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Semiautomatic approaches are developed for wide area

situation assessment in near-real-time. The two-step method

consists of two granularity levels. The first entity assessment uses

a new multi-target tracking (MTT) algorithm (hybridization of

Gaussian mixture-Cardinalized probability hypothesis density

(GM-CPHD) filter and multiple hypothesis tracker (MHT) with

road constraints) on ground moving target indicator (GMTI)

data. The situation is then assessed by detecting objects of interest

such as convoys with other data types (synthetic aperture radar

(SAR), video). These detections are based on Bayesian networks

and their credibilistic counterpart.
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I. INTRODUCTION

Information processing is a challenging goal for

any automatic system. The increasing number of

sensors involves the use of data fusion techniques

in order to raise the semantic level of a piece of

information, i.e., transform a numerical value

into meaningful information and produce relevant

information regarding a specific problem.

In the battlefield surveillance domain, data are

produced by heterogeneous sensors like airborne

ground moving target indicator (GMTI) data, synthetic

aperture radar (SAR) images, or video coming from

unmanned aerial vehicles (UAV). Data can also

come from databases contained in the Geographical

Information System (GIS). In the situation assessment

context, the goal is to refine the quality of information

and detect objects of interest from an operational

point of view. In this application we decided to first

focus on the object-of-interest “convoy” which is

defined as an aggregate of vehicles with a particular

kinematic behavior. By considering its strategic

purposes (moving of troops or equipment), this object

is interesting but difficult to track and to estimate. Our

idea is the following challenging task: to develop a

method for detecting and evaluating a convoy in order

to generalize it to any object of interest. We want to

highlight the fact that we consider an asymmetric

conflict context, and we want to detect convoys

(and more generally objects of interest) in the midst

of civilian traffic. The purpose of this article is to

summarize the entire process for convoy detection in

the midst of civilian traffic and to test the limit of our

algorithm by evaluating the performances based on

complex scenarios.

Traditionally, the preamble of this operation is to

make a global evaluation of the situation by detecting

and characterizing entities [1] (level 1 of the Joint

Directors of Laboratories (JDL) model called the

entity assessment). As GMTI sensors cover wide

surveillance areas and are able to detect moving

targets by measuring their Doppler shift, they are

traditionally used during the multi-target tracking

(MTT) step [2]. Then, in order to specify entity

behavior and detect objects of interest, a more refined

assessment (level 2 of the JDL model which is called

the situation assessment) can be done by using other

data types like SAR or video. As described in Fig. 1,

our proposed approach has two steps.

The first step consists of developing an MTT

algorithm able to deal with many classical tracking

problems such as false alarms and nondetection,

as well as closely spaced targets. In some previous

work [3] we developed a new MTT algorithm which

grappled with these problems in order to obtain an

image as close to the actual ground picture as possible

and to construct realistic scenarios.
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Fig. 1. Convoy detection process. First step consists of the MTT

algorithm, second step concerns detection and characterization of

convoys.

During step two represented in Fig. 1, we

use tracks coming from the MTT algorithm, in

addition to SAR and video information, in order

to detect convoys. In some previous work we

developed a method based on graphical models

from a probabilistic approach [4] as well as from a

credibilistic approach [5].

The goal of this paper is to summarize the entire

process, present some improvements, and develop the

estimation of the convoy state. An estimation of the

number of targets belonging to the convoy is provided

and tested on two challenging scenarios. In the first

scenario the algorithm is confronted with a slowing

down of traffic, creating an aggregate of vehicles.

This scenario is intended to show our approach’s

robustness to false alarms. In the second scenario a

convoy is separating into two smaller convoys. This

is intended to show the robustness of our approach to

complex maneuvers.

The paper is organized as follows: Section II

is a theoretical description of the developed MTT

algorithm and contains two main subsections: the

labeled Gaussian mixture-Cardinalized probability

hypothesis density (GM-CPHD) and the hybridization.

Section III describes our approach to the convoy

detection: one subsection is about the probabilistic

approach, whereas a second subsection describes the

credibilistic one. Finally, Section IV describes the

simulations and performances of the proposed system

before we conclude in Section V.

II. MULTI-TARGET TRACKING

The MTT algorithm must be able to deal with

many classical tracking problems like:

1) Data relevance: a large number of

measurements due to the large surveillance

area, containing false alarms and suffering from

nondetection, due to ground environment and radar

cross section (RCS) of ground targets.

2) Manoeuvring targets: targets can completely

change their trajectory between two data sets, and the

motion model does not match anymore with the true

target dynamics.

3) Birth and death targets: this problem implies

the use of a very competitive target detection process

in the tracking algorithm.

4) Closely spaced targets: targets which are

close to each other can generate unresolved targets

and make the problem of data association more

complex.

In this section we describe the new MTT

developed for this application. First, in Section II-A,

we define the measurement and motion model of one

target. In Section II-B we analyze the MTT issues

in a GMTI context. Finally, in Sections II-C and

II-D, we review principles of the new proposed MTT

algorithm.

A. Measurement and Motion Model

During a surveillance operation a local Cartesian

reference frame is defined by operators. The state

xk,j of one target j is defined at each iteration k in

this frame by its position (xk,j ,yk,j) and its velocity

( _xk,j , _yk,j) as

xk,j = [xk,j , _xk,j ,yk,j , _yk,j]
T: (1)

Data used for observing targets come from a GMTI

sensor by measuring their Doppler shift. Each sensor

gets a measurement vector Zk = fzk,1, : : : ,zk,mkg at
each iteration k composed of mk measurements. Each

measurement zk,i, issued from a target j, corresponds

to the observed position vector and is given by

zk,i =H ¢ xk,j + bk (2)

where H is the transforming matrix from state space

to measurement space and bk is a white Gaussian

noise with a known covariance matrix Rk = E[bk ¢ bTk ]
as defined in [6].

By examining the state of one target xk,j , the state

equation is here limited to linear cases:

xk+1,j = Fk,l ¢ xk,j +¡k ¢ ºk,l (3)

where Fk,l is the state transition matrix according to

the model l and at iteration k and ºk,l is a zero-mean,

white Gaussian process noise with the known

covariance matrix Ql which models the target

acceleration:

Ql = E[ºk,l ¢ ºTk,l] = ql¡k ¢¡Tk (4)

with ql being the noise considered with model l and

¡k as defined by Bar-Shalom in [6].

In addition to the state estimation x̂k,j , we want to

produce an estimation Pk,j of its uncertainty covariance

associated with the target state estimation for each

target j at iteration k.

Targets are detected with a detection probability

denoted as Pd. The measurement set contains false

alarms of density ¯fa. This density is uniform, and its

cardinality Nfa is assumed to follow a Poisson process

on the observed area noted Vk as:

Nfa = ¯fa ¢Vk: (5)
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Fig. 2. Schematic view of estimation problem in multi-object

context.

B. Multi-Target Tracking Issues

MTT is a well-studied problem [7]. In this context

tracking issues are multiple. The problem is to

estimate a number of characteristics describing the

scene, which are the following.

1) The multi-target state Xk = fxk,1, : : : ,xk,nkg,
2) the tracks associated to targets, and

3) the number of targets nk at each time.

The state estimation for a variable number nk of

targets at each iteration k is defined as

X̂kjk = fx̂k,jgn̂kj=1: (6)

A track Tk,p is defined at one iteration k as a
sequence of states describing the trajectory of one

target p. Mathematically, a track is defined as

Tk,p = fx̂k,j ,Pk,j ,sk,p,Tk¡1,pg (7)

where sk,p is the score associated with p, which can be

seen as a measure for its reliability. In an operational

context it is necessary to label targets and to produce

at each iteration k a set of tracks Tk.
By considering the birth and death target process,

the system produces an estimation n̂k of the number

of targets at each iteration k. The accumulated tracks

from the start iteration to iteration k are noted Tk.
By considering Section II-A and the current

subsection, the MTT issues can be summarized by

Fig. 2, inspired from [6]. In order to estimate the

characteristics and knowing that the state space

is continuous, the following two approaches are

conceivable.

1) Discretize the state space and consider the case

of each target xk,j individually [8]. This implies a

systematic target-to-measurement association, like

with the MHT (multiple hypothesis tracker), where

all hypotheses for a measurement (be it a false alarm,

a new track, or the continuity of existing tracks) are

considered.

2) Consider the multi-target state Xk as a

multi-modal variable, by considering Xk a random

finite set (RFS) [9] that avoids the problem of data

association. Some closed-form solutions are actually

available like the GM-CPHD.

In the next subsection a labeling step is proposed
for the GM-CPHD filter to make it compatible with
the MTT issues presented in this section and more
specifically in order to provide tracks describing

target dynamics. In Section II-D the two algorithms
are compared, and finally, an original hybridizing
approach is proposed, which is equally efficient for
well-separated as well as closely-spaced targets.

C. Labeled GM-CPHD Filter

The cardinalized probability hypothesis density
(CPHD) filter was first introduced by Mahler in
[10], [11]. It is a generalization of the previous
probability hypothesis density (PHD) filter, mainly
presented in [12], [9]. The CPHD filter is originally a
nonlinear/non-Gaussian filter. However, under linear
and Gaussian assumptions, closed-form equations
can be implemented. In this work we focus on the
Gaussian mixture recursion (GM-CPHD filter) under
the assumption of linear Gaussian dynamics and
the state independence of the detection and survival
probability [13] (we do not deal with a Monte-Carlo
implementation [14] which is very time consuming in
a real multi-target context).
The GM-CPHD filter is based on the study of

the joint probability density of the RFS describing
target dynamics and measurements. The first-order
moment of this RFS, called the intensity function v,
is the function whose integral in any region of the
state space yields the expected number of targets in
that region. Points with the highest density are then
the expected targets. At each iteration k, in addition
to the intensity function vk, it propagates the entire
probability distribution of the number of targets,
noted pk.
To summarize, at each iteration, the classical

GM-CPHD provides a Gaussian set vk describing the
first moment of the joint probability density function
of the target set Xk, written as

vk(x) =

NG
kX

i=1

wk,i ¢ N (x;mk,i,Pk,i) (8)

where N (x;mk,i,Pk,i) denotes the Gaussian density with
parameters wk,i, mk,i, and Pk,i being the weight, the

mean, and the covariance, and NGk is the number of
Gaussian components.
By considering the probability distribution of the

number of targets pk, it provides an estimation of the
number of targets n̂k 2R+, written as

n̂k =

1X
n=1

n ¢pk(n): (9)

For the track labeling the number of targets N̂?k 2
N+ is considered

N̂?k = argmax
n2f1,:::,Nmaxg

pk(n) (10)

where Nmax is the maximum number of considered
targets.

In order to summarize the global state of the

scene as defined in Section II-B, and especially the
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definition of tracks, it is necessary to label targets at

any time. In the classical version of the GM-CPHD

filter, the problem of track labeling is not considered.

Some authors study this problem [15]. For example,

Clark, et al., in [16], proposed that the GM-PHD

filter assign a tag to each Gaussian component and

keep as tracks Gaussians with weights above a certain

threshold. However, when a measurement is not

received, the weight drops below the desired threshold

but the Gaussian component is not deleted and the

target trajectory will be specified a posteriori after

the weight is again above the desired threshold. More

recently Erdinc, et al. [17] propose an approach for

the GM-CPHD filter labeling based on Panta’s work

[18]. But these approaches do not take advantage of

the estimated number of targets N̂?k .

The goal of labeling is to provide identities

to targets by selecting tracks among the set Gk
at iteration k of Gaussian components Gk,n =
N (x;mk,n,Pk,n). We propose to formalize the problem
as the calculation of the best association matrix Ak
between a Gaussian set Gk and a set of predicted track
Tk = fTkjk¡1,mg8m2f1,:::,N̂?

k¡1g
at each iteration k.

In order to limit the time computation, the matrix

of feasible association Ãk is first calculated by using a

gating test [19]:

Ãk(m,n) =½
1 if Gk,n is statistically closed to Tkjk¡1,m
0 else

:

(11)

Gaussian components are statistically closed to the

tracks in the sense of the Mahalanobis distance.

Concerning the track deletion/birth process, two

parameters have to be taken into account. First, the

estimated number of targets n̂k can change, second,

a track can become improbable or the confidence

in a Gaussian component can become very high.

Consequently, the following rules for building the

matrix Ãk are observed.

1) If a previous track cannot be associated with

any Gaussian component at the current iteration, the

track is deleted.

2) If the estimated number of targets decreases,

the track which has the smallest score is deleted. (A

definition of the track score can be found in [8]).

3) If the estimated number of targets increases

or a previous track is deleted, a new track must

be initialized. Each Gaussian component is also

considered as a potential new track.

4) If a strongly weighted Gaussian component is

not associated with a track, a previous track is deleted

and a new track is initialized with this Gaussian

component.

Knowing that a track is at most associated with
one Gaussian component, the best association matrix
Ak meets the following criteria:8>>>>>>>>>>>><>>>>>>>>>>>>:

N̂?
kX

m=1

NG
kX

n=1

Ak(m,n) = n̂kjk

8n·NGk ,
N̂?
kX

m=1

Ak(m,n)· 1

8m· n̂?k,
NG
kX

n=1

Ak(m,n) = 1

: (12)

The goal is to select this matrix Ak among the set

Ak = fAk,agNaa=1 of Na feasible associations at iteration
k. Two criteria for selecting this matrix have been
defined.

1) The more strongly weighted a Gaussian, the
more plausible its correspondence is to a real target.
On this assumption we want to select the set of
Gaussian components which is as strongly weighted
as possible and which produces the most plausible
association of tracks.
2) The second criterion is also the cost of an

association track/Gaussian component. The goal is
to minimize the cost between a predicted track and a
Gaussian component.

The weight matrix is defined as

8n·NGk , Wk(:,n) = w
G
k,i (13)

where Wk(:,n) corresponds to the nth row of the
matrix Wk and w

G
k,i is the weight of the Gaussian

component Gk,i (in other words, the peak intensity).
Finally, the global weight WG

k,a of an association
a can be computed as the sum of the weights of the
Gaussian components implied by the association
tracks/Gaussian:

WG
k,a =

N̂?
kX

m=1

NG
kX

n=1

Ak,a(m,n) ¢Wk(m,n): (14)

However, when targets are close together, the
association which maximizes the global weight WG

k,a

may not be unique, and finally, the set of association
matrices which maximize the global weight are
written as

A?k = argmax
Ak,a

WG
k,a: (15)

If A?k is unique, then Ak = A
?
k. If not, the cost of

association track/Gaussian, based on the distance
between predicted tracks and Gaussian means, is used
in order to select one association matrix among A?k.
In a similar way to the weight matrix Wk, the

cost matrix Ck can be calculated as 8m 2 f1, : : : ,NGk g,
8n 2 f1, : : : ,N̂?k g:

Ck(m,n) = c(m,n) (16)
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where c(m,n) is the cost of the association of the mth

track and the nth Gaussian component, written as the

negative natural logarithm of the likelihood ratio:

c(m,n) =¡ ln
Ã
Pd ¢ g(Gk,n j x̂kjk¡1,j)

¯fa

!
(17)

where g(Gk,n j x̂kjk¡1,j) is the likelihood of the Gaussian
component n given the predicted position x̂kjk¡1,j of
the track j.

The global cost CGk,a of an association a at each
iteration k is calculated as the sum of costs implied

into an association matrix a:

CGk,a =
N̂?
kX

m=1

NG
kX

n=1

Ak,a(m,n) ¢Ck(m,n): (18)

Finally, the best association Ak is computed like

the minimal cost matrix:

Ak = argmin
A?
k

CGk,a: (19)

An optimization algorithm is also proposed in [3] for

limiting the time complexity.

D. Hybridization of CPHD filter with MHT technique
with road constraints

The labeled GM-CPHD filter presented in

Section II-C is a powerful algorithm. Nevertheless,

the state estimation precision cannot be better than

the precision provided by a Kalman filter, and

performances are worse concerning the velocity

estimation because of the merging step used for the

Gaussian component management [20]. In this section

we propose an original answer to this problem. The

labeled GM-CPHD filter is used as a track detector

(Algorithm 1), whereas a second algorithm like

MHT (Algorithm 2) is used to improve the state

estimation, as shown in Fig. 3. It is worth noting

that this algorithm should use the largest number of

data sources possible. Moreover, by considering the

scheme presented in Section II-C, it is conceivable to

parallelize calculations for both algorithms. Thereby,

Algorithm 2 combines a multi-model approach

[21] using road map data provided by the GIS. The

proposed algorithm, called the VS-IMMC-MHT

(variable structure—interacting multiple model with

constraints—multiple hypothesis tracker) [22], is an

interacting multiple model (IMM) filter adapted to

ground maneuvers, constrained to the road network

and integrated in a structured branching-MHT

(SB-MHT) [23]. In the next paragraph a short

description of the variable structure-interacting

multiple model under constraint (VS-IMMC) is given.

Our IMM is based on models constrained to the

road segments. On the assumption that a vehicle

is most likely moving on the road, estimated states

are projected on the road segments, and velocity

Fig. 3. Hybridization algorithm. (a) Principle scheme.

(b) Implemented scheme.

vectors are constrained to the road segment direction,

as well as their associated covariance matrices.

In this way, during the prediction step, for each

model, velocity vectors are successively constrained

to the road segment direction, until the predicted

distance is covered. Predicted covariance matrices are

defined in the manner so that the standard deviation

in the road segment direction is higher than the

standard deviation in the orthogonal direction. In

this application a three-model IMM is used to handle

targets’ move-stop-move strategies [24]: a constant

velocity (CV) model with low process noise standard

deviation to deal with nonmaneuvring targets, another

CV model with high process noise standard deviation

to deal with maneuvring targets, and a stop model to

deal with stopped targets.

If the predicted states are on several roads (in

the case of a road intersection), several constrained

motion model sets, called on-road models, are

activated for each road intersection. The structure

of the IMM is thus variable because it is adapted to

the road network topology. In addition all the motion

models of the IMM are constrained to the road. This

is why the algorithm is named VS-IMMC.

After the IMM estimation step [25], estimated

states of each motion model are projected on the most

likely road segment and combined to provide the final

estimated states.

However, if the target leaves the road, a classical

off-road model can be used. A simple statistical test is

then used to activate the off-road motion model set if

the target is leaving the road network.
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Therefore, VS-IMMC contains a set of off-road

models and several sets of on-road motion models in

case of intersections. In order to limit the number of

motion model sets, a sequential probability ratio test

(SPRT) is used to confirm or delete a motion model

set. If the test is not relevant to validate only one

motion model set, the surviving sets are maintained,

and the test is differed for the next scan.

The VS-IMMC is finally integrated in an

SB-MHT [23].

The hybridization principle can finally be

summarized as follows: the two algorithms, MHT and

GM-CPHD, are used as complementary filters. The

first estimates the number of targets and initializes the

target positions. The second increases the accuracy

for the target state estimation. The two algorithms

are running simultaneously. Then, a gating process

is applied around the target position given by the

GM-CPHD filter to select MHT tracks. Finally, MHT

tracks which have the highest scores are selected. If a

CPHD track is not associated within any MHT track,

the GM-CPHD track is kept. This approach combines

the following advantages of the different algorithms

without increasing the processing time:

1) robust to numerous ground target maneuvers by

using a multi-model approach,

2) good precision for state estimation by using

road coordinates,

3) management of road intersection,

4) precise estimation of the number of targets by

using Cardinalized generalization of the PHD filter,

5) management of birth and death processes

by using the new labeled implementation of the

GM-CPHD filter.

All these advantages lead to a powerful algorithm.

The main advantage is that no decrease in

performance is observed when targets are close

together (see Section IV).

III. OBJECT-OF-INTEREST DETECTION

In the context of battlefield surveillance, some

strategic objects of interest are observed to assess

the situation. A particular type of object is a convoy

which is particularly difficult to detect because it is

composed of vehicles seen as an aggregate with a

particular behavior. Properties describing a convoy

are mainly based on the positions and kinematics of

the vehicles which compose the aggregate: a convoy is

defined as a vehicle set evolving approximately with

the same dynamics over a long period of time. These

vehicles are moving on the road at a limited velocity

(< 20 m/s). They must stay within sight of each other

with almost constant distances between them (mostly

100 m). Moreover, these criteria must be added to

context and type properties.
Vehicle positions and kinematics are computed by

the algorithm presented in Section II. From the set

Fig. 4. Convoy model. Grey nodes are time dependent.

of detected vehicles, we first detect the aggregates
Ak at time k as groups of closely spaced targets, and
each aggregate is considered a convoy if it satisfies all
the criteria. That is why it is essential to use outputs
coming from a precise MTT algorithm.
The criteria are manifold and of different natures.

Data are heterogeneous, asynchronous, and can be
missing. Moreover, random variables are continuous
(state), discrete (type), and time dependent. The
graphical models represent an interesting formalism
in object-of-interest detection (OID) and have already
been used in similar topics [26—29]. Graphical
models are traditionally used to represent dependency
relations between a set of N random variables.
Graphically, each variable is represented by a node,
and an arc from a node Si to a node Sj means that

Si “causes” Sj , 8(i,j) 2 f1, : : : ,Ng2. According to the
convoy definition, the object-of-interest convoy is
modeled by nine nodes including velocity, positioning,
type, or contextual criteria (Fig. 4).
The main usual graphical model is the Bayesian

network. In this model each node i is associated with
a probability function P(Si) that gives the probability
of the variable Si represented by the node. At each
iteration it is possible to compute the evolution of
the probabilities of the graph by taking into account
all updated inputs. Finally, the joint probability at
iteration k is computed as

PfS1, : : : ,S9g=
9X
i=1

PfSi j Pa(Si)g (20)

where Pa(Si) represents the parent nodes of Si.
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The goal is to calculate at each GMTI iteration

the probability PfSk9g for a detected aggregate to be
a convoy (this node is in gray in Fig. 4). Moreover,

we want to take into account the time evolution of

random variables. And, concerning the node Sk9,

the convoy presence is confirmed with time. The

variable Sk5 is time dependent too because the type

information can come from heterogeneous sources

(SAR, video, : : :) with different scanning times.

A. Recall of Credibilistic Framework

The transferable belief model (TBM) developed by

P. Smets [30] and T. Denoeux [31] is an alternative

to the probabilistic approach. It is a well-adapted

framework to model knowledge about a complex

system. In this framework the main idea is to assign

a belief distribution m(:) on a variable to a larger set

as with probabilities, denoted the power set. For the

OID we developed a credibilistic network where each

node Si is associated with a belief distribution [32].

We consider a state space −i = fSi,Sig where
Si means that the state Si is not true. The power

set 2−i = fØ,fSig,fSig,−ig, of size 2j−i j, is jointly
composed of hypotheses and joined hypotheses −i.

Finally, a basic belief assignment m−(B), also named

BBA, is computed for each element of the power set

2− , according to the following equation:X
B22−

m−(B) = 1: (21)

In this framework other belief functions are

defined on the power set such as the plausibility

function pl−(B) ([30]) or the communality q which

are elementary functions in one-to-one correspondence

with the belief mass m−(B) defined in (21). All these

functions have a conditional form such as m−[A](B)

meaning the confidence about B given that A is true.

1) Combination Rules: One important aspect

for using the TBM framework in graphical models

lies in the way that information from the different

nodes seen as different sources of information is

combined. We bring to mind in (22) and (23) two

classical combination rules which are widely used

in this section. The first is called the conjunctive

rule of combination (CRC). It is an associative

and commutative operation that combines belief

distributions m−
1 and m

−
2 coming from reliable and

independent sources:

m−
1°\ 2(A) = (m

−
1°\ m−

2 )(A) =
X
B\C=A

m−
1 (B) ¢m−

2 (C)

(22)

where A,B,C ½ −.

The second one is called the disjunctive rule of

combination (DRC). It is defined as the combination

rule for unreliable sources or a rule able to deal with

conflict:

m−
1°[ 2(A) = (m

−
1°[ m−

2 )(A) =
X
B[C=A

m−
1 (B) ¢m−

2 (C):

(23)

2) Temporal Belief Filter: As for dynamic

Bayesian networks, the temporal aspect must

be specifically handled. To ensure the temporal

consistency, a temporal belief filter, first defined by

Ramasso [33], is then applied. Assuming that each

node Si is a binary node (−i = fSi, S̄ig), the following
vector notation for the belief distribution m−i is used

m−i = [m−i (Ø) m−i(Si) m−i (S̄i) m−i (−i)]
T:

(24)

On the assumption that a temporal node can be

viewed as a nonstationary system, whose temporal

evolution can be modeled according to an evolution

matrix F−i
k , the predicted BBA m̂

−i
kjk¡1 on that node Si

at time k can be written as

m̂−i
kjk¡1 = F

−i
k ¢ m̂−i

k¡1jk¡1 (25)

where m̂−i
k¡1jk¡1 is the estimated BBA on node Si at

previous time k¡ 1.
The temporal evolution matrix F−i of size 2j−ij £

2j−i j is written as

F−i = [F−i (Ø) F−i(Xi) F−i(X̄i) F−i(−i)]

(26)

where F−i (Ø) = [1 0 0 0]T and F−i(−i) = [0 0 0 1]
T

because all conflict/doubt is transferred on itself.

The term F−i (Si) (resp. F
−i(S̄i)) represents the model

evolution of the node Si if its value is true (resp.

false). In this case the belief on Si (resp. S̄i) is partly

transferred on Si (resp. S̄i) according to a certain

confidence ®T (resp. ®F ) and the rest on the doubt
−i as

F−i (Si) = [0 ®T 0 1¡®T ]T

F−i (S̄i) = [0 0 ®F 1¡®F ]T:
(27)

Finally, the obtained predicted belief distribution

is combined with the measured belief distribution

m̃−i
k coming from data at time k. This combination is

made according to a CRC (cf. (22)) because predicted

and estimated belief distributions are independently

calculated. This highlights the conflict between

prediction and measurement and is written as

m̂−i
kjk = m̃

−i
k °\ m̂−i

kjk¡1: (28)

B. Dynamic Evidential Network Inference

We have developed an evidential inference

mechanism in order to deal with graphical models

such as Bayesian networks. This framework is very

suitable for this application. The two initialization

steps are first described.
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1) Prior Mass Belief Establishment: With the

Bayesian approach the first step would be to establish

p(Si j Pa(Si)) of size 2£ jPa(Si)j where Pa(Si) is a
parent node of node Si but whose size can quickly

increase depending on the number of feasible states

for parent nodes and more generally on the number of

parent nodes. With evidential networks the conditional

beliefs m−i [Si] are established for each parent node

j and independently of the others according to the

knowledge on the system. However, only conditional

belief functions on Si knowing that Sj is in the state Si

or S̄i can be established. The belief that the node Sj is

in the state −j cannot be intuitively established but is

computed by using the DRC as in (23).

2) Discounting Coefficient Establishment: When

a node depends on many other nodes, it is possible to

decrease the importance of a node in comparison with

another node by using discounting coefficients [34].

Another point of view could be that the parent nodes

can be seen as independent sources which are strongly

or weakly weighted, depending on their reliability.

When the evidential network is described,

the inference mechanism can be used. It is now

decomposed in five elementary operations.

1) Data Transformation: For probabilistic

networks this critical operation is very seldom

described in the literature. The belief in one

hypothesis is calculated for each root node by using

fuzzy sets or statistical distributions, like the Rayleigh

distribution, as described in [35]. We propose to

establish the belief distribution according to8>>>>>>>>>>><>>>>>>>>>>>:

m̃−i(Á) = 0

m̃−i(Si) =

½
PfSig if PfSig ¸ 0:5
0 else

m̃−i(S̄i) =

½
PfS̄ig if PfS̄ig> 0:5
0 else

m̃−i(−i) =

(
1¡PfSig if PfSig ¸ 0:5
1¡PfS̄ig else

:

(29)

2) Propagation: The BBAs coming from each

parent node Si are propagated to child nodes Sj .

The propagated BBA from node i to j is written as

m
−j
i!j . It is calculated by using conditional plausibility

pl−j [C](B) where C μ −i and B μ −j [30], which is

more convenient for the use of the generalized Bayes

theorem (GBT) written as

pl
−j
i!j(B) =

X
Cμ−j

pl−j [C](B) ¢ m̃−i (C): (30)

3) Discounting: If discounting coefficients are

filled in as presented in the second initialization step,

the discounting formula is applied on propagated

belief distributions m
−j
i!j to obtain

®im
−j
i!j . This ®

discounting process is generally defined by

®m−(A) = (1¡®)m−(A) 8A½ −

®m−(−) = (1¡®)m−(−) +®
(31)

if − is a binary set.

4) Combination: Discounted propagated belief

distributions from parent nodes i and j are finally

combined by using the CRC with communality q−j ,

which is more convenient for the calculation of the

CRC as in (22):

q̃−j (Sj) =
®i q

−j
i!j(Sj) ¢ ®lq−jl!j(Sj): (32)

It must be noticed that the predicted belief (25) for

nodes 5 and 9 are considered at this step as parent

nodes.

5) Estimation: Finally, the measured commonality

distribution q̃−j (:) is converted into a belief mass

distribution and used to update the BBA of node S9
according to (28).

C. Number of Targets of the Convoy

As for the targets it is necessary to track convoys.

The specificity is that the convoy structure can change

over time, especially the number of targets belonging

to the convoy.

Let Ak define a detected aggregate at iteration
k characterized by its barycenter x̂Ak , its covariance
PAk , and its number of targets N

Ak . The probability of
having a convoy is denoted PfSk9 jNAkg.
At iteration k+1, another aggregate A0 (of

barycenter x̂0, covariance P 0, and cardinality NAk+1)
is detected. The idea is now to check if A0 is in
correspondence with Ak. The predicted position
and covariance, denoted x̂Ak+1jk and P

A
k+1jk, are then

calculated according to (33) and (34) at iteration k+1:

x̂Ak+1jk = F
A ¢ x̂Ak (33)

and

PAk+1jk = F
A ¢PAk ¢ (FA)T+QA (34)

where FA is the convoy transition matrix similar to
the target transition model defined in (3) and QA

defines the model uncertainty as in (4).

A gating process is then used. If the two

aggregates Ak and A0 satisfy the following condition,
then they are in correspondence:

(x̂Ak+1jk ¡ x̂0)T(PAkjk¡1,j)¡1(x̂Ak+1jk ¡ x̂0)< ° (35)

with the probability threshold °, obtained from the

chi-square tables.

They form an aggregate sequence denoted

Ak:k+1 of cardinality NAk:k+1. The probability of
having a convoy can be calculated as PfSk9 jNAkg.
It is now easy to understand that the different

numbers of targets considered in the convoy in
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the set of number NAk:k+1 can be seen as different
hypotheses for the number of targets belonging to the

convoy. The probability of having a convoy is also

jointly calculated for the different number of target

hypotheses and is noted PfSk9 jNAk0:k,NCi g, with NCi
belonging to the set of number of target hypotheses.

IV. SIMULATION RESULTS

In order to evaluate MTT algorithm performances,

a high-quality GMTI sensor simulator was developed

at Onera, and a realistic scenario was chosen

containing several moving targets on a road map. The

simulated measurements have very similar technical

characteristics to the real ones (as shown in [36]).

The typical measurement error is 20 m in range and

0.45 in azimuth. The false alarm density is ¯fa =

8:92 ¢ 10¡9 and the detection probability Pd is equal
to 0.9. The scanning time is ¢= 10 s. Experiments of

various levels of difficulty have been carried out. The

parameters of MTT and convoy detection algorithms

are very well detailed in [37].

Performances are calculated for two critical

situations. In the first scenario a slowing down of the

traffic is observed due to the presence of a tractor

creating an aggregate. In the second scenario an

8-target convoy separated into two 4-target convoys.

For both scenarios MTT is first evaluated by using

the well-known OSPA distance (optimal subpattern

assignment) [38]. Convoy detection results are then

analyzed, by considering the estimation of the number

of targets in the convoy, with the probabilistic and the

credibilistic graphical models.

A. Scenario 1: Tractor Slowing Down

1) Scenario Description: To analyze the

performances of the algorithms described above,

the following scenario representation is chosen (cf.

Fig. 5). Fourteen targets, mainly cars except target

1 which is a tractor, are present in the observation

zone. A single convoy, labeled C1, composed of

jeeps (target 3 to 6) is to be detected. The scenario

time is limited to 600 s. In this scenario the target

maneuvers are very elaborate, and the aggregate

nature is complex to analyze. In fact the scenario

contains one real convoy, but also a false one, arising

from one of the vehicles slowing down. Key factors of

the scenario are the following.

1) Targets 3—6 form convoy C1 moving on the

main road from North to South.

2) Target 1 is a tractor, moving very slowly on the

same road but in the opposite direction. It is passed by

targets 2 and 10 and then slows down. Targets 7—9 are

following the tractor but cannot overtake it as they are

waiting for the approaching convoy to pass by.

3) Targets 11—13 are totally independent.

Fig. 5. Scenario 1 at time t= 101 s. Targets 3—6, 10, 14 are

moving from North to South on the main road. Targets 1, 2, 7—9

are moving from South to North on the main road. These targets

are blocked by the tractor, they cannot pass it and consequently

have the same behavior of a convoy. Finally, after passing the real

convoy, they can pass the tractor on the right way. Other targets

(T11—13) are moving independently on smaller roads.

Fig. 6. Cumulated MTI reports: MTI report with positive

Doppler, MTI report with negative Doppler, Road,

Observation zone.

4) Target 14 stops at an intersection in order to let

the convoy pass by. No measurements are available

between time t= 361 s and t= 481 s.

For this scenario the GMTI sensor has a linear

trajectory, and its altitude is 4000 m. The cumulated

MTI reports are shown in Fig. 6.

2) Tracking Performance Evaluation: Figure 7

presents results for the hybrid MTT algorithm (in

pink) proposed in this paper, in comparison with

an MHT with road constraints (in green) and a

GM-CPHD with labeled tracks (in red). Results

are averaged over 100 Monte-Carlo runs. The first

subfigure presents results for cardinality estimation:

at any time, the number of targets is evaluated in
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Fig. 7. MTT. Cardinality of detected targets and OSPA distance from ground truth.

comparison with the real number of targets created

by the simulator. The hybrid algorithm and the

GM-CPHD filter have a similar shape. They are

both closer to the ground truth than the MHT

with road constraints. They are more reactive to

cardinality changes. Concerning the OSPA distance

it is considerably lower for the hybrid algorithm than

the MHT algorithm, and it is more stable during

the cardinality changes (for example, between time

t= 410 and t= 430 s). The OSPA distance for the

labeled GM-CPHD filter is quite close to the MHT

with road constraints, but they cannot be compared

because the GM-CPHD does not use the road position

as a priori.

3) Convoy Detection and Evaluation Results: The

final objective of the algorithm is to detect the convoy

and to estimate the number of targets N belonging

to it. We bring back to mind that m(S) and m(−)

represent the belief and the doubt that the aggregate

is a convoy. The fusion process can generate a conflict

value denoted as m(Ø). In a probabilistic way P(S)

represents the probability that the aggregate is a

convoy. During the simulation two aggregates are

detected:

1) the aggregate corresponding to the real 4-target

convoy C1,

2) the aggregate created by the tractor

corresponding to a false alarm. Between time t= 250

and t= 400 s, targets 7—9 are blocked by the tractor;

they cannot pass it and consequently have the same

behavior as a convoy. Finally, after the real convoy

has passed, they can overtake the tractor (between

time t= 400 and t= 570 s).

Results for convoy detection and evaluation are

summarized in Fig. 8. Figures 8(a) and (b) present

credibilistic results compared with the probabilistic

results (Figs. 8(c) and (d)). Figures 8(a) and (c)

compare results obtained for the aggregate created by

the tractor with results obtained for the real convoy

(Figures 8(b) and (d)).

Concerning the aggregate with the tractor (false

alarm), the probability of having a convoy is quite

regular over time (Fig. 8(c)). With the credibilistic

approach results are more contrasting (Fig. 8(a)). At

the beginning of the aggregate detection (between

time t= 180 and t= 250 s), the belief of having

a convoy is quite low. Indeed, at this time, targets

decelerate because of the tractor but are not blocked

by it. Between time t= 250 and t= 400 s, the belief

and the probability of having a convoy are high when

the targets are blocked by the tractor. Finally, after

passing by the real convoy, they can pass the tractor

on the right side and the belief of having a convoy

decreases (between time t= 400 and t= 570 s).

This situation also appears by regarding the conflict

(Fig. 8(e)). The conflict is quite high except between

time t= 250 and t= 400 s, when the aggregate acts

like a convoy.

Concerning the aggregate with the real convoy,

from the beginning to the end, the convoy consisting

of four targets is detected with high probability and

belief. However, as for the tractor convoy, results are

more contrasted with belief than with probabilities.
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Fig. 8. Confidence and probabilities for different values of cardinality N (number of targets in convoy). Conflict from fusion process:

low when behavior corresponds to convoy. (a) Confidence on aggregate created by tractor. It corresponds to convoy of 4 targets

between t = 270 and 340 s. (b) Confidence on real convoy of 4 targets. (c) Probabilities on aggregate created by tractor.

(d) Probabilities on real convoy of 4 targets. (e) Conflict detected from aggregate created by tractor. (f) Conflict detected from real

convoy.

The belief of having a convoy consisting of three,
four, five, eight, and nine targets is calculated. For
the entire duration of the simulation, the belief of
having a 4-target convoy is very high (higher than
0.8), however with probabilities, it has the same order
of magnitude compared with the false alarm convoy.
The number of targets in the convoy is therefore
better discriminated with belief functions. Finally, the
conflict is quite interesting for this case. It is quite low
at the beginning of the simulation (between time t= 0
and t= 250 s) when the convoy evolves without any
interaction with other vehicles. Doubt and conflict
increase when targets are maneuvering (passing,
overtaking, : : :).

This scenario illustrates that the probabilistic
approach is limited when the aggregates are a
false alarm convoy (probability close to 0.5). The
credibilistic approach is more reliable in characterizing
doubt, identifying convoy maneuvers, and in
distiguishing real convoys from false alarms.

B. Scenario 2: Separating Convoy

1) Scenario Description: Scenario 2 contains
eleven targets, including an 8-target convoy which
splits into two 4-target convoys. The scenario time
is limited to 500s. Target trajectories are illustrated in
Fig. 9, and the cumulated MTI reports are shown in
Fig. 10.
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Fig. 9. Scenario 2: target trajectories.

Key actions during that scenario are the following.

1) Targets 1—8 form a convoy from t= 1 s to

t= 301 s, moving on the main road from South to

North.

2) Target 11 passes the convoy between time

t= 241 s and t = 291 s.

3) At time t= 301 s, the convoy splits into two

independent convoys; the last four targets turn on

the right, while the four head targets continue on

the main road. Special attention was paid to give

realistic dynamics to the targets. They decelerate

before turning, turn, and then accelerate again.

Fig. 11. MTT results.

Fig. 10. Scenario 2: cumulated MTI reports - MTI report with

positive Doppler, MTI report with negative Doppler, Road,

Observation zone.

4) Targets 9 and 10 are moving on another road

than the convoy. They cross each other between time

t= 161 s and t= 181 s.

2) Tracking Performance Evaluation: Tracking

results for scenario 2 are presented in Fig. 11. As

in Fig. 7 results are compared for the hybrid MTT

algorithm (in pink) proposed in this paper, for the

MHT with road constraints (in green), and for the

GM-CPHD with labeled tracks (in red). Results are

very similar to the ones presented in scenario 1. The

hybrid algorithm and the GM-CPHD filter have a
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Fig. 12. Convoy detection and evaluation results for scenario 2. (a) Confidence on 8-then-4 target convoy. (b) Confidence on only-4

target convoy. (c) Probability of having 8-then-4 target convoy. (d) Probability of having only-4 target convoy. (e) Conflict on 8-then-4

target convoy. (f) Conflict on only-4 target convoy.

similar shape for the estimation of the number of

targets. They are both closer to the ground truth

than the MHT with road constraints. They are more

reactive to cardinality changes. Concerning the

OSPA distance it is considerably lower for the hybrid

algorithm than the MHT algorithm.

3) Convoy Detection and Evaluation Results:

During the simulation, two convoys are moving

according to the following.

a) The convoy is moving on the main road,

composed of eight targets at the begining and four

targets at the end. Between time t= 400 and t= 570 s,

the aggregate is composed of nine targets because

an additional independent target passes the convoy

between time t= 241 and t= 291 s.

b) The convoy is created after the four last targets

turn on the right (from time t= 300 s).

Results for convoy detection and evaluation are

summarized in Fig. 12. Figures 12(a) and (b) present

the credibilistic results compared with the probabilistic

results (Figs. 12(c) and (d)). Figures 12(a) and (c)

compare results obtained for the 8-then-4 target

convoy with results obtained for the only-4 target

convoy (Figs. 12(b) and (d)).

Concerning the convoy of 8 targets at the

beginning, the probability of having a convoy is quite
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regular over time (Fig. 12(c)), but this probability is

quite low (less than 0.6 when eight targets are in the

convoy and less than 0.7 when four targets are in

the convoy). With the credibilistic approach results

are more stable (Fig. 12(a)). The belief of having an

8-target convoy is close to 0.9 (between time t= 1 and

t= 300 s), as well as the belief of having a 4-target

convoy (between time t= 320 and t= 490 s). During

the passing stage (between time t = 241 and t= 291

s), the belief of having 8 targets stays higher than the

belief of having 9 targets. At this moment the conflict

(Fig. 12(e)) becomes higher.

Concerning the convoy of 4 targets due to the

convoy separation, the probability of having a convoy

is quite regular over time (Fig. 12(d)), but also quite

low. The belief of having a convoy is also quite

regular over time but is close to 0.9 all the time. As

a consequence the conflict (Fig. 12(f)) stays low (less

than 0.05), meaning that no maneuver occurs.

V. CONCLUSION

In this article we first proposed an efficient

architecture for OID. Inspired by the JDL model,

our process uses two levels of granularity in order

to detect and evaluate a specific object of interest,

which is the convoy. The first level is a sophisticated

MTT algorithm, efficient for many situations (large

and various number of targets, new birth and death

process, closely-spaced targets,: : :). The second level

is based on the modeling of objects of interest with

graphical models by using the relationship between

their dynamics, type, environment,: : :. This method

has proved its efficiency and robustness on several

situations involving convoys. A more elaborate study

on the generalization of the convoy detection method

to any object of interest would be an interesting topic

for further research.
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