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Abstract

We describe a simple way to reduce the amount of required training data in context-based models of real-
time object detection. We demonstrate the feasibility of our approach in a very challenging vehicle detection
scenario comprising multiple weather, environment and light conditions such as rain, snow and darkness
(night). The investigation is based on a real-time detection system effectively composed of two trainable
components: an exhaustive multiscale object detector (”signal-driven detection”), as well as a module for
generating object-specific visual attention (”context models”) controlling the signal-driven detection process.
Both parts of the system require a significant amount of ground-truth data which need to be generated by
human annotation in a time-consuming and costly process.

Assuming sufficient training examples for signal-based detection, we demonstrate that a co-training step
can eliminate the need for separate ground-truth data to train context models. This is achieved by directly
training context models with the results of signal-driven detection. We show that this process is feasible for
different qualities of signal-driven detection, and maintains the performance gains from context models.

As it is by now widely accepted that signal-driven object detection can be significantly improved by
context models, our method allows to train strongly improved detection systems without additional labor,
and above all, cost.

1. Introduction

Our experience with cluttered and uncontrolled
traffic environments[5, 7, 6, 4] suggests that purely
appearance-based (i.e. based on local pixel pat-
terns) object detection suffers from ambiguities.
We claim that object-specific models relating
appearance-based visual information to non-local
and non-visual information must be taken into ac-
count to achieve the required disambiguation. We
shall denote such models ”context models”.

Messages of the article. In a previous work[7], we
have shown by benchmarks how context models can
be acquired and exploited for real-time vehicle de-
tection, and that their application is both simple
and beneficial in terms of detection performance.
This investigation is based on the vehicle detec-
tion system of [7] whose overall organization is de-
picted in Fig. 1. The goal of the article is to elabo-
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Figure 1: Structural overview of the system described in [7].
The red arrow indicates the reverse propagation of object pri-
ors that are derived from trained context models. The solid
green arrow shows where training data is supplied to the
system, whereas the dotted arrow indicates the additional
requirement for ground-truth data when not co-training con-
text models.
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rate upon the fact that context models can be suc-
cessfully trained even in the absence of error-free
ground-truth data (an approach usually termed co-
training, see, e.g., [15]), and to shed light on the
conditions under which such a process may be ex-
pected to work.

Evaluation data. All experiments are conducted
using the publicly available HRI RoadTraffic
dataset[7], containing five extended, annotated
video sequences of inner-city driving, comprising a
large variation of environmental and image process-
ing conditions1.

Approach. Given an object hypothesis produced by
signal-driven detection, context models (as used in
[7]) are essentially classifiers that estimate the iden-
tity of the hypothesis independently of its visual
appearance, see Fig. 8. Input for this estimation
are object-to-scene properties which are computed
from scene information and the location of the ob-
ject hypothesis. Typical object-to-scene properties
include, e.g., the height over the road plane, the dis-
tance to the obstacle-free road area, or simply the
position in the 2D camera image. Therefore, con-
text model training requires object object identity
to be known for each object hypothesis, which is
usually achieved by using manually created ground-
truth data. The basic idea of context model co-
training is to replace ground-truth data with the
object identity estimate from signal-driven object
detection, which is available ”for free”. In general,
this identity estimate will be error-prone; however,
if it is correct ”on average”, it is intuitive that suc-
cessful training of context models could be feasi-
ble. To assess this, the experiments of this article
are conducted in two conditions which differ in the
way the signal-driven detection algorithm of [22] is
trained. In the default condition, training is done
using ground-truth vehicle data taken from the HRI
RoadTraffic dataset[7]. In the impaired condition,
data of inferior quality generated by a laser sen-
sor is employed, leading to reduced detection per-
formance. By co-training context models and and
performing a subsequent performance evaluation in
both conditions, we determine whether co-training
of context models becomes infeasible with decreas-
ing detection performance.

1For obtaining the annotated image data, please write an
email to alexander@gepperth.net or hri-road-traffic@honda-
ri.de

Related work. In this article, we use a co-training
strategy[2] where one classifier trains another. This
approach has been applied to challenging object
detection scenarios, e.g., person detection[16], ve-
hicle detection for traffic surveillance[1] or face
detection[11, 20]. Similar to [1], the application
target of our work is vehicle detection, although
we assume a moving instead of a static platform.
A further similar point is the use of a primitive
vehicle detector (laser in our case, audio in [1]).
Our context model approach couples the global spa-
tial scene layout (”context”) to local object detec-
tion strategies. Such a coupling of object detection
and contextual information has been used previ-
ously to improve object detection in a variety of
scenarios ranging from controlled indoor scenes to
realistic traffic environments[7, 13, 8, 3, 21, 19]. In
[13], it is demonstrated that the ”gist”, i.e., a low-
dimensional description of a scene, can be used to
infer the locations of vehicles, signs and pedestrians
in traffic scenes by statistical models constructed
from training examples. The concept of gist is taken
further in [8] where a generic probabilistic model of
3D scene layout is proposed that can be queried for
likely image locations of, e.g., vehicles or pedestri-
ans in order to inform an exhaustive local object
detector. An approach that is somewhat related to
our context models is presented in [18] where in-
formation about road area is used to infer likely
locations of pedestrians after a supervised training
process. Scene geometry estimation is used to com-
pute prior distributions for vehicles and pedestrians
in [10], although the probabilistic models are de-
signed not learned. The presented work is based on
the object detection architecture introduced in [7],
focusing on the issue of bootstrapping. Going be-
yond [7], this article investigates the robustness of
the bootstrapping process to less-than-ideal train-
ing data, and thus opens the possibility to train
the combined detector-context system to without
ground-truth data at all.

2. Outline

In Sec. 3, we will briefly describe the object-to-
scene properties that are computed for each object
hypothesis, and which serve as input to context
models. Subsequently, we will sketch the working of
laser-based object detection used to obtain training
data without going into details due to space con-
straints. Afterwards, we will give an overview of
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Figure 2: Visualization of the two different types of training
data used to train signal-driven object detection. In the de-
fault condition, human-annotated ground-truth data is used
for training (left), whereas the impaired condition uses data
derived from laser sensors (right).

the training of context models and indicate how co-
training is integrated into it. As we use the system
of [7], we refer the interested reader to this reference
for a more detailed description of this system. In
Sec. 4, we will describe the conducted experiments,
from which we will draw conclusions in Sec. 5.

3. Methods

3.1. Generation of training data for classifier

In contrast to the standard condition where data
to train the signal-driven object detection are taken
from the HRI RoadTraffic dataset, the impaired
condition obtains training data by means of two
laser scanners of the model ibeo LUX (see [9]) on
an additional stream of highway driving which is
not part of HRI RoadTraffic. Using elementary im-
age processing and tracking techniques, we identify
self-moving segments in the laser signal which we
assume to be cars, and which we transform into
image coordinates by means of the camera trans-
form [17]. In this way, signal-driven detection can
be trained with 3000 positive and 10000 random
negative examples. Please see Fig. 2 for a visual-
ization of the two types of training data, and Fig. 3
for an idea of laser processing (not described here).

3.2. Free-area computation

The so-called free area is defined as the obstacle-
free space in front of the car that is visually similar
to a road. This quantity carries significant semantic
information. Since it is, by construction, bounded
by all obstacles that the car might collide with,
many relevant obstacles are close to the boundaries
of the free area. The object-to-scene quantity of in-
terest is therefore the image-based distance between
an object hypothesis and the free area. Please see

Figure 3: A) Setup of ibeo LUX laser sensors in the proto-
type vehicle used to create all recordings. To compensate for
vehicle roll, each laser sensor measures distances in 4 layers
which cover a vertical angle of 3.2 degrees (0.8 degrees per
layer). Due to technical reasons, the lasers are built into the
car in a slightly asymmetric fashion which results in different
covered areas on the left and right side of the car. Since both
devices can only use half of their layers at the borders of their
angular range, the area in front of the car cannot be covered
by 4 layers in both laser sensors. The effective angular reso-
lution of both laser devices is 0.25 degrees. B), C) Camera
image and clustering image obtained by the preprocessing of
laser sensor results.
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Figure 4: Distance to free area computation. a) original
image with two object hypotheses b) computed free area
c) pixelwise distance-to-free area map. Each pixel value in
the map is determined by that pixel’s minimal distance to
a free-area pixel where an upper limit dmax is imposed for
efficiency d) Visualization of object-to-scene feature value
between 0.0 (left) and 1.0 (right).

[12] for details of calculating the free-area and Fig. 4
for examples of distance-to-free-area measurements.

3.3. Distance and elevation computations

We employ dense correspondence-based stereo
processing for measuring the object-to-scene quan-
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Figure 5: Elevation processing. a) video image with object
hypothesis b) dense elevation map c) Visualization of object-
to-scene feature value (0.0 = left, 1.0 = right).
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Figure 6: Size-dependent encoding of hypothesis position.
Hypothesis size determines at which ”pyramid” level the po-
sition of the hypothesis is encoded.

tities of hypothesis distance and height in car-
centered coordinates. The quantity that really car-
ries semantic information is the elevation of object
hypotheses, i.e., their height over the detected road
surface. Please see Fig. 5 for an example of com-
puting elevation, and [7] for further details.

3.4. Position and size related analysis

Two important although almost trivial object-to-
scene quantities are the hypothesis position and size
in the camera image. Even though the image posi-
tion of objects changes, for example, during turning
maneuvers (similar examples can be mentioned for
image-based size), we found that these quantities
can nevertheless provide useful hints about object
identity. Therefore, they are encoded at the hy-
pothesis level of our system as shown in Fig. 6.

3.5. Signal-driven object detection

Signal-based object detection generates object
hypotheses in two successive steps. As a first step,
a hierarchical feed-forward network is applied to
the camera image in the manner of a convolutional

network[22]. This produces a pyramid of K retino-
topic confidence, or, if we wish to stay in the lan-
guage of Bayesian inference, object likelihood maps.
Each pixel of such a map indicates the presence of
a specific view of an object (in our case: back-views
of cars) at a specific scale, see Fig. 7. A list of ob-
ject hypotheses is subsequently generated from the
object likelihood maps by a competitive selection
process described in [7].

3.6. Training and co-training of context models

Context models are trained in a supervised fash-
ion using simple logistic regression models[7] as
shown in Fig. 8. Instead of requiring additional
ground-truth data, the supervision signal is derived
from object identity as computed from signal-driven
detection. For this purpose, the detection threshold
is set very low such that a great number of hypothe-
ses if produced. We consider each detection whose
detection likelihood exceeds a threshold of 0.4 to be
a vehicle for the purposes of training context mod-
els.

The trained context models can then be inverted
to produce a ”object prior map” which is combined
with the object likelihood maps obtained from the
signal-driven detection, to yield a ”object posterior
map” indicating the belief of vehicle detections at
various locations. The effect of applying the object
prior map in this way is demonstrated in Fig. 7.
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Figure 7: Typical effects of object priors on classifier output.
a) Sample input image. b) object likelihood map of classifier
at scale 5. Note the strong (but incorrect) maxima indicated
by the ellipse and the arrow. c) Object prior map derived
from context models at scale 5. d) Object posterior map.
Note that the local maxima indicated by the arrow and the
ellipse have been merely attenuated; especially the maximum
indicated by the arrow may still be selected since there are
no competing maxima nearby. In contrast, local maxima
close to the upper border of the image have been eliminated.
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Figure 8: Training of context models. a) Hypothesis selected by signal-driven object detection. Object identity is used for
co-training context models (green arrow) whereas hypothesis position is used for computing object-to-scene properties. b)
Training the mapping between object-to-scene properties and object identity. c) Teaching signal for context models, derived
from signal-driven object detection.

ID weather daytime images ann. images
I overcast,dry afternoon 9843 957
II low sun, dry late afternoon 22600 949
III heavy rain afternoon 6725 643
IV dry midnight 6826 464
V after heavy snow afternoon 16551 867

Table 1: Left: Details about the used video streams. Right: example images.

3.7. Experimental setup

The HRI RoadTraffic dataset which we use for
evaluation contains five distinct color video streams
(denoted I-V) together with laser range finder data
for free area detection. All videos are around 15
minutes in length, and were taken during test drives
along a fixed route covering mainly inner-city areas,
along with short times of highway driving. Please
see Tab. 1 for details and a visual impression.

For performance assessment, we compute
receiver-operator characteristics (ROCs) combin-
ing common [14, 7] evaluation measures, namely
the false negative rate (fnr) and false positives per
image (fppi).

4. Experiments and Results

For all experiments, the training of context mod-
els is performed using a procedure called blocking:
we group the stream of hypotheses into intervals
corresponding to 30s of real time and apply context
model training only for odd-numbered groups. The
even-numbered groups are used for performance

evaluation, which ensures that training and eval-
uation data are always strictly non-overlapping.

For each experiment, we run the system twice,
assuming that signal-driven detection has already
been trained. In the first run, context models are
trained, and therefore the generation of (untrained)
object priors is disabled. The detection threshold
of signal-driven detection is set to 0.0, and context
models are trained with a ”vehicle” signal for each
hypothesis whose likelihood exceeds 0.4. In the sec-
ond run, learning is switched off, and the effect of
trained context models on detection is evaluated
on streams I-V by computing ROC-like plots (see
Sec. 3.7).

Two experiments are conducted, one for the de-
fault condition and one for the impaired condition
using laser-generated training data for signal-driven
object detection (see Sec. 1). For the impaired con-
dition, we only show results on stream III for space
limitations, and since results are redundant. Fig. 9
and Fig. 10 visualize the measured system perfor-
mances in both conditions.
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Figure 9: Performance achieved by context models in the default condition, see Sec. 1. Diagrams are grouped by video streams of
the HRI RoadTraffic dataset (stream I not shown due to space limitations). Dashed green curves: performance of signal-driven
object detection alone. Yellow and blue curves: effects of including ground-truth-trained (yellow curves) and co-trained (blue
curves) context models. A clear improvement can be observed for all streams in contrast to unaided signal-driven detection;
co-trained context models achieve a performance very similar to to ground-truth-trained case.

5. Discussion

Our experiments show that, across all video
streams, a markedly superior vehicle detection per-
formance is achieved when coupling context mod-
els to signal-driven object detection. As the goal
of this study is to show that co-training of context
models is feasible in contrast to using ground-truth
data, the performance in both cases must be com-
pared. As can be clearly seen from the ”default
condition” experiment (Fig. 9), the replacement of
ground-truth data by the co-training process has
a very small influence on detection performance.
To our mind, this decrease is more than compen-
sated by the enormous reduction of required train-
ing data.

As it stands to reason that co-training can only
work when the classifier generating the supervision
signal data is of sufficient accuracy, we conducted
the ”impaired condition” experiment which used
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Figure 10: Performance achieved by context models in the
impaired condition, see Sec. 1. Shown is the performance of
signal-driven object detection alone (solid red curve), and in
combination with co-trained context models (red curve with
crosses). Apparently, feedback signals still cause a strong
overall increase in detection performance, although it is in-
ferior to that of the default condition.

training data of reduced quality for signal-driven
object detection. As can be expected, and as it is
indeed seen in Fig. 10, this leads to reduced de-
tection accuracy of signal-driven detection. Never-
theless, the coupling of co-trained context models
results in a significant increase in detection perfor-
mance, as seen from Fig. 10, although the perfor-
mance seen in the default condition (Fig. 9) is not
reached. The conclusion can only be that meaning-
ful context models are still acquired in spite of the
reduced quality of the supervision signal.

Summary and conclusion. In this contribution, we
benchmarked the performance of a hybrid vehicle
detection system composed of a sliding-window-
type object detector (”signal-driven detection”)
and a simple model of object-to-scene relations
(”context models”), supplying a Bayesian prior dis-
tribution to the detector. Our focus was to reduce
the overall amount o ground-truth data required for
training the complete system; to this end, we com-
pared the direct training of context models from
ground-truth data to using the object hypotheses
from signal-driven detection as training data, a pro-
cedure which we term ”bootstrapping”. Two boot-
strapping scenarios were investigated, one where
signal-driven detection was trained on ground-truth
data, and another where signal-driven detection
was trained on automatically generated vehicle data
obtained by processing signals from a laser sensor.
Our key findings were that, in all three cases, the
obtained context models had a strong beneficial ef-
fect on detection performance, and that bootstrap-
ping of context models was successful in all cases
(although of slightly inferior performance). In par-
ticular, the case where context models were boot-
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strapped from signal-driven detection trained on
automatically generated vehicle data deserves the
highest attention, because it is essentially an object
detection system that requires no ground-truth data
at all to be trained to competitive performance.

To conclude, we have determined that, at least
for vehicles, co-training of context models is a fea-
sible option which will allow a huge reduction of
cost and human effort when constructing power-
ful hybrid detection architectures. If a simple sen-
sor exists that generates halfway reliable ground-
truth data (at least in some defined situations), we
may even speculate that the training of detection
and context models could be done entirely without
ground-truth data, by using the basic co-training
techniques of this article.
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