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Abstract.

The effect on the MRI signal of water diffusion in biological tissues in the
presence of applied magnetic field gradient pulses can be modeled by a multiple
compartment Bloch-Torrey partial differential equation. We present a method for
the numerical solution of this equation by coupling a standard Cartesian spatial
discretization with an adaptive time discretization. The time discretization is
done using the explicit Runge-Kutta-Chebyshev method, which is more efficient
than the Forward Euler time discretization for diffusive-type problems.

We use this approach to simulate the diffusion MRI signal from the extra-
cylindrical compartment in a tissue model of the brain gray matter consisting
of cylindrical and spherical cells and illustrate the effect of cell membrane
permeability.

1. Introduction

Biological tissue is a heterogeneous medium, consisting of cells of various sizes and
shapes distributed in the extra-cellular space. The cells are separated from each other
and from the extra-cellular compartment by the cell membranes. Diffusion magnetic
resonance imaging (dMRI) is an imaging modality that subjects the tissue to various
magnetic field gradients and gives a measure of the average displacement of water
molecules over a time period on the order of tens of milliseconds.

If the water exchange time between the cells and the extra-cellular space is
long compared to the measured diffusion time, then the cell membranes can be
approximated as impermeable to water passage. In this case, various analytical
and semi-analytical expressions have been obtained for the dMRI signal arising from
inside the cells (Crank 1975, Callaghan 1997, Pfeuffer et al. 1998, Sukstanskii &
Yablonskiy 2002). To generalize these results to the complex cellular geometries of
biological tissues, geometrical models of the tissue as spherical and oriented cylindrical
cells embedded in extra-cellular space were proposed for the brain white matter (Assaf
& Basser 2005, Sen & Basser 2005) and gray matter (Jespersen et al. 2007). The
dMRI signal is then decomposed as the sum of the signals from two different tissue
compartments: with the signal from the cylindrical cells being an analytical expression,
and the signal from the spherical cells plus the extra-cellular space being Gaussian with
an effective diffusion tensor.
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If the cell membranes are permeable, but not so permeable so that the whole tissue
can be treated as one compartment, the analysis of the dMRI signal becomes more
difficult. If the cells are assumed to be of a special shape: spheres, cubes, or cylinders,
and placed on a periodic lattice, then various approximate analytical formulae have
been obtained in the long diffusion time limit (Latour et al. 1994, Hasselman &
Johnson 1987, Torquato & Rintoul 1995). In (Latour et al. 1994, Szafer et al. 1995)
approximate analytical formulae for the effective long time diffusion coefficient were
applied to the dMRI signal.

Because the analytical results and models of the dMRI signal cited above are
subject to certain assumptions such as long diffusion times, it is important to test the
various assumptions against a richer numerical model of the dMRI signal that makes
less stringent assumptions, as a bridge between analytical models and experimental
conditions. Simulation using such numerical models can give new insights that may
lead to more accurate analytical models of tissue water diffusion in the future, for use
in the estimation of tissue parameters from the experimental signal.

In this paper, we focus on the multiple compartment Bloch-Torrey partial
differential equation (PDE), which is a generalization of the Bloch-Torrey PDE
(Torrey 1956) to heterogeneous diffusion spatial domains. This PDE models the water
proton magnetization subject to diffusion-encoding magnetic field gradient pulses and
the dMRI signal is given as the integral of the solution of the PDE at echo time. The
numerical solution of the multiple compartment Bloch-Torrey has been considered in
the past (Hwang et al. 2003, Xu et al. 2007, Harkins et al. 2009, Russell et al. 2012).
The main difference between our approach and those in the previous works is that we
use an efficient adaptive time-stepping method, called the Runge-Kutta Chebyshev
(RKC) method (Sommeijer et al. 1998), that takes time steps commensurate with
the desired accuracy of the time integration at any given point in the simulation.
In the case of moderate desired accuracy, we show that this approach is preferred
to the explicit Forward Euler method used previously in (Hwang et al. 2003, Xu
et al. 2007, Harkins et al. 2009, Russell et al. 2012) where the time step size is limited
by numerical stability.

Finally, we use this numerical method to study a particular model of the dMRI
signal in the brain gray matter given in (Jespersen et al. 2007), where the neurites
are modeled by cylinders. In particular, we examine two assumptions of this model.
The first is that the extra-cylindrical compartment, which includes the extra-cellular
space and non-cylindrical cells such as glial cells (that we model by spheres), can be
considered to undergo Gaussian diffusion. The second is that the signal contribution
from the cylinders can be considered to be in ’no-exchange’ with the signal contribution
from the extra-cylindrical compartment. We study the validity of these assumptions by
simulating the dMRI signal at different diffusion times and varying the cell membrane
permeabilities.

2. Theory

We model the effect on the MRI signal of the water proton magnetization in a biological
tissue in the presence of magnetic field gradient pulses by a multiple compartment
Bloch-Torrey partial differential equation(Torrey 1956, Price et al. 1998). In the most
general case, each compartment corresponds to an individual cell, with an additional
compartment being the extra-cellular space (which can be contiguous or not). We
can also group all cells of a certain type into a single compartment. We denote the
compartments by Ωl, l = 1, 2, 3, · · · , and their associated intrinsic diffusion coefficients
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by Dl. If all the compartmental intrinsic diffusion coefficients are equal, then we
will refer unambiguously to the intrinsic diffusion coefficient, and denote it with a
superscript 0, as D0, where D0 = Dl, l = 1, 2, · · ·

The union of the compartments
⋃

l=1 Ωl comprises the tissue. Supposing the
diffusion-encoding sequence with the time profile f(t), and the diffusion gradient vector
g containing amplitude and direction information of the linear magnetic field gradient,
we use the Bloch Torrey PDE model in each compartment: for r ∈ Ωl, we have

∂M l(r, t|g)

∂t
= −If(t)(γg · r) M l(r, t|g) + ∇ · (Dl∇M l(r, t|g)) − M l(r, t|g)

(T2)
l

, (1)

where γ is the gyromagnetic ratio of the water proton, I is the imaginary unit,
and (T2)

l
gives the T2 relaxation in Ωl. The magnetization in the entire sample is

defined piecewise by the M l’s. The PDE in (1) needs to be supplemented by interface
conditions where Ωl and Ωn come in contact. We denote the interface between Ωl and
Ωn by Γln. One interface condition is the continuity of flux:

Dl
(
∇M l(a, t|g) · nl(a)

)
= −Dn (∇Mn(a, t|g) · nn(a)) ,a ∈ Γln, (2)

where nl(a) and nn(a) are the outward-point normals to Ωl and Ωn at a, so in fact
nl(a) = −nn(a). This ensures the conservation of magnetization. The second interface
condition is:

Dl
(
∇M l(a, t|g) · nl(a)

)
= κln

(
M l(a, t|g) − Mn(a, t|g)

)
,a ∈ Γln.(3)

This incorporates a permeability coefficient κln across Γln which models the ease with
which water crosses the interface. The larger the κln, the easier the passage of water.

For a Pulsed-Gradient Spin Echo (PGSE) (Stejskal & Tanner 1965) sequence,
made of two rectangular pulses (duration δ, separated by a time interval ∆ − δ) the
profile f(t) is:

f(t) =





1, t1 ≤ t ≤ t1 + δ,

−1, t1 + ∆ < t ≤ t1 + ∆ + δ,

0, elsewhere,

(4)

where t1 is the start of the first pulse with t1 + ∆ > TE/2, TE is the echo time when
the signal is measured.

The PDE and interface conditions in (1,2,3) must be supplemented with an initial
condition:

M(r, 0|g) = ρl, r ∈ Ωl, for l = 1, 2, · · · , (5)

where ρl is the water density in Ωl. The total signal attenuation is:

S(g, t) :=

∑
l

∫
r∈Ωl M l(r, t|g) dr∑

l ρ
lV l

, (6)

where V l is the volume of Ωl. In the case of a compartment Ωl that does not exchange
water with the domain outside of Ωl, if we want to study the contribution to the dMRI
signal from this compartment, we define the partial signal attenuation due to Ωl:

Sl(g, t) :=

∫
r∈Ωl M l(r, t|g) dr

ρlV l
, (7)

which will be useful to study the contribution to the total signal from the different
physical compartments. The dMRI signal is measured at echo time t = TE ≥ ∆ + δ.



Numerical simulation of diffusion MRI signals 4

In a homogeneous medium, the signal attenuation is e−D0b, where D0 is the
intrinsic diffusion coefficient, and the b-value is a weighting factor that combines the
effects of the imaging and diffusion gradients (Le Bihan et al. 1986) and which is:

b(g, δ, ∆) = γ2‖g‖2δ2 (∆ − δ/3) (8)

for the PGSE sequence(Stejskal & Tanner 1965). In biological tissue, the signal
attenuation is not a simple decaying exponential in b and the slope of log S(b) at b = 0
is not simply related to the intrinsic diffusion coefficients of the physical compartments.
Theoretical analysis of the signal attenuation as a function of the b-value is difficult
for general gradient pulses and is usually done only in the narrow pulse limit. Let
u(r, t, |r0) be the probability of finding water molecules originally at r0 (t = 0) in
position r at time t, then the signal in the narrow pulse (NP) limit is:

SNP (‖g‖δγ,∆) =

∫

r0∈R3

∫

r∈R3

e−I‖g‖δγ(r−r0)·ugu(r,∆, |r0)dr dr0,(9)

where ug := g/‖g‖ is the normalized gradient direction. We chose the independent
variable in SNP to be ‖g‖δγ because the interior integral over r in (9) is just a one
dimensional Fourier transform, with the Fourier variable being ‖g‖δγ and the spatial
variable being (r−r0)·ug, leading us to the property relating derivatives of the Fourier
transform and the moments of the original function:

I2n d2nSNP

d (‖g‖δγ)
2n

(‖g‖δγ,∆) =

∫

r0∈R3

∫

r∈R3

e−Igδγ(r−r0) ((r − r0) · ug)
2n

u(r,∆|r0)dr dr0.

In a dMRI experiment, the pulse sequence profile f(t) is most often fixed while g is
varied in amplitude, so we can treat ∆ as a constant and use the new independent
variable b = γ2‖g‖2δ2∆ to obtain for SNP (b):

dnSNP

d bn
(0,∆) =

(−1)nn!

(2n)!

1

∆n

∫

r0∈R3

∫

r∈R3

((r − r0) · ug)
2n

u(r,∆|r0)dr dr0. (10)

Thus in the narrow pulse limit, the analytical derivatives of S give the moments of
the probability density function u(r, t, |r0), averaged over all starting positions r0. For
general pulse sequences, (10) is not exact.

The first and second analytical derivatives of S can be related to the Apparent
Diffusion Coefficient and the Apparent Kurtosis(Chabert et al. 2005, Jensen et al.
2005, Frohlich et al. 2006) computed in dMRI:

ADC0 = −d log S

db
(0) = −dS

db
(0), (11)

AK0 = 3
d2 log S

db2
(0)

(
d log S

db
(0)

)−2

= 3
d2S

db2
(0)

(
dS

db
(0)

)−2

− 3, (12)

where we denoted the quantities by ADC0 and AK0, respectively, to emphasize that
the analytical derivatives of log S(b) are taken at b = 0. The ADC0 and the AK0

are interesting because the ADC0 gives an indication of the mean squared distance
traveled by water molecules, averaged over all the compartments, and AK0 gives an
indication of the deviation from Gaussian diffusion. We computed ADC0 and AK0

by fitting log S(b) at a set of b by polynomials in a least squares sense. We start with
a polynomial of degree 1 (where the second derivative is set to 0) and increase the
polynomial degree until the ADC0 of the polynomial fit of degree n and the ADC0

the fit of degree n + 1 are within 1 percent (relative error) of each other and for AK0

we allow 5 percent relative error.
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3. Method

Our approach solves the multiple compartment Bloch-Torrey PDE in three dimensions
by coupling a standard Cartesian spatial discretization that allows permeable
membranes to the Runge-Kutta-Chebyshev (RKC) method (Sommeijer et al. 1998),
which is an adaptive time-stepping method that enforces a user-specified time
integration error tolerance at each spatial discretization point.

3.1. Cartesian spatial discretization

In the spatial discretization, we use a rectangular computational domain C = [0, L]×
[0, L]× [0, L] that contains a configuration of cells and a Cartesian discretization of C.
We use the same transformation on the Bloch-Torrey PDE as (Russell et al. 2012),
where a change of variable is made so that the unknown function to be solved becomes

m(r, t|g) := M(r, t|g)eIγg·r
R

t

0
f(s)ds. (13)

We include here the interface condition at the intersection of two different
compartments because this was not explicitly described in (Russell et al. 2012). We
denote by {x1, · · ·xW } and {y1, · · · , yW } and {z1, · · · , zW } the discretization points in
the x, y, z coordinates, respectively:

xi = ih − h/2, yj = jh − h/2, zk = kh − h/2,

where the h is the side length of one discretization element. The diffusion coefficient
at rijk ≡ (xi, yj , zk) will be denoted by Dijk. We define g := (gx, gy, gz) and

A := (Ax, Ay, Az) := (gx, gy, gz)γ

∫ t

0

f(s)ds.

The discretization formula for m is:

∂mijk(t)

∂t
= −mijk(t)

(T2)ijk

+
1

h2

( (
D∗

i+ 1
2
,jk

(
e−IAxhmi+1,j,k(t) − mijk(t)

)
− D∗

i− 1
2
,jk

(
mijk(t) − eIAxhmi−1,j,k(t)

))

+
(
D∗

i,j+ 1
2
,k

(
e−IAyhmi,j+1,k(t) − mijk(t)

)
− D∗

i,j− 1
2
,k

(
mijk(t) − eIAyhmi,j−1,k(t)

))

+
(
D∗

ij,k+ 1
2

(
e−IAzhmij,k+1(t) − mijk(t)

)
− D∗

ij,k− 1
2

(
mijk(t) − eIAzhmij,k−1(t)

)) )
.

(14)

If the diffusion coefficient is continuous in x at
(
xi+ 1

2
, yj , zk

)
, then D∗

i+ 1
2
,jk

= Dijk.

Otherwise, D∗ is given by

D∗
i+ 1

2
,jk

=
1(

1
2

(
1

D(xi+1)
+ 1

D(xi)

)
+ 1

κi,i+1h

) . (15)

Similarly in the other coordinate directions.
Same as (Xu et al. 2007, Russell et al. 2012), we assume the computational domain

C is extended by periodic copies of itself to handle the diffusion of water molecules
close to the boundary of C. The boundary conditions on m are periodic on the faces
of C, as was shown in (Russell et al. 2012). The spatial discretization in (14) gives rise
to a system of ODEs in time which we will solve by a time stepping method described
in the next section.
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3.2. RKC time stepping method

We solve the system of ODEs in (14) using the Runge-Kutta-Chebyshev (RKC)
method (Sommeijer et al. 1998). We briefly describe this method as it applies to
the solution of

d{mijk(t)}
dt

= F (t, {mijk(t)}),

where F is the discrete Laplacian plus the T2 decay term defined in the right hand
side of (14). The details of the RKC method can be found in the paper referenced
above. To go from {mijk}n ≈ {mijk(tn)} to {mijk}n+1 ≈ {mijk(tn+1)}, the following
s stages are taken:

Y 0 = {mijk}n,

Y 1 = Y 0 + µ1τF (tn, {mijk}n),

Y j = µjY j−1 + νjY j−2 + (1 − µj − νj)Y 0 + µ̃ τF (tn + cj−1τ, Y j−1)

+ γ̃ τF (tn, Y 0), 2 ≤ j ≤ s,

{mijk}n+1 = Y s,

where τ = (tn+1 − tn) and the coefficients are determined by Chebyshev polynomials.
The two important things to note about the RKC method are that the local time

error at tn+1 can be estimated as:

errn+1 =
1

15

(
12({mijk}n − {mijk}n+1) + 6τ

(
F (tn, {mijk}n) + F (tn+1, {mijk}n+1)

) )
,

and that the time step can be made stable no matter how large it is by increasing the
number of stages s. Specifically, the stability criterion is (Sommeijer et al. 1998):

(tn+1 − tn)RKC ≤ ∆tmax
RKC :=

0.653s2

max eig(jac F (t, {mijk}(t)))
≈ 0.653 s2 h2

6D0
. (16)

Essentially, the RKC method chooses a tn+1 where the error term above is smaller
than the user-specified tolerance and the number of stages s is increased so that
tn+1 − tn is a stable step. Because the time step can be enlarged as O(s2) whereas
the computational time only increases as O(s), this means that the RKC method
with larger time steps computes the solution faster than taking many smaller steps
of the Forward Euler method. The number of stages s is typically between 30-50 in
the simulations we have performed. In addition, because of the existence of a three-
term recurrence relation for Chebyshev polynomials. the storage requirement does
not increase with s, it stays constant at 5 times the number of unknowns.

In contrast, for the Forward Euler method, the stability criterion for a spatial
discretization h is

(
tn+1 − tn

)
FE

≤ ∆tmax
FE :=

h2

6D0
. (17)

For moderate accuracy requirements, it is usually much more efficient to increase s
according to (16) to get a time step that is appropriate for the desired accuracy than
being limited by the stability condition of (17).

Because it is difficult to judge the computational time which depends on the
computer on which the simulation was performed, we define a quantity called
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the computational efficiency of the RKC method over the Forward Euler method,
ERKC(tn) at the RKC time point tn, in the following way:

ERKC(tn) =
(tn+1 − tn)/PRKC(tn, tn+1)

∆tmax
FE

, (18)

where PRKC(tn, tn+1) is the number of Laplacian evaluations in advancing from tn to
the next tn+1 using the RKC method. The maximum time step of the Forward Euler
method ∆tmax

FE is given in (17). The number of Laplacian evaluations in advancing
from t to t+∆t using the Forward Euler method is 1. The quantity ERKC(tn) measures
how much faster the RKC method runs compared to the Forward Euler method on
the interval [tn, tn+1].

4. Numerical results and discussion

We implemented the above method as a Fortran90 program. The implementation
of the RKC method comes from the publicly available Fortran code downloaded
from http://www.netlib.org/ode/rkc.f. Our simulations were performed on a
Dell network server (Intel Xeon E5-2667 processor 2.90GHz), running the program
as a serial code.

4.1. A dMRI signal model for brain gray matter

In the brain gray matter, neurons, consisting of a large neuronal body and long
extensions (axons and dendrites), are densely packed. There are also glial cells which
do not have these long extensions. The extra-cellular space accounts for only a small
fraction of the total volume. In (Jespersen et al. 2007), a simplified model of the dMRI
signal was proposed:

S(b) = (1 − vc) e−Decb + vcSc(b), (19)

where vc is the volume fraction of all the diffusion compartments exhibiting cylindrical
symmetry and everything outside of these cylindrical compartments is assumed to
undergo Gaussian diffusion with an effective diffusion coefficient Dec, where the
superscript “ec” stands for extra-cylindrical. The term Sc(b) is the signal due to
the cylindrical compartments under the assumption that they are impermeable with
respect to the extra-cylindrical compartment. In the gray matter, where there is no
a-priori orientation preference for the neurites (axons and dendrites), the cylindrical
compartments consist of the neurites themselves. We are interested in simulating the
dMRI signal from regions of the brain where the neurites can be thought of as oriented
more or less randomly.

4.2. DMRI signal from the extra-cylindrical compartment

First we study the dMRI signal from the compartment consisting of the extra-
cellular space and the spherical cells. We begin by constructing a geometry
consisting of generally oriented cylinders and spheres. In the computational box
C = [−12.5µm, 12.5µm]3, we placed N c = 250 randomly-placed points (uniformly
distributed in C). At each point, we extended an infinite cylinder of radius Rc oriented
in a random direction (drawn uniformly from the unit sphere) and cut the cylinder
off at the boundaries of C. The size of C is chosen for the simulation of the extra-
cylindrical space, where we observed that the effective diffusion coefficient was no more
than 10−3mm2/s, meaning a diffusion distance of 15µm in 40ms. This size ensures
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that most molecules see C no more than twice during 40ms. The cylindrical volume
fraction will be denoted vc. We also distribute Ns = 10 randomly-placed spheres of
radius Rs in C and denote the spherical cells volume fraction by vs. The volume
fraction of the extra-cellular space will be denoted ve = 1 − vc − vs. See Fig 1(a) for
a rendering of the geometry with Rc = 1.25µm, Rs = 4µm, ve = 0.15 and vs = 0.15.
We discretized C by a regular mesh with spatial spacing h. See Fig 1(b) for a cross
section view of the discretized mesh at h = 0.125µm.

(a) Geometry (b) Cross section of mesh

Figure 1. Left: a rendering of the simulation geometry consisting of 250
randomly placed and oriented cylinders and 10 randomly placed spheres (zoomed-
in view). Right: a cross section view of the discretized mesh of the geometry with
h = 0.125µm (zoomed-in view).

At the start of the simulation, we placed water molecules uniformly
in the spherical cells and the extra-cellular space and placed no water
molecules inside the cylinders. We made the cylindrical cells impermeable

so that the water molecules are blocked from entering the cylinders dur-
ing the simulation. We varied the spherical cell permeability: κs =
0m/s(impermeable), 10−5m/s, 10−4m/s,∞(infinitely permeable), and we computed
the ADC0 and AK0 from b-values: 0, 250, 500, 750, 1000, 1250, 1500, 1750, 2000s/mm2.
The RKC tolerance was set to tol = 10−4, after doing a preliminary simulation
for free diffusion where we saw that the relative signal error was less than 0.005 at
b = 2000s/mm2, which is sufficiently accurate for the dMRI application where there
is significant experimental noise in the measured signal.

We chose a constant intrinsic diffusion coefficient D0 = 3 × 10−3mm2/s in
the cells and the extra-cellular space and neglected the T2 relaxation term. The
diffusion-encoding gradient sequence simulated was PGSE, δ = 2.5ms and we varied
∆ = 10ms, 20ms, 30ms, 40ms. We simulated the dMRI signal on two meshes with
h = 0.25µm and h = 0.125µm.

We examine the results for the mesh with h = 0.125µm (marked by stars). In
Fig. 2, we see that at κs = 0m/s (solid line) and κs = 10−5m/s (dash-dots), the
ADC0 decreases from 0.4 × 10−3mm2/s to 0.2 × 10−3mm2/s as the diffusion time is
increased from 10ms to 40ms, while the AK0 goes from 1.8 to 2.7 for κs = 10−5m/s
and from 2 to 3.5 for κs = 0m/s. At κs = 10−4m/s (dashes), the ADC0 decreases
from 0.55 × 10−3mm2/s to 0.45 × 10−3mm2/s, while the AK0 stays around 1.2. At
κs = ∞m/s (dots), the ADC0 decreases from 1.05×10−3mm2/s to 0.85×10−3mm2/s,
while the AK0 stays around 0.6. Thus we see that the AK0 is quite high between 10ms
and 40ms for the different values of the spherical cells permeability. Because the AK0

is so high at finite permeability, this set of simulations put to question the assumption
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that the extra-cellular space and the spherical cells can be considered as one physical
compartment experiencing Gaussian diffusion at the above diffusion times when the
b-values are as high as 2000s/mm2 .

From the same Figure, we also see that when we use a coarser mesh with
h = 0.25µm (marked by circles), the values of ADC0 and AK0 are slightly shifted,
with the ADC0 being lower at the coarser discretization, which is easily explained by
the cylinders having more ’jagged’ surfaces. However, the behavior of the ADC0 and
AK0 as a function of κs and diffusion time is consistent with the results from the finer
mesh.

(a) ADC0 (b) AK0

Figure 2. In the extra-cylindrical compartment comprising of the spherical
cells (vs = 0.15) and the extra-cellular space (ve = 0.15) and where the water
molecules are stopped from entering the cylindrical cells, the ADC0 and the AK0

are computed for the signal arising only from this compartment. Four values of
spherical cell permeability: κs = 0m/s (solid line), κ = 1×10−5m/s (dash-dots),
κ = 1×10−4m/s (dashes), κ = ∞m/s (dots), were simulated on two meshes with
spatial discretization h = 0.25µm (circles) and h = 0.125µm (stars).

To study the effect of Rc and Rs on the dMRI signal, we set κs = 0 and computed
the ADC0 and AK0 in the extra-cellular and the spherical compartments separately.
Making κs = 0 means we do not have to account for the exchange between them and
can focus on the shape of the compartments. We fixed the positions of the cylinders
and spheres as the previous example and simulated three cases:

(i) Rc = 1µm,Rs = 4µm, ve = 0.28, vs = 0.15 (circles in Fig 3),

(ii) Rc = 1µm,Rs = 5µm, ve = 0.25, vs = 0.25 (crosses in Fig 3),

(iii) Rc = 1.25µm,Rs = 4µm, ve = 0.15, vs = 0.15 (stars in Fig 3).

In Fig 3 we show the ADC0 of the extra-cellular compartment (EX), the spheres
compartment (SPH), and the combined extra-cylindrical compartment (EX+SPH).
We see that it is the extra-cellular space that dominates the ADC0 of the combined
compartment in the range of diffusion times 10 − 40ms. When the spheres are
larger, even though the diffusion inside of the spheres is more significant, it does
not compensate for the decreased diffusion in the extra-cellular space. Thus, to study
the cell features beyond the extra-cellular space, one must look beyond the ADC0 and
to information contained in the higher b-values.
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(a) ADC0(EX + SPH) (b) ADC0(EX) (c) ADC0(SPH)

Figure 3. Fixing the positions of the cylinders and spheres as in Fig 2 and
setting κs = 0 to study the ADC0 of the spherical cells and the extra-cellular
space separately as Rc and Rs are varied.
Legend: Circles: Rc = 1µm, Rs = 4µm (ve = 0.28, vs = 0.15). Crosses:
Rc = 1µm, Rs = 5µm (ve = 0.25, vs = 0.25). Stars: Rc = 1.25µm, Rs = 4µm
(ve = 0.15,vs = 0.15).

4.3. Performance of the numerical method

We show the efficiency of the RKC time-stepping method over the Forward Euler
method for the example shown in Fig. 2 for the PGSE sequence, δ = 5ms,∆ = 40ms,
at b = 1000s/mm2, using the two spatial meshes: h = 0.25µm and h = 0.125µm.
The efficiency at a RKC time step [tn, tn+1] is defined as the ratio of the number of
Laplacian evaluations needed by the RKC method to advance the solution from tn to
tn+1 to the number of Laplacian evaluations required by the Forward Euler method
to advance from tn to tn+1. We see in Fig 4(a) that during the time the gradient is
turned off: 2.5ms ≤ t ≤ 40ms, the efficiency of the RKC method varies from 1 to
90, meaning, as a rough estimate, the RKC method is about 45 times faster than the
Forward Euler method during the full simulation. When h = 0.125µm, efficiency of
the RKC method varies from 1 to 40, meaning a rough estimate that RKC is 20 times
faster than the Forward Euler method during the full simulation. The reason for the
difference is that on a coarse spatial mesh, the solution error cannot be reduced by
time refinement. In this case, RKC takes very large time steps, with a large number
of stages. When h is smaller, then the time discretization error can be made lower by
making the time steps smaller. In this case, RKC takes small time steps. Reassuringly,
we see that RKC takes small steps when the gradient suddenly changes value: at
t = 0, 2.5ms and t = 40ms, because the time refinement is needed there. Thus, we see
that in general the RKC method is much faster than the Forward Euler method for
diffusion problems where the time accuracy requirement is much less restrictive than
the numerical stability requirement for Forward Euler. Also, the RKC time steps are
completely adapted to the problem to be solved, refining where the gradient suddenly
changes. The computational time on the mesh h = 0.25µm (1003 unknowns) is around
2 minutes per b-value and it is 30 minutes per b-value on the mesh h = 0.125µm (2003

unknowns) on a Dell network server (Intel Xeon E5-2667 processor 2.90GHz), while
running the program as a serial code.

To simulate the total tissue with cylindrical cells in water exchange with the
the extra-cylindrical compartment, it would be indispensable to create a geometry
of densely packed thin cylinders, where the cylinders do not cross each other. We
were not able to define such a geometry because straight cylinders cross each other
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(a) Efficiency of RKC (b) Signal at ∆ = 10ms (c) ADC0 converges in O(h1)

Figure 4. Left: Efficiency of RKC over the Forward Euler time stepping method
for two discretizations of the extra-cylindrical compartment whose results are
shown in Fig 2. The efficiency of the RKC method is how much faster the RKC
method runs than the Forward Euler method during the course of simulation
(=ERKC defined in (18)). Center and right: study of numerical error associated
with slanted cylinders when using a Cartesian discretization mesh. DMRI signals
were computed by putting water molecules only inside a single impermeable
cylinder oriented 45 degrees with respect to the diffusion gradient direction. “x-
dir”: cylinder oriented parallel to [1,0,0]. “xy-dir”: cylinder oriented parallel to
[1,1,0]. Center: For both cylinder orientations, the log S(b) are straight lines in
b, but with slightly differing slopes. The theoretical value of ADC0 should be

ADCcyl
0

= D0/2 = 1.5 × 10−3mm2/s. Right: ADC0 relative error in percent=

(ADC0 − ADCcyl
0

)/ADCcyl
0

× 100 for “xy-dir” cylinders at ∆ = 10 ms. The
line connecting the four data points is the linear fit of the logarithm of h to the
logarithm of the ADC0 error.

at many places if there are a lot of them in a small volume. This problem of defining
non-crossing cylinders was not important in the previous section where we simulated
the diffusion in the extra-cylindrical compartment because we only needed the space
outside of the cylinders. However, this problem prevents us from simulating the
complete problem of diffusion in a tissue model containing densely packed, randomly

oriented, permeable cylindrical cells.
Instead, here we simply study the discretization errors associated with the ’jagged

surface’ of a slanted cylinder due to a Cartesian mesh when simulating diffusion inside
this cylinder. This may be useful in the future when the problem of non-crossing
cylinders placement has been solved and the simulation of the full tissue model can
be done. For a thin straight impermeable cylinder oriented along the direction o, the

dMRI signal due to water diffusion inside the cylinder is approximately e−(D0 cos2 α)b,
where cos α = g·o/ (‖g‖‖o‖), making the theoretical ADCcyl

0 = D0 cos2 α, AKcyl
0 = 0.

We simulated the PGSE sequence: δ = 2.5ms, ∆ = 10ms. The intrinsic diffusion
coefficient was set to D0 = 3× 10−3mm2/s inside the impermeable cylinder. First we
placed a straight cylinder of length 50µm and radius Rc = 1µm oriented parallel to the
x-axis (o = [1, 0, 0]) and set the gradient direction to be 45 degrees from the x-axis:

g/‖g‖ = [1, 1, 0]/
√

2, making α = π/4 and ADCcyl
0 = D0/2 = 1.5 × 10−3mm2/s.

We placed water molecules in the center of the cylinder, covering 4µm along the
length of the cylinder. The computation box is C = [−25, 25]µm × [−2, 2]µm ×
[−2, 2]µm and the mesh has spatial discretization h = 0.25µm. Next, we rotated
the cylinder to o = [1, 1, 0]/

√
2 and now measured the diffusion in the direction

g/‖g‖ = [1, 0, 0]. The theoretical ADCcyl
0 is the same. We use the computation

box C = [−25, 25]µm × [−25, 25]µm × [−2, 2]µm and three meshes with spatial
discretizations h = 0.25, h = 0.125, h = 0.0625µm. We see in in Figure 4(b) that the
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log S(b) curves are straight lines in b for all the configurations but their slopes differ.
This is numerical error associated with the Cartesian discretization of the slanted
cylinder so we conducted a convergence study of the ADC0 of the “xy-dir” cylinders at
four discretization steps: h = 0.25, 0.125, 0.0625, 0.0315µm, using the computational
domain C = [−25, 25]µm × [−25, 25]µm × [−h/2, h/2]µm. We computed the ADC0

from two b-values: ADC0 = − (log S(250) − log S(0)) /250. We see in Fig 4(c) that

ADC0 converges to the exact value ADCcyl
0 with first order in h.

4.4. Effects of cylindrical cells permeability

If all the cylinders are thin and straight with their orientations uniformly distributed
in a sphere, and are impermeable (as supposed in the model of (Jespersen et al. 2007)),
then it is easy to show that:

Sc(b) ≈
∫ π

φ=0

∫ 2π

θ=0
e−D0 cos φ2b sin φdθdφ

4π
, log Sc(b) = −D0

3
b +

2

45
(D0)2b2,

ADCcyl
0 =

D0

3
, AKcyl

0 =
12

5
.

Now, we use an indirect calculation to show that if the cylindrical cells are permeable
and the permeable signal is fitted to the no-exchange model of (19), then a first order
effect on vc is that vc would be under-estimated, a simulation result that supports
the finding of (Jespersen et al. 2010), in the case where the cylinders model dendrites
(which are permeable to water). We do this indirectly because of we were not able
to do a direct simulation of densely packed randomly oriented non-crossing cylinders
embedded in the extra-cellular space, due to the difficult of defining the positions of
the non-crossing cylinders, as explained previously.

We suppose that, in the absence of cylindrical cell permeability, the signal is given
by (19). We note here that, of course, we have shown in the previous section that
the Gaussian diffusion assumption in the extra-cylindrical compartment may not be
accurate, but in this section we will just assume the Gaussian diffusion because we

want to isolate the effect of the no-exchange assumption.

At relatively low b-values, we can use the following simple approximation of Sc(b):

Sc(b) = e−ADC
cyl
0

b+ 1
6 (ADC

cyl
0 )

2
AK

cyl
0

b2 . (20)

We use (20) rather than the more complicated analytical representation in (Jespersen
et al. 2007) because we just want to calculate a leading order change in the estimated
vc. Thus, it is sufficient to just use two terms in the b-value to approximate Sc(b). We

fix ADCcyl
0 = 1.0×10−3mm2/s and AKcyl

0 = 12/5 to be the values that we analytically
computed above for straight cylinders with orientations that are uniformly distributed
on the unit sphere, where we supposed that the intrinsic D0 = 3.0 × 10−3mm2/s.
In addition, we assume the true volume fraction of the cylindrical cells to be
vc = 0.7 and the effective diffusivity of the combined compartment of the spherical
cells and the extra-cellular space to be Dec = 0.3 × 10−3mm2/s, as simulated for
vs = 0.15, ve = 0.15 previously (see Fig. 2), where we chose the value associated with
the κs = 10−5m/s and ∆ = 40ms.

Given vc, Dec, ADCcyl
0 , AKcyl

0 defined above, we can now compute the ADC0 and
AK0 of the no-exchange model:

ADC0 = (1 − vc)Dec + vcADCcyl
0 , (21)
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AK0 =
3(1 − vc)(Dec)2 + 3vc(ADCcyl

0 )2 + vc(ADCcyl
0 )2AKcyl

0 − 3(ADC0)
2

(ADC0)2
. (22)

Then we create a permeable signal by arguing that at relatively low (but non-negligible)
cylindrical cells permeability, the ADC0 should remain unchanged, while the AK0

should decrease. Thus, we ask the question, if one lowers the AK0 of the no-exchange
model to AK0(1 − ǫ) to account for cylindrical cells permeability while keeping the

ADC0 the same, what happens to the estimated vc and Dec if we fix ADCcyl
0 and

AKcyl
0 at their original values? We note here that of course, it is not possible to write

down the complete permeable signal just from knowing the impermeable signal and the
permeability coefficient κ. What we assume about the permeable signal is just that
the ADC0 stays the same with respect to the impermeable signal and the the AK0 is
decreased by a certain amount compared to the impermeable signal.

We set the two expressions in (21-22) equal to ÃDC0 = ADC0 and ÃK0 =

AK0(1− ǫ), and solve for the ṽc and D̃ec associated with the permeable signal, while

keeping the original ADCcyl
0 and AKcyl

0 . We show the results in Fig 5 for ǫ from 0
to 50 percent. We see that ṽc is under-estimated compared to its true value of 0.7
as ǫ increases. We also see that D̃ec is over-estimated compared to its true value of
Dec = 0.3 × 10−3mm2/s. This is a simple analysis of one factor that may contribute
to the under-estimation of vc due to permeable cylindrical cells observed in (Jespersen
et al. 2010). There of course may also be other contributing factors that we did not
account for in this analysis.

(a) Estimated vc (b) Estimated Dec

Figure 5. The results of fitting ÃDC0 = ADC0 and ÃK0 = AK0(1 − ǫ) of
a permeable signal to the no-exchange model in (19,20). As ǫ, the percentage
reduction of AK0, increases, evc is more and more under-estimated compared to

its true value of 0.7 and gDec is more and more over-estimated compared to its
true value of Dec = 0.3 × 10−3mm2/s.

5. Conclusions

We presented a method for the numerical solution of the multiple compartments
Bloch-Torrey partial differential equation by coupling a standard Cartesian spatial
discretization with an adaptive time discretization using the explicit Runge-Kutta-
Chebyshev method and showed that it is more efficient than the Forward Euler time
discretization. This method can be easily implemented on multiple processors to
shorten the computational time because all interactions between the unknowns are
local and it suffices to divide the computational domain into sub-domains that are
loaded on the different processors.
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We used this method to simulate the extra-cylindrical compartment dMRI signal
in a tissue model of the brain gray matter consisting of cylindrical cells, spherical cells,
and the extra-cellular space, and noted that the signal contribution from the extra-
cylindrical compartment may not be Gaussian at some relevant dMRI diffusion times.
We also computed that, as a first order effect, neglecting cylindrical cells permeability
would result in an under-estimation of the cylindrical cells volume fraction if using a
no-exchange model of the diffusion signal attenuation.
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