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Imitative Spectrum Access
Xu Chen and Jianwei Huang

Abstract—In this paper, we study how secondary users can
share the spectrum in a distributed fashion based on imitations.
We propose an imitative spectrum access mechanism, where
each secondary user estimates its expected throughput based
on local observations, and imitates the channel selection of
another user who achieves a higher throughput. We show that the
imitative spectrum access mechanism converges to an imitation
equilibrium, where no beneficial imitation can be further carried
out on the time average. Numerical results show that when
the number of users is large, the imitative spectrum access
mechanism can converge to a Nash equilibrium, which is a special
case of the imitation equilibrium.

I. INTRODUCTION

Cognitive radio is envisioned as a promising technique

to alleviate the problem of spectrum under-utilization [1].

It enables unlicensed wireless users (secondary users) to

opportunistically access the licensed channels owned by legacy

spectrum holders (primary users), and thus can significantly

improve the spectrum efficiency [2].

A key challenge of the cognitive radio technology is how to

share the spectrum resources in an intelligent fashion. Most of

existing works in cognitive radio networks focus on exploring

the individual intelligence of the secondary users. A common

modeling approach is to consider that secondary users are

fully rational, and model their interactions as noncooperative

games (e.g., [3]–[6]). Nie and Comniciu in [4] designed a

self-enforcing distributed spectrum access mechanism based

on potential games. Niyato and Hossain in [5] studied a

price-based spectrum access mechanism for competitive sec-

ondary users. Chen and Huang in [6] proposed a spatial

spectrum access game framework for distributed spectrum

sharing mechanism design with spatial reuse. The common

assumption of all the above work is that secondary users adopt

their channel selections based on best responses. To have full

rationality, a user needs to have a high computational power

to collect and analyze the network information in order to

predict other users’ behaviors. This is often not feasible due

to the limitations of today’s wireless devices.

In this paper, we will explore the collective intelligence of

the secondary users based on social imitation. The motivation

is to overcome the limited capability of today’s wireless

devices by leveraging the wisdom of secondary user crowds.

Imitation is simple (following a successful action) and turns

out to be an efficient strategy in many applications. Schlag in

[7] used imitation to solve the multi-armed bandit problem.

Lopes et al. in [8] designed an efficient imitation-based social

learning mechanism for robots. Levine and Pesendorfer in [9]

studied how to promote cooperation with imitation.
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Recently, Iellamo et al. in [10] proposed an imitation-based

spectrum access mechanism for cognitive radio networks, by

assuming that each secondary user has complete information
of the channel characteristics and the available channel op-

portunities are equally shared among the users without any

collision. In this paper, we relax this restrictive assumption

and design an imitative spectrum access mechanism based on

user’s local observations such as the realized data rates and

transmission collisions. The key idea is that each user applies

the maximum likelihood estimation to estimate its expected

throughput, and imitates another user’s channel selection if

that user’s estimated throughput is higher. The main results

and contributions of this paper are as follows:

• Imitative Spectrum Access: We propose a novel imitation-

based distributed spectrum access mechanism, wherein

each secondary user first estimates its expected through-

put based on local observations, and chooses to imitate

another better user.

• Convergence to Imitation Equilibrium: We show that the

imitative spectrum access mechanism converges to the

imitation equilibrium, wherein no beneficial imitation can

be further carried out on the time average. Numerical

results show that when the number of users is large,

the imitative spectrum access mechanism converges to

a Nash equilibrium, which is a special case of imitation

equilibria.

• Imitative Spectrum Access with User Heterogeneity: We

further design an imitation-based spectrum access mech-

anism with user heterogeneity, where different users

achieve different data rates on the same channel. Numer-

ical results show that the mechanism can also converge

to an imitation equilibrium.

The rest of the paper is organized as follows. We introduce

the system model and the maximum likelihood estimation in

Sections II and III, respectively. We then present the imitative

spectrum access mechanism and study its convergence in

Sections IV and V, respectively. We next propose the imitative

spectrum access mechanism with user heterogeneity in Section

VI. We illustrate the performance of the proposed mechanisms

in Section VII, and finally conclude in Section VIII.

II. SYSTEM MODEL

We consider a cognitive radio network with a set M =
{1, 2, ...,M} of independent and stochastically heterogeneous
licensed channels. A set N = {1, 2, ..., N} of secondary

users try to opportunistically access these channels, when the

channels are not occupied by primary (licensed) transmissions.

The system model has a slotted transmission structure as in

Figure 1 and is described as follows.

• Channel State: the channel state for a channel m during

a time slot is 0 if channel m is occupied by primary

transmissions and 1 if channel m is idle.
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Fig. 1. Multiple stages in a single time slot.

• Channel State Changing: for a channel m, we assume that

the channel state is an i.i.d. Bernoulli random variable,

with an idle probability θm ∈ (0, 1) and a busy probabil-

ity 1−θm. This model can be a good approximation of the

reality if the time slots for secondary transmissions are

sufficiently long or the primary transmissions are highly

bursty [11].

• Heterogeneous Channel Throughput: if a channel m is

idle, the achievable data rate bm(τ) by a secondary user

in each time slot τ evolves according to an i.i.d. random

process with a mean Bm, due to the local environmental

effects such fading. All users achieve the same data rate

on the same channel. In Section VI, we will further

consider the heterogeneous user case.

• Time Slot Structure: each secondary user n executes the

following stages synchronously during each time slot:

– Channel Sensing: sense one of the channels based on

the channel selection decision generated at the end

of previous time slot. Access the channel if it is idle.

– Channel Contention: use a backoff mechanism to

resolve collisions when multiple secondary users

access the same idle channel. The contention stage

of a time slot is divided into λmax mini-slots (see

Figure 1), and user n executes the following two

steps. First, count down according to a randomly and

uniformly chosen integral backoff time (number of

mini-slots) λn between 1 and λmax. Second, once

the timer expires, transmit RTS/CTS messages if the

channel is clear (i.e., no ongoing transmission). Note

that if multiple users choose the same backoff value

λn, a collision will occur with RTS/CTS transmis-

sions and no users can successfully grab the channel.

– Data Transmission: transmit data packets if the

RTS/CTS message exchanges go through and the

user successfully grabs the channel.

– Channel Selection: choose a channel to access in the

next time slot according to the imitative spectrum

access mechanism (introduced in Section IV).

Suppose that km users choose an idle channel m to access.

Then the probability that a user n (out of the km users) grabs

the channel m is

g(km)=Pr{λn < min
i �=n
{λi}}

=

λmax∑
λ=1

Pr{λn = λ}Pr{λ < min
i �=n
{λi}|λn = λ}

=

λmax∑
λ=1

1

λmax

(
λmax − λ

λmax

)km−1

,
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Fig. 2. The period structure of maximum likelihood estimation of various
system parameters.

which is a decreasing function of the total contending users

km. Then the expected throughput of a secondary user n
choosing a channel m is given as

Un = θmBmg(km). (1)

Since our analysis is from secondary users’ perspective, we

will use terms “secondary user” and “user” interchangeably.

III. EXPECTED THROUGHPUT ESTIMATION

In order to imitate a successful action, a user needs to

compare his and other users’ performances (throughputs). In

practice, many wireless devices only have a limited view of the

network environment due to hardware constraints. To capture

this reality, we first introduce the maximum likelihood estima-

tion approach to estimate a user’s expected throughput based

on its local observations. To achieve an accurate estimation

based on local observations, a user needs to gather a large

number of observation samples. This motivates us to divide

the spectrum access time into a sequence of decision periods
indexed by t(= 1, 2, ...), where each decision period consists

of L time slots (see Figure 2 for an illustration). During a

single decision period, a user accesses the same channel in

all L time slots. Thus the total number of users accessing

each channel does not change within a decision period, which

allows users to learn the environment.

According to (1), a user’s expected throughput during

decision period t depends on the probability of grabbing the

channel g(km(t)) on that period, the channel idle probability

θm, and the mean data rate Bm. Similarly to our work in [6]

on the expected throughput estimation for distributed learning

mechanism design, we will apply the maximum likelihood es-

timation (MLE) to get accurate estimations of there parameters

for imitative spectrum access mechanism design, due to the

efficiency and the ease of implementation of this method [12].

A. MLE of Channel Grabbing Probability g(km(t))

At the beginning of each time slot l(= 1, ..., L) of a decision

period t, we assume that a user n chooses to sense the same

channel m. If the channel is idle, the user will contend to grab

the channel according to the backoff mechanism in Section

II. At the end of each time slot l, a user observes Sn(t, l),
In(t, l), and bn(t, l). Here Sn(t, l) denotes the state of the

chosen channel (i.e., whether occupied by the primary traffic),

In(t, l) indicates whether the user has successfully grabbed

the channel, i.e.,

In(t, l) =

{
1, if user n successfully grabs the channel

0, otherwise,
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and bn(t, l) is the received data rate on the chosen channel by

user n at time slot l. At the end of each decision period t,
each user n can collect a set of local observations Ωn(t) =
{Sn(t, l), In(t, l), bn(t, l)}Ll=1. Note that if Sn(t, l) = 0 (i.e.,

the channel is occupied by the primary traffic), we set In(t, l)
and bn(t, l) to be 0.

When the channel m is idle (i.e., no primary traffic),

km(t) users contend for the channel according to the backoff

mechanism in Section II. Then user n out of these km(t)
users grabs the channel with probability g(km(t)). Since there

are a total of
∑L

l=1 Sn(t, l) rounds of channel contentions

in the period t and each round is independent, the total

number of successful channel captures
∑L

l=1 In(t, l) by user

n follows the Binomial distribution. User n can then compute

the likelihood of g(km(t)), i.e., the probability of the realized

observations Ωn(t) given the parameter g(k(t)) as

L[Ωn(t)|g(km(t))] =

(∑L
l=1 Sn(t, l)∑L
l=1 In(t, l)

)
g(km(t))

∑L
l=1 In(t,l)

× (1− g(km(t)))
∑L

l=1 Sn(t,l)−
∑L

l=1 In(t,l).

Then MLE of g(km(t)) can be computed by maximiz-

ing the log-likelihood function lnL[Ωn(t)|g(km(t))], i.e.,

maxg(km(t)) lnL[Ωn(t)|g(km(t))]. By the first order con-

dition, we obtain the optimal solution as g̃(km(t)) =∑L
l=1 In(t, l)/

∑L
l=1 Sn(t, l), which is the sample averaging

estimation. When the length of decision period L is large,

by the central limit theorem, we know that g̃(km(t)) ∼
N
(
g(km(t)), g(km(t))(1−g(km(t)))

∑L
l=1 Sn(t,l)

)
, where N (·) denotes the

normal distribution.

B. MLE of Channel Idle Probability θm

We next apply the MLE to estimate the channel idle

probability θm. Since the channel state Sn(t, l) is i.i.d over

different time slots and different decision periods, we can

improve the estimation by averaging not only over multiple

time slots but also over multiple periods.

Similarly with MLE of g(km(t)), we first compute one-

period MLE of θm as θ̂m =
∑L

l=1 Sn(t,l)

L . When the length of

decision period L is large, we have that θ̂m follows the normal

distribution with the mean θm, i.e., θ̂m ∼ N
(
θm, θm(1−θm)

L

)
.

We then average the estimation over multiple decision

periods. When a user n finishes accessing a channel m for

a total C periods, it updates the estimation of the channel idle

probability θm as θ̃m(C) = 1
C

∑C
i=1 θ̂m(i), where θ̃m(C) is

the estimation of θm based on the information of all C decision

periods, and θ̂m(i) is the one-period estimation. By doing so,

we have θ̃m(C) ∼ N
(
θm, θm(1−θm)

CL

)
, which reduces the

variance of one-period MLE by a factor of C.

C. MLE of Mean Data Rate Bm

Since the received data rate bn(t, l) is also i.i.d over different

time slots and different decision periods, similarly with the

MLE of the channel idle probability θm, we can obtain the

one-period MLE of mean data rate Bm as B̂m =
∑L

l=1 bn(t,l)∑L
l=1 In(t,l)

,

and the averaged MLE estimation over C periods as B̃m(C) =
1
C

∑C
i=1 B̂m(i).

By the MLE, we can obtain the estimation of g(k(t)), θm,

and Bm as g̃(km(t)), θ̃m, and B̃m, respectively, and then

estimate the true expected throughput Un(t) = θmBmg(k(t))
as Ũn(t) = θ̃mB̃mg̃(km(t)). Since g̃(km(t)), θ̃m and

B̃m follow independent normal distributions with the mean

g(km(t)), θm and Bm, respectively, we thus have E[Ũn(t)] =
E[θ̃mB̃mg̃(km(t))] = Un(t), i.e., the estimation of expected

throughput Un(t) is unbiased. In the following analysis, we

hence assume that

Ũn(t) = Un(t) + ωn, (2)

where ωn ∈ (ω, ω) is the random estimation noise with the

probability density function f(ω) satisfying

f(ω) > 0, ∀ω ∈ (ω, ω), (3)

E[ωn] =

∫ ω

ω

ωf(ω)dω = 0. (4)

IV. IMITATIVE SPECTRUM ACCESS MECHANISM

We now apply the idea of imitation to design an efficient

distributed spectrum access mechanism, which utilizes user’s

local estimation of its expected throughput. We will show

that the proposed imitative spectrum access mechanism can

converge to an imitation equilibrium on the time average.

A. Imitative Spectrum Access

We apply the principle of imitation for distributed spectrum

access mechanism design and propose the imitative spectrum

access mechanism in Algorithm 1. The key idea is to let users

imitate the actions of those users that achieve a higher through-

put (i.e., Lines 11 to 14 in Algorithm 1). Such a mechanism

based on local throughput comparison is simple and easy to

implementation. Each user n at each period t first collects

the local observations Ωn(t) = {Sn(t, l), In(t, l), bn(t, l)}Ll=1

(i.e., Lines 5 to 8 in Algorithm 1) and estimates its expected

throughput with the MLE method as introduced in Section III

(i.e., Line 9 in Algorithm 1). Then user n tries to carry out

the imitation by randomly sampling another user’s estimated

throughput (i.e., Line 10 in Algorithm 1). Such a random

sampling can be achieved in different ways. For example, user

n can randomly generate an integer user ID n′ from the set

N\{n} and broadcast a throughput enquiry packet including

the enquired user ID n′ over a common control channel1.

Then the user n′ will send back an acknowledgement packet

including its locally estimated expected throughput to user n.

Note that we are considering social spectrum sharing in this

paper, and thus users are willing to share their local throughput

information when being asked. The mutual reciprocity is a

common phenomenon in many social activities [14].

B. Dynamics of Imitative Spectrum Access

We next study the evolution dynamics of the imitative

spectrum mechanism. For the ease of exposition, we will focus

1Please refer to [13] for the details on how to set up and maintain a reliable
common control channel in cognitive radio networks.
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Algorithm 1 Imitative Spectrum Access

1: initialization:
2: choose a channel an randomly for each user n.

3: end initialization

4: loop for each decision period t and each user n in parallel:

5: for each time slot l in the period t do
6: sense and contend to access the channel an.

7: record the observations Sn(t, l), In(t, l) and

bn(t, l).
8: end for
9: estimate the expected throughput Ũn(t).

10: select another user n′ randomly and enquiry its esti-

mated throughput Ũn′(t).
11: if Ũn′(t) > Ũn(t) then
12: choose channel an′ (i.e., the one chosen by user

n′) in the next period.

13: else choose the original channel in the next period.

14: end if
15: end loop

on the case that the number of users N is large. Numerical

results show that the observations also hold for the case that

the number of users is small (see Section VII-C for details).

In a large user population, it is convenient to use the

population state x(t) to describe the dynamics of spectrum

access. Here x(t) � (x1(t), ..., xM (t)), and xm(t) is the

fraction of users in the population choosing channel m to

access at decision period t.
In the imitative spectrum access mechanism, each user n

relies on its estimated expected throughput Ũn(t) to decide

whether to imitate other user’s channel selection. Due to the

random estimation noise ωn, the evolution of the population

state {x(t), ∀t ≥ 0} is hence stochastic and difficult to

analyze directly. However, when the population of users N
is large, due to the law of large number, such stochastic

process can be well approximated (“averaged out”) by its

mean-field deterministic trajectory {X(t), ∀t ≥ 0} [15]. Here

X(t) � (X1(t), ...XM (t)) is the deterministic population

state. Let P j
i (X(t)) denote the probability that a user choosing

channel i in the deterministic population state X(t) will

choose channel j in next period. According to [15], we have

Lemma 1. There exists a scalar δ, such that for any bound
ε > 0, decision period t > 0, and any large enough population
size N , the maximum difference between the stochastic and
deterministic population states over all periods is upper-
bounded by ε with an arbitrary large enough probability, i.e.,

Pr{ max
0≤τ≤t

max
m∈M

|Xm(τ)− xm(τ)| ≤ ε} ≥ 1− e−ε2δN , (5)

given that X(0) = x(0) and the evolution of the deterministic
population state {X(t), ∀t ≥ 0} satisfies

Xj(t+ 1) =

M∑
i=1

Xi(t)P
j
i (X(t)), ∀j ∈M. (6)

The proof is similar to that in [15] and hence is omitted

here. As illustrated in Figure 3, Lemma 1 indicates that the
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Fig. 3. Illustration of the approximation of stochastic population state x(t)
by deterministic population state X(t)

trajectory of the stochastic population state {x(t), ∀t ≥ 0} is

within a small neighborhood of the trajectory of the determin-

istic population state {X(t), ∀t ≥ 0} when the user population

N is large enough. Moreover, since the MLE is unbiased, if the

mean-field deterministic dynamics {X(t), ∀t ≥ 0} converge

to an equilibrium, the stochastic dynamics {x(t), ∀t ≥ 0}must

also converge to the same equilibrium on the time average

[15].

We now study the evolution dynamics of the deterministic

population state {X(t), ∀t ≥ 0} in (6). Let U(m,X(t)) =
θmBmg(NXm(t)) denote the expected throughput of a user

that chooses channel m in the population state X(t). Recall

that in the imitative spectrum access mechanism, each user will

randomly choose another user to imitate (if that user achieves

a higher throughput). Thus, we can obtain the probability

P j
i (X(t)) that a user n choosing channel i will imitate another

user n′ on channel j in the next period as

P j
i (X(t)) = Xj(t)Pr{Ũ(j,X(t)) > Ũ(i,X(t))}. (7)

From (2), we have

Ũ(j,X(t))− Ũ(i,X(t))

= U(j,X(t))− U(i,X(t)) + ωn′ − ωn, (8)

where ωn, ωn′ are the random estimation noises with the

probability density function f(ω). Let � = ωn − ωn′ , and

we can obtain the probability density function of � as

q(�) =

∫ ω

ω

f(ω)f(� + ω)dω. (9)

We further denote the cumulative distribution function � as

Q(�), i.e., Q(�) =
∫�

−∞ q(s)ds. Then from (7) and (8), we

have for any j �= i,

P j
i (X(t)) = Xj(t)Q(U(j,X(t))− U(i,X(t))), (10)

and

P i
i (X(t)) = 1−

∑
j �=i

Xj(t)Q(U(j,X(t))−U(i,X(t))). (11)

Based on (6), (10), and (11), we can obtain the evolution

dynamics of the deterministic population state {X(t)} as

Theorem 1. For the imitative spectrum access mechanism,
the evolution dynamics of deterministic population state
{X(t), ∀t ≥ 0} are

Ẋm(t) = Xm(t)

M∑
i=1

Xi(t) (Q(U(m,X(t))− U(i,X(t))

− Q(U(i,X(t))− U(m,X(t))) , (12)
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where the derivative is with respect to time t.

Proof: From (6), (10), and (11), we have

Ẋm(t) = Xm(t+ 1)−Xm(t)

=
∑
i �=m

Xi(t)P
m
i (X(t))− (1− Pm

m (X(t)))Xm(t)

=Xm(t)
∑
i �=m

Xi(t)Q(U(m,X(t))− U(i,X(t)))

−Xm(t)
∑
j �=m

Xj(t)Q(U(j,X(t))− U(m,X(t))),

which completes the proof.

V. CONVERGENCE OF IMITATIVE SPECTRUM ACCESS

We now study the convergence of the imitative spectrum ac-

cess mechanism. Let x∗ � (x∗1, ..., x
∗
M ) denote the equilibrium

of the imitative spectrum access, and a∗n denote the channel

chosen by user n in the equilibrium x∗. We first introduce the

definition of imitation equilibrium.

Definition 1 (Imitation Equilibrium). A population state
x∗ = (x∗1, ..., x

∗
M ) is an imitation equilibrium if and only if

for each user n ∈ N ,

U(a∗n,x
∗) ≥ max

a∈Δ(x∗)\{a∗
n}

U(a,x∗), (13)

where Δ(x∗) � {m ∈ M : x∗m > 0} denotes the set of
channels chosen by users in the equilibrium x∗.

At an imitation equilibrium, no user can further improve

its expected throughput by imitating another user. For the

imitative spectrum access mechanism, we show that

Theorem 2. For the imitative spectrum access mechanism,
the evolution dynamics of deterministic population state
{X(t), ∀t ≥ 0} asymptotically converge to an imitation
equilibrium X∗ such that all users achieve the same expected
throughput, i.e.,

U(a∗n,X
∗) = U(a∗n′ ,X∗), ∀n, n′ ∈ N . (14)

Proof: To proceed, we first define the following function

V (X(t)) =
M∑

m=1

∫ Xm(t)

−∞
θmBmg(Nz)dz. (15)

We then consider the variation of V (X(t)) along the evolution

trajectory of deterministic population state {X(t)} in (12), i.e.,

differentiating V (X(t)) with respective to time t,

dV (X(t))

dt
=

M∑
m=1

dV (X(t))

dXm(t)

dXm(t)

dt

=
M∑

m=1

θmBmg(NXm(t))
dXm(t)

dt

=

M∑
m=1

U(m,X(t))Xm(t)

M∑
i=1

Xi(t)

×
(
Q(U(m,X(t))− U(i,X(t))

−Q(U(i,X(t))− U(m,X(t))
)

=
1

2

M∑
m=1

M∑
i=1

Xm(t)Xi(t)

× (U(m,X(t))− U(i,X(t)))

×
(
Q(U(m,X(t))− U(i,X(t))

−Q(U(i,X(t))− U(m,X(t))
)
. (16)

Since f(ω) is a probability density function satisfying

f(ω) > 0, ∀ω ∈ (ω, ω) and
∫ ω

ω
f(ω)dω = 1, it follows

from (9) that q(�) > 0, ∀� ∈ (ω − ω, ω − ω) and q(�) =
0, ∀� /∈ (ω − ω, ω − ω). Hence the cumulated probability

function Q(�) =
∫�

−∞ q(s)ds is strictly increasing for any

� ∈ (ω−ω, ω−ω), and further Q(�) = 0, ∀� ∈ (−∞, ω−ω)
and Q(�) = 1, ∀� ∈ (ω − ω,+∞). This implies that if

U(m,X(t)) �= U(i,X(t),

(U(m,X(t))− U(i,X(t)))

×
(
Q(U(m,X(t))− U(i,X(t))

−Q(U(i,X(t))− U(m,X(t))
)
> 0, (17)

and if U(m,X(t)) = U(i,X(t),

(U(m,X(t))− U(i,X(t)))

×
(
Q(U(m,X(t))− U(i,X(t))

−Q(U(i,X(t))− U(m,X(t))
)
= 0. (18)

From (16), (17), and (18), we have
dV (X(t))

dt ≥ 0. Hence

V (X(t)) is non-decreasing along the trajectory of the dy-

namics (12). According to [16], the evolution dynamics of

deterministic population state {X(t), ∀t ≥ 0} asymptotically

converge to a limit point X∗ such that
dV (X∗)

dt = 0, i.e.,

X∗
mX∗

i (U(m,X∗)− U(i,X∗))

×
(
Q(U(m,X∗)−U(i,X∗)−Q(U(i,X∗)−U(m,X∗)

)
= 0.

(19)

By (18), we must have U(m,X∗) = U(i,X∗), ∀m, i ∈
Δ(x∗). Since a∗n, a

∗
n′ ∈ Δ(x∗), we thus have U(a∗n,X

∗) =
U(a∗n′ ,X

∗).
According to Lemma 1, we know that the stochastic im-

itative spectrum access dynamics {x(t), ∀t ≥ 0} will be

attracted into a small neighborhood around the imitation

equilibrium X∗. Moreover, since the imitation equilibrium

X∗ is also the mean field equilibrium of stochastic dynamics

{x(t), ∀t ≥ 0}, the stochastic dynamics {x(t), ∀t ≥ 0} hence

converge to the imitation equilibrium X∗ on the time average,

i.e., limt→∞
∑t

τ=1 xm(τ)

t = X∗
m, ∀m ∈M.

Interestingly, when the set of chosen channels is the set

of all channels, i.e., Δ(X∗) = M, it is easy to verify

that the imitation equilibrium X∗ is a Nash equilibrium,

since no user can improve its payoff by changing its channel

unilaterally. Numerical results show that when the number

of users N is large enough, the imitative spectrum access

mechanism always converges to a Nash equilibrium. The

reason is that the probability that a channel is not chosen by

any users equals to (M−1)−N , which decreases exponentially

with the number of users N . On the other hand, when the

number of users N is small, numerical results show that the
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imitative spectrum access mechanism also converges to an

imitation equilibrium satisfying the condition in (13) on the

time average. To understand this, we can consider the evolution

of user distribution on channels as a Markov process. Then

any user distribution that satisfies the definition of imitation

equilibrium in (13) is an absorbing state.

VI. IMITATIVE SPECTRUM ACCESS WITH USER

HETEROGENEITY

For the ease of exposition, we have considered the case that

users are homogeneous, i.e., different users achieve the same

data rate on the same channel. We now consider the general

heterogeneous case where different users may achieve different

data rates on the same channel.

Let bnm(τ) be the realized data rate of user n on an idle chan-

nel m at a time slot τ , and Bn
m be the mean data rate of user n

on the idle channel m, i.e., Bn
m = E[bnm(τ)]. In this case, the

expected throughput of user n is given as Um
n = θmBn

mg(km).
For imitative spectrum access mechanism in Algorithm 1,

each user carries out the channel imitation by comparing its

throughput with the throughput of another user. However, such

throughput comparison may not be feasible when users are

heterogeneous, since a user may achieve a low throughput on

a channel that offers a high throughput for another user.

To address this issue, we propose a new imitative spectrum

access mechanism with user heterogeneity in Algorithm 2.

More specifically, when a user n on a channel m randomly

selects another user n′ on another channel m′, user n′ in-

forms user n about the estimated channel grabbing probability

g̃(km′) instead of the estimated expected throughput. Then

user n will compute the estimated expected throughput on

channel m′ as

Ũm′
n = θ̃m′B̃n

m′ g̃(km′ ). (20)

If Ũm′
n > Ũm

n , then user n will imitate the channel selection

of user n′.
To implement the mechanism above, each user n must have

the information of its own estimated channel idle probability

θ̃m′ and data rate B̃n
m′ of the unchosen channel m′. Hence

we add an initial channel estimation stage in the imitative

spectrum access mechanism in Algorithm 2. In this stage, each

user initially estimates the channel idle probability θ̃m and

data rate B̃n
m by accessing all the channels in a randomized

round-robin manner. This ensures that all users do not choose

the same channel at the same period. Let Mn (equals to the

empty set 	 initially) be set of channels probed by user n
and Mc

n = M\Mn. At beginning of each decision period,

user n randomly chooses a channel m ∈ Mc
n (i.e., a channel

that has not been accessed before) to access. At end of the

period, user n can estimate the channel idle probability θ̃m
and data rate B̃n

m according to the MLE method introduced

in Section III. Note that there are L time slots within each

decision period, and thus the user will be able to have a fairly

good estimation if L is reasonably large. Then user n updates

the set of probed channels as Mn = Mn ∪ {m}. When all

the channels are probed, i.e., Mn = M, the stage of initial

channel estimation ends. Thus, the total time slots for this

stage is ML.

Algorithm 2 Imitative Spectrum Access With User Hetero-

geneity

1: initialization:
2: choose a channel an randomly for each user n.

3: end initialization

4: loop for each user n ∈ N in parallel:

	 Initial Channel Estimation Stage
5: while Mn �=M do
6: choose a channel m from the set Mc

n randomly.

7: sense and contend to access the channel m at each

time slot of the decision period.

8: record the observations Sn(t, l), In(t, l) and

bn(t, l).
9: estimate the channel idle probability θ̃m and data

rate B̃n
m.

10: set Mn =Mn ∪ {m}.
11: end while

	 Imitative Spectrum Access Stage
12: for each time period t do
13: sense and contend to access the channel m at each

time slot of the decision period.

14: record the observations Sn(t, l), In(t, l) and

bn(t, l).
15: estimate the expected throughput Ũan

n (t).
16: select another user n′ randomly and enquiry its

channel grabbing probability g̃(kan′ ).

17: estimate the expected throughput Ũ
an′
n (t) based

on (20).

18: if Ũan′
n (t) > Ũan

n (t) then
19: choose channel an′ (i.e., the one chosen by

user n′) in the next period.

20: else choose the original channel in the next period.

21: end if
22: end for
23: end loop

Numerical results show that the proposed imitative spectrum

access mechanism with user heterogeneity can still converge

to an imitation equilibrium satisfying the definition in (13),

i.e., no user can further improve its expected throughput by

imitating another user.

VII. SIMULATION RESULTS

In this section, we evaluate the proposed imitative spectrum

access mechanisms by simulations. We first implement the

imitative spectrum access mechanism with user homogeneity

(i.e., Algorithm 1). We consider a cognitive radio network

consisting M = 5 Rayleigh fading channels. The channel

idle probabilities {θm}Mm=1 = { 23 , 4
7 ,

5
9 , 12 ,

4
5}. The data rate

on an idle channel m is computed according to the Shannon

capacity, i.e., bm(τ) = ζm log2(1+
ηngm(τ)

n0
), where ζm is the

bandwidth of channel m, ηn is the power adopted by uses, n0

is the noise power, and gm(τ) is the channel gain (a realization

of a random variable that follows the exponential distribution
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Fig. 4. Evolution of stochastic population state x(t) with user populations
N = 1000, 800, 500, and 200, and the number of number of backoff mini-
slots λmax = 5000

with mean ḡm). In the following simulations, we set ζm = 10
MHz, n0 = −100 dBm, and ηn = 100 mW. By choosing

different mean value ḡm, we have different mean data rates

{Bm = E[bm(τ)]}Mm=1 = {15, 70, 90, 40, 100}Mbps. We first

implement the imitation spectrum access mechanism in cases

with both large and small user populations.

A. Large User Populations With Large λmax

We first consider the case that the user population N is

large. For the channel contention, we set the number of backoff

mini-slots λmax = 5000, which is larger than the number

of users N . This can be approximated by the asymptotic

case λmax → ∞, and the probability of grabbing the chosen

channel g(k) = limλmax→∞
∑λmax

λ=1
1

λmax

(
λmax−λ
λmax

)k−1

=∫ 1

0
zk−1dz = 1

k . According to (14), we can obtain the close-

form solution of the imitation equilibrium X∗ as

X∗
m =

{
θmBm∑

i∈�(X∗) θiBi
, if m ∈ �(X∗),

0, if m /∈ �(X∗),
(21)

which provides a benchmark for the simulations. We set the

length of the decision period L = 500, which achieves a good

estimation of the expected throughput.

We implement the imitative spectrum access mechanism

with the number of users N = 1000, 800, 500, and 200,
respectively. Figure 4 shows the evolution dynamics of

the stochastic population state x(t), which converge to a

bounded neighborhood of the imitation equilibrium X∗ =
( θ1B1∑M

i=1 θiBi
, ..., θMBM∑M

i=1 θiBi
) = (0.05, 0.2, 0.25, 0.1, 0.4) in all

cases. Moreover, as the number of users N increases, the

amplitude of fluctuation (i.e., the size of neighborhood) around

the imitation equilibrium X∗ decreases. Since the set of

chosen channels �(X∗) = M, we know that the imitation

equilibrium X∗ is also a Nash equilibrium.

Figure 5 shows two population choices, N = 500 and 200.

In both cases, the time average population state x(t) converges

to the imitation equilibrium X∗, and the time average user’s

estimated throughput Ũn(t) converges to the imitation equilib-

rium wherein all users achieve the same throughput as given

in (14).
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Fig. 5. Evolution of time average population state and user’s payoff with
user population N = 500 and 200, and the number of number of backoff
mini-slots λmax = 5000

0 100 200 300
0.1

0.15

0.2

0.25

0.3

Period t

Ti
m

e 
A

ve
ra

ge
 P

op
ul

at
io

n 
S

ta
te

0 100 200 300
0

0.2

0.4

0.6

0.8

Period t

Ti
m

e 
A

ve
ra

ge
 U

se
rs

’ P
ay

of
f

0 100 200 300
0

0.1

0.2

0.3

0.4

Period t

Ti
m

e 
A

ve
ra

ge
 P

op
ul

at
io

n 
S

ta
te

0 100 200 300
0

0.5

1

1.5

2

Period t

Ti
m

e 
A

ve
ra

ge
 U

se
rs

’ P
ay

of
f

Channel 5Channel 3

Channel 2Channel 4

Channel 1
Imitation Equilibrium

Imitation Equilibrium

N=500 N=500

N=200 N=200
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user population N = 500 and 200, and the number of number of backoff
mini-slots λmax = 50

B. Large User Populations With Small λmax

We next implement the imitative spectrum access mecha-

nism with the number of users N = 500 and 200, and the

number of backoff mini-slots λmax = 50, which is much

smaller than the number of users N . In this case, severe

collisions in channel contention may occur and hence lead to

a reduction in data rates for all users. The results are shown

in Figure 6. We see that a small λmax leads to a system

performance loss (i.e.,
∑N

n=1 Un <
∑M

m=1 θmBm). However,

the imitative spectrum access mechanism still converges to

the imitation equilibrium such that all users achieve the same

expected throughput. This verifies the effectiveness of the

mechanism in the small λmax case.

C. Small User Populations

We then consider the case that the user population N is

small. We implement the imitative spectrum access mechanism

with the number of users N = 20, 5, and 3, respectively. We

show the evolution of time average population state x(t) and

time average user’s estimated throughput Ũn(t) in Figure 7.

We observe similar results as in the large population case in

Figure 5. For example, when N = 20 we have �(X∗) =
{3, 5} and all the users achieve the same average throughput
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at the imitation equilibrium. This verifies the effectiveness of

Theorem 2 in the small user population case.

When the number of users is small, we also observe that

a subset of channels are utilized in the imitation equilibrium.

This is because each user imitates the choice of another user,

and thus one user’s choice could have a significant impact in

a small population. In other words, the gain of diversity is

weaken when user population is small. To further improve

the system performance in the small user population case,

we can increase the gain of diversity by adding “innovation”

(i.e., random channel exploration) into the imitative spectrum

access mechanism. The design of the imitative spectrum access

mechanism with innovation will be considered in a future

work.

D. Imitative Spectrum Access With User Heterogeneity

We then implement the imitation spectrum access mecha-

nism with user heterogeneity (i.e., Algorithm 2). The number

of users N = 500 and 200, and the number of backoff

mini-slots λmax = 50. We set the user specific data rate as

bnm(τ) = hnbm(τ), where hn is the user specific transmission

gain. In this case, we have user specific mean data rate as

Bn
m = hnBm. In this simulation, the transmission gain hn

of each user n is randomly assigned from the set {2.0, 1.0}.
The results are shown in Figure 8. The mechanism converges

to the equilibrium wherein users of the same transmission

gain achieve the same expected throughput and users of

different transmission gains may achieve different expected

throughputs. Moreover, we observe that the user distribution

on channels in Figure 8 is the same as that in Figure 6.

This implies that no user can further improve its expected

throughput by imitating another user. That is, the equilibrium

is an imitation equilibrium satisfying the definition in (13).

VIII. CONCLUSION

In this paper, we design imitation-based spectrum access

mechanisms with user homogeneity and heterogeneity. We

show that the proposed imitative spectrum access mechanisms

can converge to an imitation equilibrium on the time average.

Numerical results demonstrate that, when the number of users
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Fig. 8. Imitation spectrum access mechanism with user heterogeneity with
user population N = 500 and 200, and the number of number of backoff
mini-slots λmax = 50

is large, the convergent imitation equilibrium is equivalent to

a Nash equilibrium.

An interesting direction of extending this paper is to take

the spatial reuse into account. How to design an efficient

imitation based spectrum access mechanism such that each

users can only imitate neighboring users’ channel selections

is very challenging.
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