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Abstract—This paper studies minimum-energy packet for-
warding over multi-hop lossy networks under deadline and
reliability constraints. We assume a routing topology in the
form of a directed graph with packet loss processes on links
described by finite-state Markov chains, and formulate the for-
warding problem as a finite-horizon constrained Markov decision
process. We show that the minimum energy forwarding policy
under hard deadline and reliability constraint can be computed
using dynamic programming, and that the optimal forwarding
policy is a randomized policy over two history-independent and
deterministic policies. Closed-form optimal policies are derived
for some particular scenarios. Numerical examples show that
the transmission energy cost of achieving reliabilities close to the
maximum can be significant when links are bursty. In addition,
transmission power adjustments can further reduce energy cost.
Finally, we develop simple heuristic policies with a good balance
between transmission energy cost and reliability.

I. INTRODUCTION

The last decades’ tremendous advances in wireless com-
munications have been driven mainly by personal commu-
nications and radio resource allocation mechanisms for op-
timizing key metrics, such as average throughput and delay,
for such traffic are by now rather well-developed. However,
with the increased interest in wireless machine-to-machine
communication, e.g. for industrial control or monitoring of
large-scale infrastructures, new challenges emerge [1]. The
performance of an estimator or closed-loop control system
that operates over an unreliable wireless network depends on
the full latency and loss distributions and not only on their
averages. Hence, more suitable performance metrics are per-
packet guarantees on latency and reliability (on-time delivery).
In contrast to independent and saturated traffic sources often
considered in personal communication, industrial networks are
typically lightly loaded and traffic is transient (the majority
of control design techniques rely on periodic sampling with
sampling times longer than the minimal latencies) . Due to
the limited range of low-power wireless, communication often
occurs over multiple hops, and links are lossy with significant
coherence times [2]. Accounting for channel burstiness be-
comes important for obtaining strong routing performance [3],
[4]. Finally, energy-efficiency is critical as many devices are
battery-powered with life-time targets in the order of years.

In our previous work [5], we developed optimal policies
that maximize the probability that a single packet is delivered
within its deadline over multi-hop networks with bursty links.
These policies make full use of all available transmission
opportunities, and do not account for the possible energy-
inefficiency of always transmitting despite disadvantageous

Fig. 1. Minimum forwarding energy vs deadline and reliability constraints.

channel states. To address this problem, we extend our previ-
ous work by studying the problem of minimizing energy cost
under both deadline and reliability constraints. The solution is
immediately useful for co-design of wireless control systems
with minimum packet-forwarding cost and guaranteed closed-
loop control performance [6].

The main contributions of this paper are:
• We derive the minimum-energy forwarding policy for

a periodic unicast data flow with hard constraints on
per-packet latency and reliability in a multi-hop network
with bursty links. The routing topology of the network
is represented by a directed graph with links modeled by
finite-state Markov chains. The minimum energy problem
is formulated as a finite-horizon constrained Markov
decision process (CMDP). The solution allows us to trace
out the Pareto frontier between reliability and energy cost
for deadline-constrained traffic, as illustrated in Fig. 1.

• We show, using a Lagrangian approach, that the min-
imum energy problem can be solved by maximizing
the weighted sum of reliability and forwarding energy
subject to a hard deadline. Moreover, the minimum
energy optimal policy is a random selection between two
deterministic and computable forwarding policies, each
of which can be found via dynamic programming.

• We study the structure of the optimal forwarding policies
and develop closed-form expressions for the case where
link losses are independent and for the case where packets
are routed on a line with Gilbert-Elliot (GE) loss model.

• We study the latency-reliability-energy trade-off in nu-
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merical examples and discover a dramatic energy penalty
of aiming for the maximum achievable reliability.

• We propose a heuristic policy that strikes a good bal-
ance between reliability and energy cost, and develop
a dynamic programming-based algorithm to optimize its
parameters and estimate its performance.

The rest of this paper is organized as follows. Section II
reviews related work. Our model and assumptions are detailed
in Section III and a CMDP problem formulation is presented
in Section IV. A structured optimal policy is developed in
Section V. Section VI studies optimal policies for two spe-
cial cases, while Section VIII demonstrates the approach on
numerical examples and the heuristic policy.

II. RELATED WORK

While average delay has always been an important metric
in wireless communication, research on per-packet deadlines
have appeared only recently. Shakkottai and Srikant [7] pro-
posed a simple scheduling algorithm to minimize the deadline
miss ratio for different data streams in a single-hop wireless
network with time-varying and correlated link losses. How-
ever, the algorithm is optimal only for a specific class of arrival
processes and link parameters. More recently, Hou and Kumar
(see the survey paper [8] and the references therein) have
proposed a tractable framework in which all packets arrive
at the beginning of an interval and expire at the end of the
interval. Moreover, the channel remains static in one interval.
The timely throughput is defined as the number of packets
that are delivered before their expiration. In this framework,
Hou and Kumar study conditions for a feasible scheduling
policy and find feasibility optimal policies when the timely
throughput requirements are inelastic. They also study utility
maximization problem when the timely throughput require-
ments are elastic. However, extensions to multi-hop network
remain open and challenging, and energy consumption is not
considered in their work.

There is also a large body of literature on physical-layer
techniques of rate adaptation for energy efficient transmis-
sion of deadline-constrained packets; see [9]–[12] and the
references therein. In theory, rate adaptation techniques can
provide error-free transmission for a given transmit power and
channel conditions, and energy can be saved by transmitting
with smaller rate. Optimal policies are derived for selecting
the most energy-efficient transmission strategy that delivers all
bits before the deadline under various assumptions of packet
arrivals, deadline patterns and channel state information etc.
Nevertheless, in wireless machine-to-machine communication,
the transmission rate is usually fixed, and error-free transmis-
sion is not possible even with maximum transmission power.
Hence, in this paper, we study the minimum energy problem
with a fixed reliability requirement (smaller than 100%).

Another line of work, rooted in the real-time systems
community, considers scheduling of periodic data flows in
multi-hop WirlessHART networks [13]. The data packet is du-
plicated at the source, and each duplicated packet is treated as
a separate data flow. That paper focuses on the schedulability

analysis to support as many data flows as possible, hoping
that one of them can successfully reach the sink. Priority-
based scheduling to enhance deadline-constrained reliability
is proposed in [14], [15]. However, this approach does not
guarantee reliability, and is not energy-optimal.

In our previous work [5], we have developed optimal
forwarding policies that maximize the probability that a single
packet is delivered within a deadline for multi-hop networks
with independent and bursty links. These policies, however,
make full use of all transmissions opportunities and might be
wasteful from an energy perspective. Some initial and partial
results on energy-efficient packet forwarding are given in our
technical report [16] and significantly expanded in this paper.

III. SYSTEM MODEL

To support reliable periodic communication, we consider a
scenario where a single packet, generated by an arbitrary node
at time t = 0, should be transmitted over a multi-hop wireless
network to the sink node N within a deadline of D time
slots. This single-period scenario then forms the building block
for supporting periodic traffic with a packet generation period
larger than D. Our aim is to minimize the transmission energy
cost subject to a requirement on the minimum probability that
the packet is delivered to the sink node before the deadline D.

Packets are routed along a directed graph G = (N ,L) where
N is the set of nodes and L the set of links. The root node is
labeled N . The presence of a directed link (i, j) ∈ L means
that node i is able to transmit a packet to node j. We define
Ni as the set of neighbors of node i.

Communication is slotted, and a single time slot allows the
transmission of a packet and its acknowledgment. Communi-
cation links are unreliable and the communication channels
are modeled by homogeneous finite-state Markov chains [17],
[18]. Each Markov chain evolves in discrete time, and state
transitions occur at transmission slot boundaries. The Markov
chains for different links are independent, and each node can
only access the state of its own outgoing links. Let ω denote
the Markov state for a link and r ∈ Γ denote the relative power
(with respect to full power) used for a single transmission; we
assume that Γ is a finite set. Similar to the approach in [19],
a packet transmission on a link in state ω with relative power
r is then successful with probability qrω .

The optimal forwarding policy depends on what knowledge
about the state of the underlying Markov chains that is
available to nodes when they make a forwarding decision. In
what follows, let ωi(t) = [ωij(t)]j∈Ni represent the state of
all links (i, j) outgoing from node i at time t. We assume that
node i at time t knows the link states in the previous time slot
ωi(t− 1), and neglect the energy and time cost for acquiring
such channel state information. A more realistic assumption
would be that the channel state is acquired by transmitting a
data packet on the channel or by probing the channel with an
associated cost. Such extensions are deferred to future work.
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IV. CONSTRAINED MARKOV
DECISION PROCESS FORMULATION

Our deadline-constrained packet forwarding problem can be
formulated as a Markov decision process (MDP) [20] with a
finite horizon of D+ 1 where D is the deadline of the packet.
The decision is made at time t ∈ {0, 1, . . . , D−1}. Let x(t) ,(
m(t),ωm(t)(t−1)

)
denote the state of the MDP where m(t)

is the packet location at time t and ωm(t)(t−1) are the channel
states of node m(t) at time t−1. The action a(t) ,

(
j(t), r(t)

)
chooses the next hop node j(t) and the transmission power
r(t). The state transition probability Pr

(
x(t + 1)|x(t), a(t)

)
is determined by link parameters. For ease of presentation,
suppose the MDP state at time t is x(t) , (i,ωi(t − 1))
and the MDP state at time t+ 1 is x(t+ 1) , (k,ωk(t)). Let
Pr
{
ωi(t)|ωi(t−1)

}
be the channel state transition probability

of node i’s outgoing links, and P (ωi) =
∏
j Pr(ωij) be

the stationary channel state distribution. The state transition
probability function Pr

(
x(t + 1)|x(t), a(t)

)
depends on the

action: if the action is to hold the packet, i.e., j(t) = i, then

Pr
(
x(t+ 1)|x(t), a(t)

)
=

{
Pr
(
ωk(t)|ωi(t− 1)

)
if k = i,

0 otherwise;

if the action is to forward the packet, i.e., j(t) 6= i, then

Pr
(
x(t+ 1)|x(t), a(t)

)
=


(1− qrωkj(t)

) Pr
(
ωk(t)|ωi(t− 1)

)
if k = i,

P
(
ωk(t)

) ∑
ωi(t)

qrωij(t)
Pr
(
ωi(t)|ωi(t− 1)

)
if k = j(t),

0 otherwise.

The initial state is x(0) with the packet at the source node
and the unconditional channel states distribution,

Pr
(
x(0)

)
=

{
P
(
ωm(0)

)
if m(0) = src,

0 otherwise.

There is a terminal reward µ
(
x(D)

)
if the packet arrives at

the sink node n at the last time slot D,

µ
(
x(D)

)
=

{
1 if m(D) = N,

0 otherwise.

The cost c
(
x(t), a(t)

)
is incurred when the packet is trans-

mitted to neighbors,

c
(
x(t), a(t)

)
=

{
r(t) if j(t) 6= m(t),

0 otherwise.

Note that a unit of transmission energy cost corresponds to a
transmission with full power.

Let history h(t) be a sequence of previous states and actions,
i.e., h(t) ,

(
x(0), a(0), . . . , x(t−1), a(t−1), x(t)

)
, and H(t)

be the set of all possible histories. The decision rule is a
function d(t) : H(t) → P

(
A(t)

)
that maps H(t) into a set

of probability distributions on the action space A(t) of all
possible actions. A policy π ,

(
d(0), d(1), . . . , d(D − 1)

)
is

a sequence of decision rules, indexed by time.

Under a policy π, the expected reward (deadline-constrained
packet reliability) is

Rπ ,
∑
x(0)

Pr{x(0)}Eπx(0)

{
µ
(
x(D)

)}
,

and the expected energy cost is

Cπ ,
∑
x(0)

Pr{x(0)}Eπx(0)

{t=D−1∑
t=0

c
(
x(t), a(t)

)}
.

In this notation, the minimum energy forwarding problem
subject to a reliability constraint Rreq can be formulated as

minimize
π

Cπ

subject to Rπ ≥ Rreq.
(1)

We have solved the reliability maximization problem with op-
timal policy πmax in [5]. One can verify that if Rreq = Rπmax ,
the minimum energy is Cπmax . Thus, in this paper, we only
consider the case where Rreq < Rmax.

This problem falls into the category of constrained MDP
(CMDP). The Lagrangian approach was proposed in [21]
to convert it to a non-constrained weighted sum problem.
In this paper, we will show that studying the problem of
maximizing the weighted sum of reliability and energy allows
us to construct an optimal policy which is a randomization of
two history-independent and deterministic policies.

V. THE MINIMUM ENERGY
AND A STRUCTURED OPTIMAL POLICY

The Lagrange dual of the minimum energy problem (1) is

maximize
λ

min
π

(
Cπ + λ(Rreq −Rπ)

)
subject to λ ≥ 0

which is equivalent to

minimize
δ

1/δ ·max
π
{Rπ − δ · Cπ} − 1/δ ·Rreq

subject to δ ≥ 0
(2)

where δ = 1/λ. Our finite-horizon CMDP can be cast into
infinite horizon case with total cost criterion. The Markov state
x is extended to include the time from t = 0 to t = D. It goes
to the next state with time t+1 only if the current state’s time
is t. We define a termination state to which all the states with
time D + 1 are directed. This is an absorbing state with no
reward and cost. All other parameters including rewards, costs
and state transition probabilities remain the same. It can be
shown that this is a contracting MDP defined in [21, Def. 2.4].
Hence, by [21, Thm. 4.8 ii], the duality gap is zero.

To solve the problem (2), we hence need to solve the
weighted sum maximization of reliability and energy,

max
π
{Rπ − δ · Cπ} (3)

for a given δ ≥ 0. Next, we develop a dynamic programming
solution to the weighted sum maximization problem and show
how a structured optimal policy for our original problem (1)
can be constructed.
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A. Dynamic programming for weighted sum maximization

By treating the weighted energy cost δ · Cπ as a negative
reward scaled by δ in the MDP formulation, a history-
independent and deterministic optimal policy can be found by
dynamic programming (DP) [20]. The MDP state is composed
of the packet location and the channel state of the outgoing
links at the previous time slot. Thus at time t and node i, the
maximum conditional and unconditional utility are

U?i
(
t|ωi(t− 1)

)
= R?i

(
t|ωi(t− 1)

)
− δC?i

(
t|ωi(t− 1)

)
,

U?i (t) =
∑

ωi(t−1)

Pr{ωi(t− 1)}U?i
(
t|ωi(t− 1)

)
.

The maximum utility U?i (0) and the optimal policy can be
computed backwards by DP from the initial condition

R?i
(
D|ωi(D − 1)

)
=

{
1 if i = N,

0 if i 6= N ;

C?i
(
D|ωi(D − 1)

)
= 0.

At each step with t < D, the maximum conditional utility is

U?i
(
t|ωi(t− 1)

)
=

max
{

max
j,r

U jri
(
t|ωi(t− 1)

)
, U ii

(
t|ωi(t− 1)

)}
, (4)

where U jri
(
t|ωi(t−1)

)
is the utility of forwarding to neighbor

j with power r, and U ii
(
t|ωi(t − 1)

)
is the utility of with-

holding the packet at node i, respectively. These utilities are
computed as

U jr
i

(
t|ωi(t− 1)

)
=
∑
ωi(t)

Pr{ωi(t)|ωi(t− 1)}
(
qrωij(t)U

?
j (t+ 1)︸ ︷︷ ︸

Success forward

+ (1− qrωij(t))U
?
i

(
t+ 1|ωi(t)

)︸ ︷︷ ︸
Fail forward

− δr︸︷︷︸
Tx Cost

)
; (5)

U i
i

(
t|ωi(t− 1)

)
=
∑
ωi(t)

Pr{ωi(t)|ωi(t− 1)}U?
i

(
t+ 1|ωi(t)

)
︸ ︷︷ ︸

Staying at node i

.

(6)

Intuitively, transmitting to neighbors can increase the proba-
bility of successful delivery before deadline, but it also costs
more energy. The parameter δ, that balances the energy cost
and the deadline constrained reliability, may refrain a node
from transmitting i.e., enforce Eq. (5) ≤ Eq. (6).

Note that the above dynamic programming is optimal given
that each node can only access the state of its own outgoing
links. At each time t, the update in Eq. (5) requires the max-
imum unconditional utility U?j (t + 1) computed by next hop
node j at time t+1. The unconditional utility is used because
node i does not know the state of node j’s outgoing links.
Hence, the dynamic programming update can be implemented
in a distributed manner at each node with message passing
only among neighbors (see [16] for a detailed discussion).

The optimal policy at time t forwards the packet to the node
j?i
(
t|ωi(t−1)

)
with the power r?i

(
t|ωi(t−1)

)
that maximizes

Eq. (4). For ease of notation, define j?i , j?i
(
t|ωi(t− 1)

)
and

r?i , r?i
(
t|ωi(t− 1)

)
. Thus, we have

(
j?i , r

?
i

)
=

{
(i, 0) if (6) ≥ (5) ∀j ∈ Ni, r ∈ Γ;

arg max
j∈Ni,r∈Γ

(5) otherwise.

Note that withholding the packet does not consume energy,
and hence has a higher priority than forwarding the packet.
We break ties arbitrarily among forwarding decisions. The
corresponding reliability and energy cost can be readily com-
puted from the optimal policy. A complete description of this
DP framework, the complexity, and various extensions can be
found in [16].

B. Structure and construction of the energy-optimal policy

In this section, we show that the optimal policy for the
minimum energy problem (1) is a randomization of two
deterministic policies found by the weighted sum problem (3)
with different values of δ. Similar results for infinite-horizon
CMDP with total reward and total cost constraint appeared
in [22]. In this paper, we clearly state these two policies
and specify the probabilities at which they are selected in
the optimal randomized policy. To this end, let R?(δ), C?(δ)
and π?(δ) be the reliability, the energy and the optimal policy
in the weighted sum problem (3) for a given δ respectively.
Define R , {R?(δ), for all δ} and ∆R , {δ : R?(δ) = R}
for a given R ∈ R. We have the following results:

Lemma 5.1: R is a finite set. For a given R ∈ R, C?(δ) is
unique for all δ ∈ ∆R.

Proof: See Appendix A.
Theorem 5.2: Let R(1) = max{R ∈ R : R ≤ Rreq} and

R(2) = min{R ∈ R : R > Rreq} with the associated unique
energy costs C(1) and C(2). The optimal value of the minimum
energy forwarding problem (1) is then

C? = C(1) +
Rreq −R(1)

R(2) −R(1)
(C(2) − C(1)). (7)

Suppose that the optimal policies that attain (R(1), C(1)) and
(R(2), C(2)) are π(1) and π(2) respectively. An optimal policy
π? for the minimum energy problem is obtained by random
selection of policies π(1) and π(2) with probabilities

θ(1) =
R(2) −Rreq

R(2) −R(1)
; θ(2) =

Rreq −R(1)

R(2) −R(1)
.

Proof: Lemma 5.1 shows the existence of R(1) and R(2)

and the uniqueness of C(1) and C(2). The rest of the proof is
in Appendix A.
The theorem states that the optimal forwarding policy is to
make a random selection between two history-independent and
deterministic policies, each found by dynamic programming.
A naive implementation would be to randomly select one of
the deterministic policies when the packet is created, mark
the packet accordingly, and let intermediate nodes forward
according to the chosen policy. Moreover, the minimum energy
for any Rreq ∈ [R(1), R(2)) can be computed by Eq. (7) and
the Pareto frontier of achievable reliability and energy cost
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can be traced out by linearly interpolating the closest pairs of
reliability and energy values obtained from the DP framework.

VI. SIMPLIFIED POLICIES IN SOME SPECIAL SCENARIOS

G BqG

qB

pG

pB

Fig. 2. Two-state Markov chain link model.

In this section, we study the structure of the optimal policies
without transmission power adjustments under a special two-
state Markov chain link model with “good” (G) and “bad”
(B) state illustrated in Fig. 2. We let ωij(t) = G if the link
is in good state, and ωij(t) = B if the link is in bad state.
Since the channel state in the previous time slot is known,
the probability of successful packet transmission at time slot t
given that the Markov chain was in good state during time slot
t− 1 equals qG, and the conditional probability of successful
transmission at time t given that the Markov chain was in bad
state during time slot t−1 is qB . The average (unconditional)
packet loss probability is

ΠB =
1− qG

1− qG + qB
.

This model describes a basic variation of the Gilbert-Elliot
model [23], [24] for correlated link losses, and it further
reduces to the Bernoulli model of independent losses when
pB = pG = p and qB = qG = q = 1−p. Despite its simplicity,
this model is able to capture real packet loss behavior and
its parameters qG and qB can be readily estimated from loss
traces, see e.g. [2].

A. Optimal policy under Bernoulli loss model

We first consider the optimal forwarding policy when events
on links are uncorrelated in time described by Bernoulli loss
model. We let hi be the minimum hop count to the sink.
Intuitively, the optimal forwarding policy does not forward
the packet at a node if the remaining time to deadline is
smaller than the node’s the minimum hop count. The next
theorem shows that with a transmission energy cost, the
optimal forwarding policy may stop forwarding even when
the time to deadline is higher than the minimum hop count hi.
Since the optimal policy and the optimal utility for Bernoulli
model are independent from channel states, we let U ji (t) be the
utility of forwarding to node j with full transmission power.

Theorem 6.1: Under Bernoulli link losses,

j?i (t) =

{
arg max

j∈Ni

{U ji (t)} for 0 ≤ t ≤ D − hi,

i for t > D − hi,

where hi = arg min
h∈[hi,D−1]

{
max
j∈Ni

qijU
?
j (D − h+ 1) > δ

}
.

Proof: See [25, Appendix B].

The optimal forwarding policy has an interesting structure.
There exists a positive number hi ≥ hi such that if t > D−hi,
the optimal policy does not attempt to forward the packet.
The value hi is the “effective minimum hop count” for node
i considering transmission energy cost.

B. Optimal policy under line topology and GE loss model

1 N2 N-1

Fig. 3. Line topology.

We also study the optimal forwarding policy with GE loss
model in the line topology shown in Fig. 3. Suppose node j is
the next hop for node i. Let the optimal conditional utility with
previous slot in good (G) state and bad (B) state be respectively

U?i (t|G) = max
{
qGU

?
j (t+ 1) + pGU

?
i (t+ 1|B)− δ

, qGU
?
i (t+ 1|G) + pGU

?
i (t+ 1|B)

}
,

(8)

U?i (t|B) = max
{
qBU

?
j (t+ 1) + pBU

?
i (t+ 1|B)− δ

, qBU
?
i (t+ 1|G) + pBU

?
i (t+ 1|B)

}
.

(9)

By comparing the two terms in (8) and (9), the optimal
forwarding decisions are

j?i
(
t|G
)

=

{
i if ζt ≤ δ

qG
,

j if ζt > δ
qG

;
j?i
(
t|B
)

=

{
i if ζt ≤ δ

qB
,

j if ζt > δ
qB
,

where ζt , U?j (t+ 1)− U?i (t+ 1|G).
Similar to the policy under Bernoulli model, the optimal

forwarding policy with good state stops forwarding the packet
when the time to deadline is small and this time can be larger
than the minimum hop count hi. The following theorem states
the optimal forwarding policy with good channel state.

Theorem 6.2: When packet losses on links are described by
the two-state Gilbert-Elliot model

j?i (t|G) =

{
j for 0 ≤ t ≤ D − h̃i,
i for t > D − h̃i

where h̃i = arg min
h∈[hi,D−1]

ζD−hi >
δ
qG

.

Proof: See [25, Appendix C].
On the other hand, the optimal forwarding decision con-

ditioned on a previously bad channel state is different and
it allows the packet to wait. Intuitively, it waits for good
state when there are plenty of transmission opportunities. The
policy eventually transmits the packet when the remaining
time is small. However, there does not exist a single threshold
type optimal policy with bad state observation. In order to
illustrate the waiting strategy, let us consider the optimal
forwarding policy with a single link where node j is the sink
and U?j (t) = 1 for all t. The optimal forwarding policy is

j?i
(
t|B
)

=

{
i if qB − δ ≤ qBU?i (t+ 1|G),

j if qB − δ > qBU
?
i (t+ 1|G).
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Since U?i (t|G) decreases as t becomes larger (larger (See [25,
Appendix C]), the optimal forwarding decision at node i
conditioned on a previously bad channel state may change
with the number of remaining time slots. For instance, a large
U?1 (t+ 1|G) may induce node i to withhold the transmission
allowing the channel to turn good. As the deadline approaches,
however, U?1 (t+1|G) becomes smaller and smaller to the point
that it is optimal to transmit despite a bad channel observation.
The parameter δ trades between energy and reliability by
affecting the moment when the optimal policy with bad
channel state switches from waiting to transmitting.

VII. NUMERICAL EXAMPLES

In this section, we illustrate our techniques with numerical
examples. Let us consider the network in Fig. 4 where a source
(node 1) sends packets to a sink (node 6), and analyze the end-
to-end reliability and transmission energy cost for different
deadline constraints. We consider both the Bernoulli link loss
model and the GE link loss model shown in Fig. 2. For the
Bernoulli link loss model, the loss probability ΠB is randomly
generated in [0.2, 0.9]. For the GE link loss model, the links are
homogeneous with unconditional loss probability ΠB = 0.5,
and the burstiness parameter pB of each link is uniformly
chosen in the range [0.75, 0.95].

A. Reliability and energy tradeoff without power adjustments

We first show the energy-reliability tradeoff without power
adjustments (PA) in Fig. 5. We note that when link losses are
correlated in time (GE model), the energy penalty of aiming
for the maximum reliability is substantial. For instance, for
D = 12, the final 3% of reliability demands approximately
double the energy. We further observe that higher energy gains
typically occur with larger deadlines since the energy-optimal
forwarding policy then can wait the appropriate time when
links are in bad state.

For the Bernoulli loss model, on the other hand, the ex-
pected transmission energy increases linearly with the relia-
bility, and there is no longer any threshold value after which
the energy cost for additional reliability increases dramatically.

B. Reliability and energy tradeoff with power adjustments

We also evaluate the energy-reliability tradeoff with power
adjustments. The success probability in good state now de-
pends on the transmission power r, and is denoted by qrG. The
success probability in bad state is always zero. We use values
of success probability in GE good state qrG in Table I that
mimic what can be expected on an IEEE 802.15.4 platform
and show a waterfall type relation between reliability and
transmission power (see, e.g., [26, Fig.2.1]). The link relia-
bility does not decrease linearly with the reduced transmission
power in the beginning. A drop of 10% transmission power,
for example, results in only a 2% decrease in the reliability.
Nevertheless, the reliability falls sharply when the transmission
power is lower than 80%.

Fig. 6 and Fig. 7 show that power adjustments always
allow to reduce energy cost for a given target reliability for

TABLE I
AN EXAMPLE OF POWER VERSUS RELIABILITY IN THE GOOD STATE OF

GILBERT-ELLIOT MODEL.

r 100% 90% 85% 83% 80% 78% 76% 75%
qrG 100% 98% 94% 90% 80% 70% 60% 50%

both Bernoulli and GE model. According to Theorem 5.2,
the optimal policy without power adjustments forwards the
packet on a link with probability, e.g., α, to achieve α portion
of reliability and energy. However, with power adjustments,
the same energy saving can be achieved by transmitting with
relative power α, but with a smaller decrease in reliability.

In order to illustrate the benefits of power adjustments,
Fig. 8 shows the achievable reliability-energy pairs and the
Pareto frontier with Bernoulli model under all deterministic
policies from the DP solutions for D = 2. There are more pairs
of achievable reliability and energy due to power adjustments.
The Pareto frontier is the convex hull of these points, and a
better Pareto frontier is obtained by linearly interpolating the
appropriately chosen pairs of reliability and energy.

C. A heuristic policy for correlated link losses

The energy cost under correlated losses increases dramat-
ically when reliability requirement exceeds a certain value,
see Fig. 5. The main reason for this behavior is that the
final reliability gains are obtained by transmitting, even when
the channel is likely to be in a bad state. In this section,
we develop a heuristic policy that attempts to operate at the
”knee” of the energy-reliability trade-off curve by avoiding, to
the extent possible, to transmit on channels that were in bad
state during the last period. This policy is computed in two
steps. First, we compute the maximum deadline-constrained
reliability that can be achieved by policies that only transmit
if the channel state in the previous time slot was good.
We call this value Rknee. Then, we apply the technique in
Section V to compute the energy-optimal policy that achieves
this specific reliability value.

A variation of the dynamic programming framework in
Section V-A can be applied to compute Rknee. We let δ = 0,
and R?(·) coincides with U?(·) in the dynamic programming
framework. At each time t, a negative penalty −1 is induced
if the packet is forwarded on the link in bad state. The
dynamic programming procedure remains the same otherwise.
It chooses the optimal decisions that maximize the reliability
R?i (t) at each step t, and returns the reliability value R?i (0),
i.e., the estimated reliability Rknee of the knee location. More
specifically, at each time t, the maximum conditional reliability
R?i
(
t|ωi(t − 1)

)
is computed similar to Eq. (4), and the

computation of the reliability of staying Rii
(
t|ωi(t − 1)

)
is

the same as the Eq. (6). However, the reliability of forwarding
Rji
(
t|ωi(t − 1)

)
have two cases conditioned on the channel

state. If ωij(t− 1) = G (good state), then

Rj
i

(
t|ωi(t− 1)

)
=
∑
ωi(t)

Pr{ωi(t)|ωi(t− 1)}

·
(
qωij(t)R

?
j (t+ 1) + (1− qωij(t))R

?
i

(
t+ 1|ωi(t)

))
.

If ωij(t− 1) = B (bad state), then Rji
(
t|ωi(t− 1)

)
= −1.
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Fig. 4. Example network topology.
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D=2, GE
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Fig. 5. Reliability-Energy curves w/o power ad-
justments (PA) under Bernoulli and GE model.
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Fig. 6. Reliability-Energy curves with and w/o
power adjustments (PA) under GE model.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Reliability

T
ra

n
s
m

is
s
io

n
 E

n
e
rg

y
 C

o
s
t

 

 

D=2 with PA
D=4 with PA
D=6 with PA
D=8 with PA
D=10 with PA
D=12 with PA
D=2 w/o PA
D=4 w/o PA
D=6 w/o PA
D=8 w/o PA
D=10 w/o PA
D=12 w/o PA

Fig. 7. Reliability-Energy curves with and w/o
power adjustments (PA) under Bernoulli model.
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Fig. 8. Illustration of the Pareto frontier under
Bernoulli model and deadline D = 2.
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D=2 w/o PA
D=4 w/o PA
D=6 w/o PA
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D=10 w/o PA
D=12 w/o PA
The heuristic policy

Fig. 9. Reliability and energy values for the
heuristic policy under GE loss model.

We evaluate the heuristic policy on the network in Fig. 4
with GE link loss model. Fig. 9 shows that such policies strike
a nice balance between energy and reliability.

VIII. CONCLUSIONS AND FUTURE WORK

We studied the optimal minimum-energy packet forwarding
policies for a periodic data-flow under per-packet deadline and
reliability constraints. The packet deadline is smaller than the
packet generation period, which allows us to study the one-
period scenario with one packet on the network. The packet is
routed on a multi-hop network represented by a directed graph,
and the link losses are modeled by finite-state Markov chains.
We showed that the minimum energy forwarding problem
under reliability and deadline constraints can be formulated
as a constrained Markov decision process. By a Lagrange
multiplier approach, we converted the constrained problem to
a weighted sum maximization problem and proved that the
optimal policy is random selection between two deterministic
policies found by dynamic programming. A simple threshold-
type optimal policy was derived for Bernoulli link loss model,
and for GE link loss model with good channel state observa-
tion in a line topology. Numerical examples of the energy-
reliability tradeoff show that the energy cost of achieving
reliabilities close to the maximum is dramatic when links
are bursty. The energy cost can be reduced by transmission
power adjustments. Finally, a heuristic policy that strikes a
good balance between energy and reliability was proposed.

There are a number of interesting directions for future work.
Firstly, the structure of optimal forwarding polices would
change if the time and energy cost for probing channel states

were considered. Secondly, the performance can be improved
if each node can also acquire the one time slot delayed channel
states from its immediate downstream nodes. Thirdly, it will be
interesting to study the scenario with multiple streams where
interference and queueing delays also need to be addressed.
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APPENDIX

A. Proof of Theorem 5.2

Lemma A.1: R?(δ) and C?(δ) are non-increasing functions
for δ ≥ 0.

Proof: Since δ ≥ 0, increasing δ results in a smaller
utility of forwarding to neighbors in Eq. (5), and the optimal
policy will not use more transmissions or higher transmit
power, hence the optimal reliability and the optimal energy
cost cannot become larger.

Proof of Lemma 5.1:
Proof: At each step of the DP, the number of choices

are limited by the number of neighboring nodes and channel
states. We have finite number policies that leads to a finite
number of optimal reliabilities. Thus, R is a finite set.

For any given δ1, δ2 ∈ ∆R, we have R?(δ1) = R?(δ2) with
optimal polices π?(δ1) and π?(δ2), respectively. Suppose that
C?(δ1) 6= C?(δ2). Without loss of generality, we let δ1 < δ2.
According to Lemma A.1, we have C?(δ1) ≥ C?(δ2) and
since, by assumption, C?(δ1) 6= C?(δ2), we have C?(δ1) >
C?(δ2). The optimal utility with δ1 is then R?(δ1)−δ1·C?(δ1).
However if we apply policy π?(δ2), the utility with δ1 is
R?(δ2)−δ1 ·C?(δ2) > R?(δ1)−δ1 ·C?(δ1), which contradicts

the optimality of π?(δ1). Hence, for all R ∈ R, C?(δ) is
unique for all δ ∈ ∆R.

Proof of Theorem 5.2:
Proof: Let g(δ) , 1/δ ·maxπ{Rπ − δ ·Cπ}− 1/δ ·Rreq

and h(δ) , maxπ{Rπ − δ · Cπ}. The proposed dynamic
programming framework computes h(δ) for a given value of δ
and returns an optimal history-independent and deterministic
policy. According to Puterman [20], h(δ) can be formulated as
a linear program whose objective function coefficients depend
on δ, and it can be shown that h(δ) is a continuous function
over δ. Hence, g(δ) is also a continuous function over δ
because g(δ) = 1/δ · h(δ)− 1/δ ·Rreq.

For a given R(m) ∈ R, by Lemma A.1 and the fact R
is a finite set from Lemma 5.1, we have that ∆R(m) is an
interval. Moreover, h(δ) = R?(δ) − δC?(δ) is a continuous
function over δ and C?(δ) is unique for δ ∈ ∆R(m) . Hence,
this interval is closed; let us denote it ∆R(m) = [δm−, δm+].
Then, the function g(δ) is

g(δ) = 1/δ(R(m) −Rreq)− C(m), δ ∈ [δm−, δm+]. (10)

Now let R(1) = max{R ∈ R : R ≤ Rreq} and R(2) =
min{R ∈ R : R > Rreq} with associated energy costs C(1)

and C(2). Note that R(1) ≤ Rreq < R(2). Their associated
δ range is ∆R(1) = [δ1−, δ1+] and ∆R(2) = [δ2−, δ2+].
Furthermore, we have δ? , δ2+ = δ1− because h(δ) is a
continuous function. Since R?(δ) is a non-increasing function
over δ from Lemma A.1, we have R?(δ) ≤ R(1) ≤ Rreq for
δ ≥ δ1+ and R?(δ) ≥ R(2) > Rreq for δ ≤ δ2−. Thus,
we have R?(δ) ≤ Rreq for δ ≥ δ1− and R?(δ) > Rreq

for δ ≤ δ2+. Furthermore, by Eq. (10), g(δ) is a decreasing
function for δ ≤ δ2+ and a non-decreasing function for
δ ≥ δ1−, so the minimum value of g(δ) is obtained for
δ = δ? = δ2+ = δ1−. The optimal δ? can be found from

1/δ?(R(2) −Rreq)− C(2) = 1/δ?(R(1) −Rreq)− C(1),

and the minimal energy cost is

C? = C(1) +
Rreq −R(1)

R(2) −R(1)
(C(2) − C(1)).

Suppose the optimal policies to obtain (R(1), C(1)) and
(R(2), C(2)) are π(1) and π(2) respectively. The policy π? that
randomizes between π(1) and π(2) with probabilities

θ(1) =
R(2) −Rreq

R(2) −R(1)
and θ(2) =

Rreq −R(1)

R(2) −R(1)

achieves this minimum energy. Thus, it is an optimal policy,
which concludes the proof.
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