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Minimum-energy packet forwarding
over lossy networks under deadline and reliability constraints

Zhenhua Zou and Mikael Johansson
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Abstract—This paper studies minimum-energy packet for-
warding over multi-hop lossy networks under deadline and
reliability constraints. We assume a routing topology in the
form of a directed graph with packet loss processes on links
described by nite-state Markov chains, and formulate the for-
warding problem as a nite-horizon constrained Markov decision
process. We show that the minimum energy forwarding policy
under hard deadline and reliability constraint can be computed
using dynamic programming, and that the optimal forwarding
policy is a randomized policy over two history-independent and
deterministic policies. Closed-form optimal policies are derived
for some particular scenarios. Numerical examples show that
the transmission energy cost of achieving reliabilities close to the
maximum can be signi cant when links are bursty. In addition,
transmission power adjustments can further reduce energy cost.
Finally, we develop simple heuristic policies with a good balance
between transmission energy cost and reliability.

Fig. 1. Minimum forwarding energy vs deadline and reliability constraints.

I. INTRODUCTION
The last decades' tremendous advances in wireless com-

munications have been driven mainly by personal commg@bannel states. To address this problem, we extend our previ-
nications and radio resource allocation mechanisms for opus work by studying the problem of minimizing energy cost
timizing key metrics, such as average throughput and delajder both deadline and reliability constraints. The solution is
for such traf c are by now rather well-developed. Howeveimmediately useful for co-design of wireless control systems
with the increased interest in wireless machine-to-machitéth minimum packet-forwarding cost and guaranteed closed-
communication, e.g. for industrial control or monitoring ofoop control performance [6].
large-scale infrastructures, new challenges emerge [1]. Thelhe main contributions of this paper are:
performance of an estimator or closed-loop control system We derive the minimum-energy forwarding policy for
that operates over an unreliable wireless network depends on a periodic unicast data ow with hard constraints on
the full latency and loss distributions and not only on their  per-packet latency and reliability in a multi-hop network
averages. Hence, more suitable performance metrics are per- with bursty links. The routing topology of the network
packet guarantees on latency and reliability (on-time delivery). is represented by a directed graph with links modeled by
In contrast to independent and saturated traf c sources often nite-state Markov chains. The minimum energy problem
considered in personal communication, industrial networks are is formulated as a nite-horizon constrained Markov
typically lightly loaded and traf ¢ is transient (the majority decision process (CMDP). The solution allows us to trace
of control design techniques rely on periodic sampling with  out the Pareto frontier between reliability and energy cost
sampling times longer than the minimal latencies) . Due to for deadline-constrained traf ¢, as illustrated in Fig. 1.
the limited range of low-power wireless, communication often  We show, using a Lagrangian approach, that the min-
occurs over multiple hops, and links are lossy with signicant  imum energy problem can be solved by maximizing
coherence times [2]. Accounting for channel burstiness be- the weighted sum of reliability and forwarding energy
comes important for obtaining strong routing performance [3], subject to a hard deadline. Moreover, the minimum

[4]. Finally, energy-ef ciency is critical as many devices are
battery-powered with life-time targets in the order of years.
In our previous work [5], we developed optimal policies

energy optimal policy is a random selection between two
deterministic and computable forwarding policies, each
of which can be found via dynamic programming.

We study the structure of the optimal forwarding policies
and develop closed-form expressions for the case where
link losses are independent and for the case where packets
are routed on a line with Gilbert-Elliot (GE) loss model.
We study the latency-reliability-energy trade-off in nu-

that maximize the probability that a single packet is delivered
within its deadline over multi-hop networks with bursty links.

These policies make full use of all available transmission
opportunities, and do not account for the possible energy-
inef ciency of always transmitting despite disadvantageous
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merical examples and discover a dramatic energy penadtyalysis to support as many data ows as possible, hoping
of aiming for the maximum achievable reliability. that one of them can successfully reach the sink. Priority-
We propose a heuristic policy that strikes a good babased scheduling to enhance deadline-constrained reliability
ance between reliability and energy cost, and develdp proposed in [14], [15]. However, this approach does not
a dynamic programming-based algorithm to optimize itguarantee reliability, and is not energy-optimal.

parameters and estimate its performance. In our previous work [5], we have developed optimal
The rest of this paper is organized as follows. Section fbrwarding policies that maximize the probability that a single
reviews related work. Our model and assumptions are detailgacket is delivered within a deadline for multi-hop networks
in Section Ill and a CMDP problem formulation is presentedith independent and bursty links. These policies, however,
in Section IV. A structured optimal policy is developed irmake full use of all transmissions opportunities and might be
Section V. Section VI studies optimal policies for two spewasteful from an energy perspective. Some initial and partial
cial cases, while Section VIII demonstrates the approach mesults on energy-ef cient packet forwarding are given in our
numerical examples and the heuristic policy. technical report [16] and signi cantly expanded in this paper.

IIl. RELATED WORK

While average delay has always been an important metric I1l. SYSTEM MODEL
in wireless communication, research on per-packet deadlines
have appeared only recently. Shakkottai and Srikant [7] pro- : - L .
; : . S .~ To support reliable periodic communication, we consider a
posed a simple scheduling algorithm to minimize the deadline : : :
scenario where a single packet, generated by an arbitrary node

miss ratio for different data streams in a single-hop wwelegé? timet = 0, should be transmitted over a multi-hop wireless

network with time-varying and correlated link losses. HOW'etwork to the sink nod within a deadline ofD time

ever, the algorlthm is optimal only for a speci ¢ class of amvaglots. This single-period scenario then forms the building block
processes and link parameters. More recently, Hou and Kumar . L : . :
: Or supporting periodic traf ¢ with a packet generation period

(see the survey paper [8] and the references therein) have o L .
. . larger tharD . Our aim is to minimize the transmission energy
proposed a tractable framework in which all packets arrivé : . - .
cost subject to a requirement on the minimum probability that

_at the beginning of an interval and expire ‘?‘t _the enc_i of tl?ﬁe packet is delivered to the sink node before the deadline
interval. Moreover, the channel remains static in one interval.

The timely throughput is de ned as the number of packets Packets are routed along a directed gréph (N ; L) where
that are delivered before their expiration. In this framewor® IS the set of nodes and the set of links. The root node is
Hou and Kumar study conditions for a feasible schedulifgP€!€dN . The presence of a directed lifkj ) 2 L means
policy and nd feasibility optimal policies when the timely 12t nodei is able to transmit a packet to nogewe de ne
throughput requirements are inelastic. They also study utilityi @s the set of neighbors of node
maximization problem when the timely throughput require- Communication is slotted, and a single time slot allows the
ments are elastic. However, extensions to multi-hop netwofflensmission of a packet and its acknowledgment. Communi-
remain open and challenging, and energy consumption is §@tion links are unreliable and the communication channels
considered in their work. are modeled by homogeneous nite-state Markov chains [17],
There is also a |arge body of literature on phys|ca|-|ayé18] Each Markov chain evolves in discrete time, and state
techniques of rate adaptation for energy ef cient transmiétansitions occur at transmission slot boundaries. The Markov
sion of deadline-constrained packets; see [9]-[12] and tﬁbains for different links are independent, and each node can
references therein. In theory, rate adaptation techniques @My access the state of its own outgoing links. Letlenote
provide error-free transmission for a given transmit power ati@e Markov state for alink and2  denote the relative power
channel conditions, and energy can be saved by transmittiig§th respect to full power) used for a single transmission; we
with smaller rate. Optimal policies are derived for selectingssume that is a nite set. Similar to the approach in [19],
the most energy-ef cient transmission strategy that delivers @lpacket transmission on a link in stdtewith relative power
bits before the deadline under various assumptions of packds then successful with probability .
arrivals, deadline patterns and channel state information etcThe optimal forwarding policy depends on what knowledge
Nevertheless, in wireless machine-to-machine communicati@out the state of the underlying Markov chains that is
the transmission rate is usually xed, and error-free transmiavailable to nodes when they make a forwarding decision. In
sion is not possible even with maximum transmission poweavhat follows, let! ;(t) = [!j (t)]jon, represent the state of
Hence, in this paper, we study the minimum energy probleatl links (i;]j ) outgoing from node at timet. We assume that
with a xed reliability requirement (smaller thah00%j. nodei at timet knows the link states in thgrevioustime slot
Another line of work, rooted in the real-time systems$ ;(t 1), and neglect the energy and time cost for acquiring
community, considers scheduling of periodic data ows isuch channel state information. A more realistic assumption
multi-hop WirlessHART networks [13]. The data packet is duwould be that the channel state is acquired by transmitting a
plicated at the source, and each duplicated packet is treatedias packet on the channel or by probing the channel with an
a separate data ow. That paper focuses on the schedulabibitysociated cost. Such extensions are deferred to future work.
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IV. CONSTRAINED MARKOV Under a policy , the expected reward (deadline-constrained
DECISION PROCESS FORMULATION packet reliability) is

Our deadline-constrained packet forwarding problem can be .
formulated as a Markov decFi)sion process (I\/QI]DpP) [20] with a R Prx(0)6E. @  x(B)
nite horizon of D +1 whereD is the deadline of the packet.
The decision is made attime2 f 0;1;:::;D 1g. Letx(t), and the expected energy cost is
m(t);! m(t 1) denote the state of the MDP wherg(t)
is the packet location at timteand! ,,(;)(t 1) are the channel
states of noden(t) attimet 1. The actiora(t) , j(t);r(t)
chooses the next hop nodét) and the transmission power
r(t). The state transition probabilitr x(t + 1) jx(t); a(t) In this notation, the minimum energy forwarding problem

is determined by link parameters. For ease of presentatigabject to a reliability constrairRreq can be formulated as
suppose the MDP state at timeis x(t) , (i;!i(t 1))

x(0)

X =50 1
c , Prfx(0)gE, o) c x(t);a(t)
x(0) t=0

and the MDP state at time+ 1 is x(t+1) , (k;! «(t)). Let minimize  C 1)
Pr Ii(t)j!i(t 1) be the channel state tra@sition probability subject to R Rreq:
of nodei's outgoing links, andP(! ;) = J- Pr(! ) be

the stationary channel state distribution. The state transitiW? have_ solved t_he reliability maximization_ problem with op-
probability functionPr x(t + 1)jx(t);a(t) depends on the timal policy max in [5]. One can verify that iRreq = R ™,

action: if the action is to hold the packet, i.g(t) = i, then the minimum energy i€ ™ . Thus, in this paper, we only
consider the case wheRyeq < R max -
Pr x(t +1)jx(t):at) = Prt! @'t 1) ifk=i This problem falls into the category of constrained MDP
' 0 otherwise; (CMDP). The Lagrangian approach was proposed in [21]
to convert it to a non-constrained weighted sum problem.
if the action is to forward the packet, i.g(t) 6 i, then In this paper, we will show that studying the problem of
Pr Xg +1)jx(1): a(t) maximizing the weight.ed sum.of religbili.ty and energy qllows
. _ , , us to construct an optimal policy which is a randomization of
3@ Gy pgPr @it 1) if k=1 two history-independent and deterministic policies.

- P ly(t) q, @Pr!i®iit 1) ifk=j);
3 0 _ V. THE MINIMUM ENERGY
0 otherwise. AND A STRUCTURED OPTIMAL POLICY

The Lagrange dual of the minimum ener roblem (1) is
The initial state isx(0) with the packet at the source node grang 9y p @

and the unconditional channel states distribution, maximize min C + (Req R)
( subiject to 0
Pr x(0) = P! mo if m(0) = srg )
- otherwise. which is equivalent to
There is a terminal reward x(D) if the packet arrives at ~ Minimize 1= maxfR C g 1= Rreg @)
the sink noden at the last time sloD, subject to 0
1 if m(D) = N: where = 1= . Our nite-horizon CMDP can be cast into
x(D) = in nite horizon case with total cost criterion. The Markov state

0 otherwise x is extended to include the time from= 0 tot = D. It goes

The costc x(t);a(t) is incurred when the packet is trans:{o the next state with _tim§+1 only if the ¢ urrent state's time_
mitted to neighbors is t. We de ne a tgrmlnatlon _s,te}te to which a}II the state_s with

' time D + 1 are directed. This is an absorbing state with no
r(t) if j (t) 6 m(t): reward and cost. All other parameters including rewards, costs
and state transition probabilities remain the same. It can be

shown that this is a contracting MDP de ned in [21, Def. 2.4].
Note that a unit of transmission energy cost corresponds tdignce, by [21, Thm. 4.8 ii], the duality gap is zero.

t);a(t) = i
c x(t);a(t) 0 otherwise

transmission with full power. To solve the problem (2), we hence need to solve the
Let historyh(t) be a sequence of previous states and actiofé¢ighted sum maximization of reliability and energy,
i.e,h(t), x(0);a(0);:::;x(t 1);a(t 1);x(t) ,andH(t) maxf R Cyg ©)

be the set of all possible histories. The decision rule is a

functiond(t) : H(t) ' P A(t) that mapsH (t) into a set for a given 0. Next, we develop a dynamic programming
of probability distributions on the action spaégt) of all solution to the weighted sum maximization problem and show
possible actions. A policy , d(0);d(1);:::;d(D 1) is how a structured optimal policy for our original problem (1)
a sequence of decision rules, indexed by time. can be constructed.
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A. Dynamic programming for weighted sum maximization Eq. (4). For ease of notation, de j¢ , j tj! i(t 1) and
?

? ? ti
By treating the weighted energy cost C as a negative "i » i t'i(t 1) .Thus, we have

reward scaled by in the MDP formulation, a history- €. ; ; . .
independent and deterministic optimal policy can be found byj?;r? = (i: 0) TE) G 2Nir2;
dynamic programming (DP) [20]. The MDP state is composed

of the packet location and the channel state of the outgoi
links at the previous time slot. Thus at timend nodd, the
maximum conditional and unconditional utility are

rg max herwise.
agJZNiz;:}2 (5) otherwise

Rite that withholding the packet does not consume energy,
and hence has a higher priority than forwarding the packet.
We break ties arbitrarily among forwarding decisions. The
Uzttt 1) = R it 1) Cltit 1); corresponding reliability and energy cost can be readily com-
5 . puted from the optimal policy. A complete description of this
U7 (t) = Priti(t 1)U’ tti(t 1) :  pp framework, the complexity, and various extensions can be
tit D) found in [16].
The maximum utility U?(0) and the optimal policy can be

L 7. B. Structure and construction of the energy-optimal polic
computed backwards by DP from the initial condition gy-op policy

In this section, we show that the optimal policy for the
PR 1 if i =N; minimum energy problem (1) is a randomization of two
R7 Djti(D 1) = 0 ifi6 N: deterministic policies found by the weighted sum problem (3)
’ with different values of . Similar results for in nite-horizon
CMDP with total reward and total cost constraint appeared
in [22]. In this paper, we clearly state these two policies
and specify the probabilities at which they are selected in
? tj!H-(t 1) = o the ogtimal randomized policy. To this end, RE( ), C?( )
T e ) and “( ) be the reliability, the energy and the optimal policy
max ”—??X UT Gttt DUt ) o @ in the weighted sum problem (3) for a givenrespectively
Dene R, fR?(); forall gand g, f :R?()= Rg
whereU)" tj! i(t 1) is the utility of forwarding to neighbor for a glvenR 2 R. We have the following results:
j with powerr, andU/ tj! i(t 1) is the utility of with- | emma 5.1:R is a nite set. For a giverR 2 R, C?( ) is
holding the packet at node respectively. These utilities arenique for all 2 g.
compuited as X Proof: See Appendix A. ]
U ot 1) = PIfL O] it D9 d, U] (t+1) Theorem 5.2:Let R®W = maxfR 2R : R Ryeqg and
} R@ =minfR 2R : R >R (@ with the associated unique
Success forward  energy cost€® andC®@ . The optimal value of the minimum
+ﬁl q, (t))U{i: t+1j! i(t)} 5y () energy forwarding problem (1) is then

C’ Dj'i(D 1) =0:

At each step witht < D , the maximum conditional utility is

Li(t)

. Tx Cost 1
. i Fail fo.rward , . ' c?=cO 4 Rreq R )(C(Z) c®y: )
Uit 1) = Prit i)l it DUl t+1jl () R® R®
| {z } Suppose that the optimal policies that att@Rf® ; C®)) and
Staying at nodé (R@:c@)are M and @ respectively. An optimal policy

© - for the minimum energy problem is obtained by random

Intuitively, transmitting to neighbors can increase the probaelection of policies ¥ and @ with probabilities
bility of successful delivery before deadline, but it also costs R@ R R R®
more energy. The parameter that balances the energy cost W=_————2,; @=_F0
and the deadline constrained reliability, may refrain a node R@ RO R@ RO
from transmitting i.e., enforce Eq. (5) Eq. (6). Proof: Lemma 5.1 shows the existenceRf) andR®

Note that the above dynamic programming is optimal giveand the uniqueness ) andC® . The rest of the proof is
that each node can only access the state of its own outgoingAppendix A. ]
links. At each timet, the update in Eq. (5) requires the maxThe theorem states that the optimal forwarding policy is to
imum unconditionalutility Uj?(t +1) computed by next hop make a random selection between two history-independent and
nodej attimet+1. The unconditional utility is used becauseleterministic policies, each found by dynamic programming.
nodei does not know the state of nogé outgoing links. A naive implementation would be to randomly select one of
Hence, the dynamic programming update can be implementéd deterministic policies when the packet is created, mark
in a distributed manner at each node with message passitige packet accordingly, and let intermediate nodes forward
only among neighbors (see [16] for a detailed discussion). according to the chosen policy. Moreover, the minimum energy

The optimal policy at time forwards the packet to the nodefor any Ryeq 2 [RW;R®) can be computed by Eq. (7) and
j7 tj' i(t 1) with the power? tj! ;(t 1) that maximizes the Pareto frontier of achievable reliability and energy cost
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can be traced out by linearly interpolating the closest pairs ©he optimal forwarding policy has an interesting structure.
reliability and energy values obtained from the DP frameworRhere exists a positive numbley  h; such thatit>D h;,

the optimal policy does not attempt to forward the packet.
The valueh; is the “effective minimum hop count” for node

i considering transmission energy cost.

VI. SIMPLIFIED POLICIES IN SOME SPECIAL SCENARIOS

Ps

B. Optimal policy under line topology and GE loss model
GG e

% O—O— ~©-0

Fig. 2. Two-state Markov chain link model.
Fig. 3. Line topology.

In this section, we study the structure of the optimal policies We al wdv th timal f di i ith GE |
without transmission power adjustments under a special two- € aiso study the optimal forwarding policy wi = 10SS
state Markov chain link model with “good” (G) and “bad”mOdel in the line topology shown in Fig. 3. Suppose npde
(B) state illustrated in Fig. 2. We lét; () = G if the link the next hop for nodée Let the optimal conditional utility with

is in good state, andl; (t) = B if the link is in bad state. previous slot in good (G) state and bad (B) state be respectively

Since the channel state in the previous time slot is known,U’(tjG) = max qGUj?(t +1)+ peU’(t+1jB) 8
the probability of successful packet transmission at t|metslot (g U2 (t +1jG) + pUZ(t +1jB) ; (8)
given that the Markov chain was in good state during time slot

t 1 equalsgs, and the conditional probability of successful U7 (tjB) =max gg U (t + 1)+ pg U7(t +1jB) 9
transmission at time given that the Markov chain was in bad ;OB Ui?(t +1jG) + pe Ui?(t +1jB) : ©)
state during time slat 1 is gg . The average (unconditional)

packet loss probability is By comparing the two terms in (8) and (9), the optimal

forwarding decisions are

L = 1 g | (. " _ (. . _
1 g+ i? tic = ' !f t qu i? tiB = I I t q?i
This model describes a basic variation of the Gilbert-Elliot o> g Jof > 0s

model [23], [24] for correlated link losses, and it furthe(Nhere o, U2(t+1)  U(t+1jG).
reduces to the Bernoulli model of independent losses WhenSimiIar, t ! !

Pe = Pc = pandgg = gs = =1 p. Despite its simplicity, t3nyarding policy with good state stops forwarding the packet
this model is able to capture real packet loss behavior en the time to deadline is small and this time can be larger
its parametersis andgg can be readily estimated from 10SShan the minimum hop couii;. The following theorem states
traces, see e.g. [2]. the optimal forwarding policy with good channel state.
Theorem 6.2:When packet losses on links are described by

. . , ) the two-state Gilbert-Elliot model
We rst consider the optimal forwarding policy when events

on links are uncorrelated in time described by Bernoulli loss i7tG) = for0 t D

model. We leth; be the minimum hop count to the sink. : i fort>D I

Intuitively, the optimal forwarding policy does not forward )

the packet at a node if the remaining time to deadline Y¢éherefi = arg hz[ﬂ“.g gy oon Z %

smaller than the node's the minimum hop count. The next Proof: See [25',’ Appendix C]. m

theorem shows that with a transmission energy cost, theOn the other hand, the optimal forwarding decision con-

optimal forwarding policy may stop forwarding even wheniitioned on a previously bad channel state is different and

the time to deadline is higher than the minimum hop cdunt it allows the packet to wait. Intuitively, it waits for good

Since the optimal policy and the optimal utility for Bernoullistate when there are plenty of transmission opportunities. The

model are independent from channel states, wellét) be the policy eventually transmits the packet when the remaining

utility of forwarding to nodej with full transmission power. time is small. However, there does not exist a single threshold
Theorem 6.1:Under Bernoulli link losses, type optimal policy with bad state observation. In order to

illustrate the waiting strategy, let us consider the optimal

o the policy under Bernoulli model, the optimal

A. Optimal policy under Bernoulli loss model

( j P
ji?(t) = argjnzwl\??cf Ui (Vg foro t D hi forwarding policy with a single link where nodeis the sink
i fort>D  h;; and UJ-'-’(t) =1 for all t. The optimal forwarding policy is
n o . . .
whereh; =arg min  maxq U?(D h+1)> i? 4B = | if gg g U (t +1jG);
P e B ' j  ifoe >qsUl(t+1jG):
Proof: See [25, Appendix B]. ] i
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TABLE |
, o
SinceU;"(tjG) decreases asbecomes larger (larger (See [25, an exampLE OF POWER VERSUSRELIABILITY IN THE GOOD STATE OF

Appendix C]), the optimal forwarding decision at node GILBERT-ELLIOT MODEL.
conditioned on a previously bad channel state may change
. N ) r | 100% | 90% | 85% | 83% | 80% | 78% | 76% | 75%
with the number of remaining time slots. For instance, a large—605% T 989% T 94% T 90% | 80% | 70% | 60% | 50%
U7 (t + 1jG) may induce nodé to withhold the transmission
allowing the channel to turn good. As the deadline approaches,
however\U; (t+1]G) becomes smaller and smaller to the poinoth Bernoulli and GE model. According to Theorem 5.2,
that it is optimal to transmit despite a bad channel observatigpe optimal policy without power adjustments forwards the
The parameter trades between energy and reliability by,acket on a link with probability, e.g.,, to achieve portion
affecting the moment when the optimal policy with bag reliapility and energy. However, with power adjustments,
channel state switches from waiting to tfransmitting. the same energy saving can be achieved by transmitting with
relative power , but with a smaller decrease in reliability.
) _ ) ] ) ~In order to illustrate the benets of power adjustments,
In this section, we |I_Iustrate our tech_nqu_Jes with numerlc@ig_ 8 shows the achievable reliability-energy pairs and the
examples. Let us consider the network in Fig. 4 where a souisgyeto frontier with Bernoulli model under all deterministic
(nodel) sends packets to a sink (noB and analyze the end- hicies from the DP solutions f@ = 2. There are more pairs

to-end reliability and transmission energy cost for differenjs achievable reliability and energy due to power adjustments.
deadline constraints. We consider both the Bernoulli link 10S§,e pareto frontier is the convex hull of these points, and a
model and the GE link loss model shown in Fig. 2. For thgetter pareto frontier is obtained by linearly interpolating the
Bernoulli link loss model, the loss probabilityg is randomly appropriately chosen pairs of reliability and energy.
generated ifi0:2; 0:9]. For the GE link loss model, the links are

homogeneous with unconditional loss probability = 0:5, C. A heuristic policy for correlated link losses

and the burstiness paramefgs of each link is uniformly  The energy cost under correlated losses increases dramat-
chosen in the rang:75; 0:95] ically when reliability requirement exceeds a certain value,
A. Reliability and energy tradeoff without power adjustmen%ee F'.g' 5 Thg main reason for this behe}wor Is that the
o i nal reliability gains are obtained by transmitting, even when
We rst show the energy-reliability tradeoff without powerihe channel is likely to be in a bad state. In this section,

adjustments (PA) in Fig. 5. We note that when link losses &jg develop a heuristic policy that attempts to operate at the
correlated in time (GE model), the energy penalty of aimingnee” of the energy-reliability trade-off curve by avoiding, to
for the maximum reliability is substantial. For instance, fofhe extent possible, to transmit on channels that were in bad
D = 12, the nal 3% of reliability demands approximately state during the last period. This policy is computed in two
double the energy. We further observe that higher energy gaii§ps. First, we compute the maximum deadline-constrained
typically occur with larger deadlines since the energy-optimadiapility that can be achieved by policies that only transmit
forwarding policy then can wait the appropriate time wWhefi the channel state in the previous time slot was good.
links are in bad state. We call this valueRwes Then, we apply the technique in
For the Bernoulli loss model, on the other hand, the eXection V to compute the energy-optimal policy that achieves
pected transmission energy increases linearly with the religis speci ¢ reliability value.
bility, and there is no longer any threshold value after which A variation of the dynamic programming framework in
the energy cost for additional reliability increases dramaticallection V-A can be applied to compuRinee We let =0,
andR?()) coincides withU?( ) in the dynamic programming
B. Reliability and energy tradeoff with power adjustments framework. At each time, a negative penalty 1 is induced
I . if the packet is forwarded on the link in bad state. The
We also evaluate the energy-reliability tradeoff with powedynamic programming procedure remains the same otherwise.
adjustments. The success probability in good state now d€chooses the optimal decisions that maximize the reliability
pends on the transmission powerand is denoted bgg. The Ri?(t) at each step, and returns the reliability val.uai'-’(O),
success probability in bad state is always zero. We use vali€s the estimated reliabilitRnee Of the knee location. More
of success probability in GE good stag in Table | that speci cally, at each time, the maximum conditional reliability

> X -
mimic what can be expected on an IEEE 802.15.4 platforﬁw' 4ti(t 1) is computed similar to Eq. (4), and the

. L omputation of the reliability of stayingR! tj! ;(t 1) is
and show a waterfall type relation between reliability an e spame as the Eq. (6). Hov)\//ever, tr¥e ?ezlliatj)iliﬂs of fo?warding

transmission power (see, e.g., [26, Fig.2.1]). The link relig; tjl i(t 1) have two cases conditioned on the channel
bility does not decrease linearly with the reduced transmissigfyte  |f! i (t  1)= G (good state), then
X

power in the beginning. A drop of 10% transmission power,

VIlI. NUMERICAL EXAMPLES

for example, results in only a 2% decrease in the reliabilit®] tj! i(t 1) = Priti(0)j!ti(t 1)g

Nevertheless, the reliability falls sharply when the transmission Li(

power is lower thar80% a, oR/t+)+@1 q ; W)R? 1! (1)
Fig. 6 and Fig. 7 show that power adjustments always .

allow to reduce energy cost for a given target reliability foff ! j (t 1) = B (bad state), theR! tj! i(t 1) = 1.
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Fig. 5. Reliability-Energy curves w/o power ad- Fig. 6. Reliability-Energy curves with and w/o
justments (PA) under Bernoulli and GE model. power adjustments (PA) under GE model.
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We evaluate the heuristic policy on the network in Fig. #vere considered. Secondly, the performance can be improved
with GE link loss model. Fig. 9 shows that such policies strikié each node can also acquire the one time slot delayed channel
a nice balance between energy and reliability. states from its immediate downstream nodes. Thirdly, it will be
VIII. CONCLUSIONS AND FUTURE WORK ?nteresting to study the.scenario with multiple streams where

' interference and queueing delays also need to be addressed.
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APPENDIX , ,
1= '(R(Z) Rreq) C@ =1= '(R(l) Rreq) cW;

A. Proof of Theorem 5.2

Lemma A.1:R?( ) andC?( ) are non-increasing functions
for 0. C? - C(l) +
Proof: Since 0, increasing results in a smaller R® R
utility of forwarding to neighbors in Eqg. (5), and the optimal
policy will not use more transmissions or higher transmj
power, hence the optimal reliability and the optimal energ
cost cannot become larger. [ ]

and the minimal energy cost is

R R
req 5 (C(Z) cW ):

Suppose the optimal policies to obta{R® ;C®) and
@.c@)are @ and @ respectively. The policy ? that
ndomizes between® and @ with probabilities

Proof of Lemma 5.1: 1 = R(Z) I:zreq and 2 — Rreq R(l)
Proof: At each step of the DP, the number of choices R® RO R®@ RO
are limited by the number of neighboring nodes and channgdhjeves this minimum energy. Thus, it is an optimal policy,
states. We have nite number policies that leads to a nitghich concludes the proof. m

number of optimal reliabilities. Thusk is a nite set.

For any given 1; » 2 g, we haveR?( 1) = R?( ,) with
optimal polices ?( 1) and ?( 1), respectively. Suppose that
C?( 1) 6 C?( ,). Without loss of generality, we let; < .
According to Lemma A.1, we have€?( ;) C?( ») and
since, by assumptiorG?( 1) 6 C?( ,), we haveC?( ;) >
C?( 2). The optimal utility with ; isthenR?( 1) 1 C?( 1).
However if we apply policy ?( »), the utility with ; is
R?(2) 1C?(2)>R7?(1) 1 C?(1),which contradicts
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