I. Hou, V. Borkar, and P. Kumar, A Theory of QoS for Wireless, IEEE INFOCOM 2009, The 28th Conference on Computer Communications, pp.486-494, 2009.
DOI : 10.1109/INFCOM.2009.5061954

A. Willig, M. Kubisch, C. Hoene, and A. Wolisz, Measurements of a wireless link in an industrial environment using an IEEE 802.11-compliant physical layer, IEEE Transactions on Industrial Electronics, vol.49, issue.6, pp.1265-1282, 2002.
DOI : 10.1109/TIE.2002.804974

M. H. Alizai, O. Landsiedel, J. A. Link, S. Götz, and K. Wehrle, Bursty traffic over bursty links, Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys '09, pp.71-84
DOI : 10.1145/1644038.1644046

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Munir, S. Lin, E. Hoque, S. M. Nirjon, J. A. Stankovic et al., Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks, Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN '10, pp.303-314
DOI : 10.1145/1791212.1791248

Z. Zou, P. Soldati, H. Zhang, and M. Johansson, Delay-constrained maximum reliability routing over lossy links, 49th IEEE Conference on Decision and Control (CDC), 2010.
DOI : 10.1109/CDC.2010.5717308

URL : http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-46467

Z. Zou, B. Demirel, and M. Johansson, Minimum-energy packet forwarding policies for guaranteed LQG performance in wireless control systems, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012.
DOI : 10.1109/CDC.2012.6426253

S. Shakkottai and R. Srikant, Scheduling real-time traffic with deadlines over a wireless channel, Proceedings of the 2nd ACM international workshop on Wireless mobile multimedia , WOWMOM '99, pp.13-26, 2002.
DOI : 10.1145/313256.313273

I. Hou and P. Kumar, Real-time communication over unreliable wireless links: a theory and its applications, Wireless Communications, vol.19, issue.1, pp.48-59, 2012.

E. Uysal-biyikoglu, B. Prabhakar, and A. , Energy-efficient packet transmission over a wireless link, IEEE/ACM Transactions on Networking, vol.10, issue.4, pp.487-499, 2002.
DOI : 10.1109/TNET.2002.801419

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Fu, E. Modiano, and J. Tsitsiklis, Optimal transmission scheduling over a fading channel with energy and deadline constraints, IEEE Transactions on Wireless Communications, vol.5, issue.3, pp.630-641, 2006.
DOI : 10.1109/TWC.2006.1611093

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Zafer and E. Modiano, A Calculus Approach to Energy-Efficient Data Transmission With Quality-of-Service Constraints, IEEE/ACM Transactions on Networking, vol.17, issue.3, pp.898-911, 2009.
DOI : 10.1109/TNET.2009.2020831

D. I. Shuman and M. Liu, Opportunistic scheduling with deadline constraints in wireless networks, " in Performance Models and Risk Management in Communications Systems, pp.127-155, 2011.

A. Saifullah, Y. Xu, C. Lu, and Y. Chen, Real-Time Scheduling for WirelessHART Networks, 2010 31st IEEE Real-Time Systems Symposium, 2010.
DOI : 10.1109/RTSS.2010.41

Z. Zou, P. Soldati, H. Zhang, and M. Johansson, Energy-Efficient Deadline-Constrained Maximum Reliability Forwarding in Lossy Networks, IEEE Transactions on Wireless Communications, vol.11, issue.10, 2011.
DOI : 10.1109/TWC.2012.090312.110938

H. S. Wang and N. Moayeri, Finite-state Markov channel-a useful model for radio communication channels, IEEE Transactions on Vehicular Technology, vol.44, issue.1, pp.163-171, 1995.
DOI : 10.1109/25.350282

A. Willig, A new class of packet- and bit-level models for wireless channels, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp.2434-2440, 2002.
DOI : 10.1109/PIMRC.2002.1046581

D. Djonin, A. Karmokar, and V. Bhargava, Joint Rate and Power Adaptation for Type-I Hybrid ARQ Systems Over Correlated Fading Channels Under Different Buffer-Cost Constraints, IEEE Transactions on Vehicular Technology, vol.57, issue.1, pp.421-435, 2008.
DOI : 10.1109/TVT.2007.901876

M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.
DOI : 10.1002/9780470316887

E. Altman, Constrained Markov Decision Processes, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00074109

A. Makowski and A. Shwartz, On constrained optimization of the Klimov network and related Markov decision processes, IEEE Transactions on Automatic Control, vol.38, issue.2, pp.354-359, 1993.
DOI : 10.1109/9.250492

E. N. Gilbert, Capacity of a Burst-Noise Channel, Bell System Technical Journal, vol.39, issue.5, pp.1253-1265, 1960.
DOI : 10.1002/j.1538-7305.1960.tb03959.x

E. O. Elliott, Estimates of Error Rates for Codes on Burst-Noise Channels, Bell System Technical Journal, vol.42, issue.5, pp.1977-1997, 1963.
DOI : 10.1002/j.1538-7305.1963.tb00955.x

Z. Zou and M. Johansson, Minimum-energy packet forwarding over lossy networks under deadline and reliability constraints, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763774

M. Johansson and R. Jntti, Wireless Networking for Control: Technologies and Models, Networked Control Systems, pp.31-74, 2011.
DOI : 10.1007/978-0-85729-033-5_2

A. Lemma, Proof: Since ? ? 0, increasing ? results in a smaller utility of forwarding to neighbors in Eq. (5), and the optimal policy will not use more transmissions or higher transmit power, hence the optimal reliability and the optimal energy cost cannot become larger. Proof of Lemma 5.1: Proof: At each step of the DP, the number of choices are limited by the number of neighboring nodes and channel states. We have finite number policies that leads to a finite number of optimal reliabilities. Thus, R is a finite set. For any given ? 1 , ? 2 ? ? R , we have R (? 1 ) = R (? 2 ) with optimal polices ? (? 1 ) and ? (? 2 ), respectively, Suppose that C (? 1 ) = C (? 2 ). Without loss of generality, we let ? 1 < ? 2 . According to Lemma A.1, we have C (? 1 ) ? C (? 2 ) and since, by assumption, C (? 1 ) = C (? 2 ), we have C (? 1 ) >