conditions of a firing relation.

Figure 3 can be seen as a (25, 30, 15)−affine relation

between p and q, but also as a (5, 6, 3)−affine relation. So,

many affine transformations can refer to the same firing

relation. Thus, we will use the canonical form of affine

relations presented in [18]. For an affine relation (n, ϕ, d)
and k = gcd(n, d), there exists a canonical form CF defined

as follows:

• k|ϕ⇒ CF(n,ϕ,d) = (n
k
, ϕ
k
, d
k
).

• k 6 |ϕ ∧ ϕ > 0 ⇒ CF(n,ϕ,d) = (2n
k
, 2[ϕ

k
] + 1, 2 d

k
).

• k 6 |ϕ ∧ ϕ < 0 ⇒ CF(n,ϕ,d) = (2n
k
, 2[ϕ

k
]− 1, 2 d

k
).

III. ANALYSIS OF ADF GRAPHS

The input to our analysis is a data-flow graph, as depicted

in Figure 2. The static analyses, which guarantee correct

execution of the graph, check its consistency, and overflow

and underflow freedom. All the theoretical results of this

section are used in our algorithms, presented in Section IV.

A. Consistency analysis

If we synthesize each affine relation independently of the

others, then the graph may be inconsistent. Indeed, assume

that p, q, and r are three actors connected to each other by

channels. Using the boundedness criterion (defined later in

this section), we may find that p
(2,ϕ1,3)−→ q

(5,ϕ2,2)−→ r
(7,ϕ3,5)−→

p. Those three relations are inconsistent, because for three

activations of p there are two activations of q, for two

activations of q there are five activations of r, but for five

activations of r there are seven activations of p and not three.

Proposition 1. The graph is consistent if for every

fundamental cycle p0
(n0,ϕ0,d0)−→ p1

(n1,ϕ1,d1)−→ · · · →
pm−1

(nm−1,ϕm−1,dm−1)−→ p0 in the graph, we have that:

m−1
∏

i=0

ni =

m−1
∏

i=0

di (5)

m−1
∑

i=0

(
i−1
∏

j=0

dj)(
m−1
∏

j=i+1

nj)ϕi = 0 (6)

proof: Let us put ψi = (
i−1
∏

j=0

dj)(
m−1
∏

j=i+1

nj). Actors p0

and p1 are (ψ0n0, ψ0ϕ0, ψ0d0)−affine-related. According to

Definition 4, clock p̂0 is obtained by counting on a fictional

clock ĉ each (ψ0n0)
th instant starting with the 0th instant,

and p̂1 is obtained by counting each (ψ0d0)
th instant of ĉ

starting with the (ψ0ϕ0)
th instant. Similarly, actors p1 and

p2 are (ψ1n1, ψ1ϕ1, ψ1d1)−affine-related. So, clock p̂1 can

be obtained by counting each (ψ1n1)
th instant of a fictional

clock ĉ′. But, ψ1n1 = ψ0d0 which implies that we may used

clock ĉ instead of ĉ′. Now, clock p̂1 is obtained by counting

each (ψ1n1)
th instant of ĉ staring with the (ψ0ϕ0)

th instant,

and clock p̂2 is obtained by counting each (ψ1d1)
th instant

of ĉ starting with the (ψ0ϕ0 + ψ1ϕ1)
th instant. From the

affine relation between pm−1 and p0, we have that clock

p̂0 is obtained by counting each (ψm−1dm−1)
th instant of

ĉ starting with the (
∑m−1
i=0 ψiϕi)

th instant. But, we already

said that clock p̂0 is obtained by counting each (ψ0n0)
th

instant of ĉ starting with the 0th instant. So, to be consistent,

it is a sufficient condition to impose Equations 5 and 6.

It is worth mentioning again that actors, in the ADF

model, consume and produce tokens whenever they want.

In the absence of any knowledge on their source code, the

solution is either to force some orders on reads and writes, or

to perform a conservative analysis based on the worst-case

scenarios. We opt for the second approach.

For the overflow analysis, the worst-case scenario occurs

when consumption happens at the end of firings (i.e. just

before the next tick), while production happens at the be-

ginning. For the underflow analysis, the worst-case scenario

is when the production happens at the end of firings, while

consumption happens at the beginning.

The drawback of this conservative approach is that it

increases the required buffer sizes, nevertheless it provides

complete freedom when writing the implementation code of

actors. Additionally, it relieves us from performing a causal-

ity analysis to detect cycles, because the tokens produced

by an actor on a given firing cannot be involved in the

construction of its consumed tokens at the same firing.

B. Overflow analysis

No overflow over a channel c = (x, y) between the

(n, ϕ, d)-affine-related actors p and q means that ∀(j, j′), c̄+

Gx(j) − Gy(j
′) ≤ h(c). Only reads during firings of q

that terminate before p̂j are guaranteed to happen before

p writes some results of its jth firing. The last firing of q

that terminates before p̂j is j′ = Rp,q(j) − 1 if q̂Rp,q(j) is

synchronous with p̂j , and j′ = Rp,q(j)− 2 otherwise.

We linearize Equation 2 to make computations more

efficient, but at the cost of getting a conservative approx-

imation. In the following, we suppose that gx = u1(v1) and

gy = u2(v2).

Proposition 2. For a given jth firing of actor p, the linear

lower bound of j′ in the overflow analysis is j′ = n
d
j +

1−2d−ϕ
d

.

proof: Since the affine relation is in canonical form, we

have that gcd(n, d) = 1 or gcd(n, d) = 2∧ 2 6 |ϕ. There are

two cases:

1st case(q̂Rp,q(j) is synchronous with p̂j): This is possible

only if equation jn = kd+ ϕ accepts many solutions. This

Bézout’s identity is solvable only in the case of gcd(n, d) =
1, which implies that d|(nj−ϕ). Therefore, the linear lower

bound of j′ is n
d
j − ϕ+d

d
.

2nd case(q̂Rp,q(j) is not synchronous with p̂j): The lower

bound of Rp,q(j) is n
d
j − ϕ−1

d
(since equation nj = kd +

ϕ−1 is always solvable). Therefore, the linear lower bound

of j′ is n
d
j − ϕ+2d−1

d
.

By taking the worst of the two cases, we deduce that the

linear lower bound of j′ is n
d
j − ϕ+2d−1

d
.

Gx(j) is approximated by the linear upper bound

Gux(j) = ||v1||
|v1| j + λ1; and Gy(j

′) is approximated by the

linear lower bound Gly(j
′) = ||v2||

|v2| j
′ + λ2 if j′ ≥ 0, and by

0 otherwise. By substituting all the linear approximations

in Equation 2, we obtain the following linear constraint:

∀j ∈ N,

c̄−h(c)+ ||v2||
|v2|d

ϕ+ ξj ≤ min{0, λ2}−λ1+
||v2||(1− 2d)

|v2|d
(7)

such that ξ = ||v1||
|v1|

− ||v2||n
|v2|d

. Since j tends to infinity, it

is a requirement for an execution free of overflows and un-

derflows that ξ equals zero. Consequently, the boundedness

criterion is:
n

d
=

||v1||
|v1|

|v2|
||v2||

(8)

C. Underflow analysis

The underflow analysis is (roughly) a dual of the overflow

analysis. No underflow over the channel c means that

∀(j′, j), c̄ +Gx(j) −Gy(j
′) ≥ 0. At its j′th firing, actor q

consumes only tokens produced by p on firings that finished

before q̂j′ . The last firing of p that terminates before q̂j′ is

j = Rq,p(j
′) − 1 if p̂Rq,p(j′) is synchronous with q̂j′ , and

j = Rq,p(j
′)− 2 otherwise.

To speed up the analysis, we proceed with a conservative

linearization of Equation 3. For the j′th firing of actor q,

the linear lower bound of j is d
n
j′ + 1+ϕ−2n

n
. The proof is

similar to that of proposition 2. Gy(j
′) is approximated by

the linear upper bound Guy (j
′) = ||v2||

|v2| j
′+λ4; and Gx(j) is

approximated by the linear lower bound Glx(j) =
||v1||
|v1| j+λ3

if j ≥ 0, and by 0 otherwise.

By substituting all the linear approximations in Equation

3, we obtain the following linear constraint: ∀j′ ∈ N,

c̄+
||v1||
|v1|n

ϕ+
d

n
ξj′ ≥ max{0,−λ3}+ λ4 −

||v1||(1− 2n)

|v1|n
(9)

IV. ALGORITHMS

The input to our algorithm is a data-flow graph in which

each actor p is associated with a worst-case execution time

WCET(p), and each port is associated with an ultimately pe-

riodic sequence. One may also explicitly specify additional

information like channel sizes, incomplete affine relations,

periods of actors, bounds on periods, etc. The algorithm

proceeds in three following steps.

A. Step 1: Consistency verification

We start by performing an abstraction of the specified

timing characteristics (user-imposed timing requirements):

If periods of two actors p and q are imposed then we

add an incomplete affine relation between them. Incomplete

affine relation means that its parameter ϕ is undetermined.

Parameters n and d of that relation are deduced from

equation nπq = dπp where πθ is the period of actor θ.

For each channel in the graph, if an incomplete affine

relation is (explicitly) specified between the producer and

the consumer, then we use Equation 8 to verify the channel’s

boundedness; otherwise we compute n and d of the affine

relation. After computing all the possible incomplete affine

relations, we use Equation 5 to check the consistency of

every fundamental cycle in the graph of affine relations.

B. Step 2: Synthesis of affine relations

We provide two solutions for computing the parameter ϕ

of every incomplete affine relation in the graph in such a

way we minimize the sum of channel sizes. One is exact

but enumerative, the other is faster but approximate.

An enumerative solution: This exact solution is used

to investigate the accuracy of the other solution. Let p

and q be two (n, ϕ, d)−affine-related actors such that ϕ is

undetermined and gcd(n, d) = 2. Parameter ϕ can be any

integer value that satisfies consistency constraints (Equation

6). This means that if that relation is not involved in any

fundamental cycle, then ϕ is chosen independently from

the other relations (like in the case of the MP3 playback

application, Section V). Indeed, it is sufficient to choose

a value that minimizes the sum of capacities of channels

between p and q. It is worth remembering that if a channel

is going from q to p, then we have to reverse the affine

relation.

In the following, we show how to compute the minimum

size of a channel c = (x, y) and the minimum number of its

initial tokens assuming a complete (n, ϕ, d)−affine relation.

Let us take gx = u1(v1) and gy = u2(v2).

Proposition 3. The computation is limited to k =
|v1| |v2|

gcd(n′|v1|,d′|v2|)
instances of the affine relation pattern such

that n′ = n
gcd(n,d) and d′ = d

gcd(n,d) .

Proof: We know that the minimum pattern in an affine

relation consists of d′ = d
gcd(n,d) ticks of p̂ and n′ = n

gcd(n,d)
ticks of q̂. To restrict the computation to a finite number

of ticks, we have to repeat the minimum pattern in a

coherent way with the amplitude functions; i.e. we must

have |v1| | kd′ and |v2| | kn′.

So, |v1| | kd′ implies that k is a multiple of
|v1|

gcd(|v1|,d′)
.

In the same way, |v2| | kn′ implies that k is a multiple of
|v2|

gcd(|v2|,n′) . Therefore, the minimum value of k is equal to

lcm(|v1|
gcd(|v1|,d′)

,
|v2|

gcd(|v2|,n′)) =
|v1| |v2|

gcd(n′|v1|,d′|v2|)
.

Example 2. In Figure 5, actors p and q are (4, 5, 6)-affine-

related. The output port x is associated with gx = 3, 1(0, 1),
while the input port y is associated with gy = 2(1, 1, 1, 0).
The boundedness criterion is satisfied in this case. The

computation is limited to k = 2 pattern instances of the

affine relation as depicted in the figure. γ1 is the number

of tokens in the channel (c̄ is assumed to be 0) w.r.t. the

underflow worst-case scenario. If min γ1 < 0, then c̄ must be

equal to −min γ1 to guarantee that no underflow exception

occurs during execution. γ2 is the number of tokens in the

channel (c̄ is computed before) w.r.t. the overflow worst-case

scenario. The minimum channel size is max γ2.

���������	A�BAC��AD�C

Figure 5. computation of the minimum size of a buffer and the minimum
number of its initial tokens.

We can deduce from Equations 7 and 9 that lim
|ϕ|→∞

h(c)
|ϕ| =

||v2||
|v2|d

. This indicates that the best value of ϕ is in the

neighborhood of 0.

An approximate solution: This solution consists in gener-

ating an integer linear program (ILP) for which the solution

determines ϕ of every incomplete (n, ϕ, d)−affine relation,

and h(c) and c̄ of every channel c.

For every channel c = (x, y) between two actors p and q,

we generate the following linear constraints. The first batch

of generated constraints are 0 ≤ c̄ ≤ h(c) and h(c) ≥ βx,

where βx is the maximum element of gx. If h(c) and/or c̄ are

user-imposed, then we have to use constant values instead.

Secondly, we generate two additional constraints, one for

the overflow condition (Equation 7) and the other for the

underflow condition (Equation 9).

Next, for every fundamental cycle in the graph of affine

relations, we shall generate a linear constraint for its con-

sistency condition (Equation 6).

Now, the objective function of the ILP is to minimize

the sum of buffer sizes. We have to take care about cases

where the sizes of tokens are different from one channel to

another. If the linear program has a solution, then we are

able to find all the complete affine relations. The channel

sizes and the numbers of initial tokens obtained by the

solution are not accurate. Therefore, we use the verification

method described in the enumerative solution to compute the

minimum size and the minimum number of initial tokens of

each channel.

C. Step 3: Timing synthesis

While the previous step computes an abstract affine sched-

ule of the data-flow graph, timing synthesis further aims at

computing a concrete schedule. Indeed, the abstract schedule

can be implemented as a static schedule or a dynamic one.

Assuming a priority-driven preemptive scheduling policy,

this step tries to define the period and the phase of each

actor in a way that respects the affine relations and ensures

schedulability.

Each actor p is mapped to a periodic task which has a

period πp ≥ WCET(p), a phase σp ≥ 0, and a relative

deadline equal to its period. Those timing characteristic are

assumed to be integers.

If actors p and q are (n, ϕ, d)-affine-related, then the time

concretization of the affine relation is given by the following

linear constraints:

• nπq = dπp.

• if ϕ ≥ 0 then σq − σp =
ϕ
n
πp.

• if ϕ < 0 then σp − σq =
−ϕ
d
πq .

In words, concretization of affine relations imposes con-

stant time intervals between the ticks of every activation

clock.

Let G be the connectivity graph of the data-flow network.

G is an undirected graph where vertices are actors and edges

represent affine relations. Those relations are computed

based on the channel boundedness criterion (Steps 1/2), but

can also be given by the designer, or deduced from user-

imposed periods of actors (Step 1). First of all, we extract

all the connected components of G. For every actor p in a

connected component Gi, we have that πp =
np

dp
π∗
i such

that np, dp ∈ N+| gcd(np, dp) = 1 and π∗
i is the period of

a fixed actor in Gi. Since periods are integers, π∗
i must be

a multiple of lcm{dp|p ∈ Gi}. In addition, a constraint like

σq − σp = ϕ
n
πp implies that ϕ

n
πp ∈ N. In summary, π∗

i

must be a multiple of some integer mi. From the worst-case

execution times and bounds on periods, we compute a lower

bound infi and an upper bound supi of π∗
i , respectively; i.e.

infi ≤ π∗
i ≤ supi.

If the user imposes a period of an actor in Gi, then π∗
i can

be easily found, and it has to respect the previous constraints:

i.e. infi ≤ π∗
i = k ∗mi ≤ supi. In this case, we say that Gi

is solved. There is at most one solved connected component.

Algorithm 1 aims to solve the remaining components.

The most famous priority-driven scheduling algorithms

are the EDF and the RM algorithms. Their scheduling

analysis for a mono-processor system can be performed by

just checking a schedulability condition. For a set of N

periodic tasks, the processor utilization factor U is given

by
∑

p

WCET(p)
πp

. The task set is schedulable on one processor

by EDF if and only if U ≤ 1. It is schedulable by RM if

U ≤ N(N
√
2 − 1). The timing synthesis consists in finding

timing characteristics so that U ≤ α (α = 1 for EDF, and

α = N(N
√
2− 1) for RM).

For every connected component Gi, we put ψi =
∑

p∈Gi

WCET(p)dp
np

. So, Ui = ψi

π∗

i

is the contribution of Gi to

U . Algorithm 1 tries to find {π∗
i |∀i} which balance the

contributions of components to U and maximize this latter.

Let S be the set of unsolved connected components

ordered according to the decreasing order of mi, and let G0

be the solved component (if any). Line 3 of the algorithm

computes periods and phases of actors in G0 for the given

π∗
0 assuming that U0 ≤ α, otherwise the task set is infea-

sible. The subsequent lines compute π∗
i of every unsolved

connected component in such a way Ui ≤ avg = α−U0

|S| . Let

us put U i to be the minimum contribution of Gi w.r.t. its

supi. If U i > avg, then we are obliged to take π∗
i to be the

maximum. Iterating over S in the decreasing order of mi

helps to increase the total U .

V. EXPERIMENTAL VALIDATION

We now apply our algorithms to determine the periods and

phases of actors and the buffer capacities and their number of

initial tokens of an MP3 playback application. We consider

the same MP3 playback CSDF model, depicted in Figure 6,

that was used in many works [9]–[11]. Unlike these related

works, we do not add reverse edges to model bounded

buffers. Our algorithms can be applied on a CSDF model

because this latter is a subclass of an unclocked ADF model.

In the MP3 playback application, the MP3 task decodes a

compressed audio stream to a 48 kHz audio sample stream

which is next converted by the Sample Rate Converter (SRC)

task to a 44.1 kHz stream. This stream is converted to an

analog signal by the Digital-Analog Converter (DAC) task

after its perceived quality is enhanced by the Audio Post-

Processing (APP) task.

In both [10] and [11], the MP3 actor has five dif-

ferent firing functions (called phases) in correspondence

Algorithm 1 Timing Synthesis

Require: S: the set of ordered unsolved components. G0:

the solved component (if any).

Ensure: the period and the phase of each actor.

1: α = α− U0;

2: if α < 0 then the task set is infeasible; exit;

3: Solve G0;

4: while S 6= ∅ do

5: avg = α
|S| ; b = true;

6: for every Gi ∈ S do

7: if U i > avg then

8: α = α− U i;

9: if α < 0 then the task set is infeasible; exit;

10: Solve Gi w.r.t. the maximum of π∗
i ;

11: Remove Gi from S; b=false;

12: end if

13: end for

14: if b then break;

15: end while

16: if S 6= ∅ then

17: k = |S|;
18: for every Gi ∈ S do

19: Solve Gi w.r.t. α
k

;

20: α = α− Ui; k = k − 1;

21: end for

22: end if

��� ��� ��� ���

Figure 6. MP3 playback CSDF model.

with its amplitude function. Unlike with our algorithms,

related techniques do not impose periodic releases of the

actor but periodic releases of its phases. Therefore, we

take WCET(MP3) to be equal to maxWCETs(MP3) =
max{670, 2700, 720, 2700, 720} = 2700µs. Both the APP

and DAC actors have a worst-case execution time equal to

22µs. Table I shows the sum of the buffer sizes for different

execution times of the SRC actor assuming that all tokens

have the same size. SumF is the sum obtained when using

the ILP synthesis of affine relations, while SumE is the sum

obtained by the enumerative solution. For the MP3 playback

application, the difference between SumF and SumE is 540
and which is acceptable w.r.t the numbers in the amplitude

functions.

Confirmed by the results, we recal that the computed sizes

do not depend on the worst-execution time of actors, unlike

the results of [10] and [11]. Indeed, our analysis instead

computes the affine relations between actors according to

the amplitude functions associated with ports. Then, the

channel sizes are induced from those affine relations which

makes them independent from either the target machine

Table I
BUFFER CAPACITIES FOR THE MP3 PLAYBACK CSDF MODEL.

WCET(SRC) in ms 10 7.5 5 2.5

SumF 3152 3152 3152 3152

SumE 2612 2612 2612 2612

Sum (from [10]) 2260 2054 1816 1578

Sum (from [11]) 2228 2022 1816 1514

or the implementation code of actors. The implementation

characteristics are included only in the timing synthesis step.

As one can notice, SumE is worse than the sum obtained in

related works. This was expected since actors can freely

choose when they consume or produce tokens.

Table II
TIMING CHARACTERISTICS OF THE MP3 PLAYBACK TASKS IN ms.

EDF RM
π σ π σ

MP3 13.219416 0 17.4636 0

SRC 27.54045 66.647889 36.3825 88.04565

APP 0.06245 121.760014 0.0825 160.8519

DAC 0.06245 121.916139 0.0825 161.05815

Table II shows the periods and phases of actors which

satisfy either the EDF or the RM schedulability tests when

WCET(SRC)=2.5 ms. The processor utilization factor U will

be 99.96% in the EDF case and 75.66% in the RM case. It

is not possible to schedule the application on one processor

(using EDF or RM scheduler) and have the frequency of the

digital-analog converter equal to 44.1kHz unless we use a

more powerful processor.

A. Automatic SCJ code generation

This subsection describes how to synthesize a SCJ appli-

cation from a data-flow specification. The user has to provide

the Java code of firing functions in which the set() and

get() methods are applied on ports in order to produce and

consume one token, respectively. To perform our analysis,

we first need to infer the amplitude function associated

with each port from the Java code. This step is not yet

implemented, therefore we suppose that amplitude functions

are given as a part of the data-flow specification.

The SCJ application consists of one (so-called) mission.

Every actor in the graph is implemented as a PEH registered

to that mission. The handleAsyncEvent() methods are

generated from the firing functions by substituting calls

for set() and get() as described in the subsequent

paragraph. For a fixed-priority SCJ scheduler, the timing

parameters of PEHs are set as computed by the timing

synthesis algorithm (RM case). Priorities of PEHs are set

according to the rate monotonic politics, i.e. the shorter the

period is, the higher is the actor’s priority. Listing 1 shows a

fragment of the SCJ code generated from the MP3 playback

graph.

@Scope(IMMORTAL)

@SCJAllowed(value=LEVEL_1, members=true)

public class MP3Playback extends Mission {

public byte[] C1= new byte[1824]; //MP3 --> SRC

public byte[] C2= new byte[1324]; //SRC --> APP

public byte[] C3= new byte[4]; //APP --> DAC

@SCJRestricted(INITIALIZATION)

protected void initialize() {

/* initialize buffers if necessary */

/* create & register PEHs (MP3, SRC, APP, DAC) */

PeriodicParameters timing=new PeriodicParameters(new

RelativeTime(0, 0), new RelativeTime(17, 463600));

PeriodicEventHandler mp3 = new MP3("MP3",new

PriorityParameters(11), timing,new

StorageParameters(...));

mp3.register();

/* similarly for the others s.t. priority_SRC=10 and

priority_APP=priority_DAC=12. */

}

public MissionSequencer getSequencer() {...}

public void setUp() {...} ...

}

@SCJAllowed(value=LEVEL_1, members=true)

public class SRC extends PeriodicEventHandler {

private int jc1=0; private int ic2=0;

public void handleAsyncEvent() {

/* generated from the firing function code;

a call to set(v) is replaced by: */

Mission.getCurrentMission().C2[ic2]=v;

ic2=(ic2+1)%1324;

} ...

} ...

Listing 1. SCJ implementation of the MP3 playback data-flow model.

PEHs communicate through channels instantiated in the

mission memory since each PEH has a private memory work

space. A channel c = (x, y) is implemented as a cyclic

array C of a fixed size h(c). The instruction x.set(v)

will be substituted in the implementation by {C[ic]=v;
ic=(ic+1)%h(c); } such that ic is an additional local

variable in the producer. Calls for the get() method

are substituted in a similar way. Our analysis guarantees

that neither an overflow nor an underflow exception will

be thrown during execution, hence there is no need for

synchronization protocols to access the array.

VI. CONCLUSION

Through a MoC based on activation clocks and affine rela-

tions, we have shown the necessary conditions for executions

of data-flow graphs to be free of overflow and underflow

exceptions over communication channels. We also presented

an algorithm that, using integer linear programming, com-

putes a symbolic affine schedule of a graph in a way that

minimizes the buffering memory requirements and ensures

the execution correctness. This schedule is independent from

the target machine and the implementation code of actors.

Unlike related works, we do not constraint actors to consume

all their tokens before executing their firing functions and

to write their results at the end. This choice led to a

conservative analysis but gave more freedom when writing

the Java implementation code of firing functions.

We presented a timing synthesis algorithm that concretizes

the affine schedule, i.e. assigns a period and a phase to each

actor so that the set of actors becomes schedulable on a

uniprocessor system with an EDF or RM scheduler. The

algorithm aims to maximize the processor utilization factor,

and allows the user to impose upper bounds on periods or

to define some of them.

Finally, we showed, through an example, how the SCJ

implementation code of an application can be automatically

generated from its dataflow specification. Future work will

consider timing synthesis for multi-processor systems and

attempt to increase the expressiveness of the ADF model.

REFERENCES

[1] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances
in dataflow programming languages,” ACM Comput. Surv.,
vol. 36, pp. 1–34, March 2004.

[2] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek, “Streamflex:
high-throughput stream programming in Java,” in Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems and Applications, ser. OOP-
SLA ’07. New York, NY, USA: ACM, 2007, pp. 211–228.

[3] J. Auerbach, D. F. Bacon, R. Guerraoui, J. H. Spring, and
J. Vitek, “Flexible task graphs: a unified restricted thread
programming model for Java,” in Proceedings of the 2008
ACM SIGPLAN-SIGBED Conference on Languages, Compil-
ers, and Tools for Embedded Systems, ser. LCTES ’08. New
York, NY, USA: ACM, 2008, pp. 1–11.

[4] G. Kahn, “The semantics of simple language for parallel
programming,” in IFIP Congress, 1974, pp. 471–475.

[5] M. Geilen and T. Basten, “Requirements on the execution of
Kahn process networks,” in Proceedings of the 12th Euro-
pean Conference on Programming, ser. ESOP’03. Berlin,
Heidelberg: Springer-Verlag, 2003, pp. 319–334.

[6] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete,
“Cycle-static dataflow,” IEEE Transactions on Signal Pro-
cessing, vol. 44, pp. 397–408, 1996.

[7] E. A. Lee and D. G. Messerchmitt, “Static scheduling of
synchronous dataflow programs for digital signal processing,”
IEEE Trans. Comput., vol. 36, pp. 24–35, January 1987.

[8] T. M. Parks, J. L. Pino, and E. A. Lee, “A comparaison
of synchronous and cycle-static dataflow,” in Proceedings
of the 29th Asilomar Conference on Signals, Systems and
Computers, ser. ASILOMAR’95, vol. 2. Washington, DC,
USA: IEEE Computer Society, 1995, pp. 204–210.

[9] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering
trade-off exploration for cyclo-static and synchronous
dataflow graphs,” IEEE Trans. Comput., vol. 57, pp. 1331–
1345, October 2008.

[10] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit,
“Efficient computation of buffer capacities for cyclo-static
datatflow graphs,” in Proceedings of the 44th Annual Design
Automation Conference, ser. DAC ’07. New York, NY, USA:
ACM, 2007, pp. 658–663.

[11] M. Benazouz, O. Marchetti, A. M. Kordon, and T. Michel,
“A new method for minimizing buffer sizes for cyclo-static
dataflow graphs,” in ESTIMedia. IEEE, 2010, pp. 11–20.

[12] S. Goddard and K. Jeffay, “Analyzing the real-time properties
of a dataflow execution paradigm using a synthetic aperture
radar application,” in Proceedings of the 3rd IEEE Real-
Time Technology and Applications Symposium, ser. RTAS’
97. Washington, DC, USA: IEEE Computer Society, 1997,
pp. 60–.

[13] K. Jeffay and D. Bennett, “A rate-based execution abstraction
for multimedia computing,” in Proceedings of the 5th Interna-
tional Workshop on Network and Operating System Support,
ser. NOSSDAV ’95. London, UK: Springer-Verlag, 1995,
pp. 64–75.

[14] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling
of data-dependent tasks in embedded streaming applications,”
in Proceedings of the 9th ACM International Conference on
Embedded Software, ser. EMSOFT ’11. New York, NY,
USA: ACM, 2011, pp. 195–204.

[15] JSR-302, “Safety critical Java technology specification,” Oc-
tober 2010.

[16] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and
J. Vitek, “Developing safety critical java applications with
oSCJ/L0,” in Proceedings of the 8th International Workshop
on Java Technologies for Real-Time and Embedded Systems,
ser. JTRES ’10. New York, NY, USA: ACM, 2010, pp.
95–101.

[17] E. A. Lee and E. Matsikoudis, “The semantics of dataflow
with firing,” in From Semantics to Computer Science: Essays
in Honour of Gilles Kahn, 1st ed., G. Huet, G. Plotkin, J.-J.
Lévy, and Y. Bertot, Eds. Cambridge University Press, 2009,
ch. 4, pp. 71–94.

[18] I. M. Smarandache and P. L. Guernic, “Affine transforma-
tions in Signal and their application in the specification and
validation of real-time systems,” in Proceedings of the 4th
International AMAST Workshop on Real-Time Systems and
Concurrent and Distributed Software: Transformation-Based
Reactive Systems Development, ser. ARTS’97. London, UK:
Springer-Verlag, 1997, pp. 233–247.

