J. E. Hopcroft and R. M. Karp, An $n^{5/2} $ Algorithm for Maximum Matchings in Bipartite Graphs, SIAM Journal on Computing, vol.2, issue.4, pp.225-231, 1973.
DOI : 10.1137/0202019

H. Alt, N. Blum, K. Mehlhorn, and M. Paul, Computing a maximum cardinality matching in a bipartite graph in time O(n1.5), Information Processing Letters, vol.37, issue.4
DOI : 10.1016/0020-0190(91)90195-N

A. H. Timmer and J. A. Jess, Exact scheduling strategies based on bipartite graph matching, Proceedings the European Design and Test Conference. ED&TC 1995, pp.42-47, 1995.
DOI : 10.1109/EDTC.1995.470422

G. Lewandowski, Course scheduling: Metrics, models, and methods, 1996.

G. Lewandowski, P. Ojha, J. Rizzo, and A. Walker, An average case approximation bound for course scheduling by greedy bipartite matching, Proceedings of the 4th International Conference on the Practice and Theory of Automated Timetabling, pp.144-147, 2002.

W. Kim and A. , 3-D object recognition using bipartite matching embedded in discrete relaxation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.3, pp.224-251, 1991.
DOI : 10.1109/34.75511

P. E. John, H. Sachs, and M. Zheng, Kekule patterns and Clar patterns in bipartite plane graphs, Journal of Chemical Information and Modeling, vol.35, issue.6, pp.1019-1021, 1995.
DOI : 10.1021/ci00028a010

T. A. Davis and E. Palamadai-natarajan, Algorithm 907, ACM Transactions on Mathematical Software, vol.37, issue.3, pp.1-3617, 2010.
DOI : 10.1145/1824801.1824814

T. A. Davis, Direct Methods for Sparse Linear Systems, 2006.
DOI : 10.1137/1.9780898718881

I. S. Duff, K. Kaya, and B. , Design, implementation, and analysis of maximum transversal algorithms, ACM Transactions on Mathematical Software, vol.38, issue.2, pp.1-1331, 2011.
DOI : 10.1145/2049673.2049677

URL : https://hal.archives-ouvertes.fr/hal-00786548

A. V. Goldberg and R. E. Tarjan, A new approach to the maximum-flow problem, Journal of the ACM, vol.35, issue.4, pp.921-940, 1988.
DOI : 10.1145/48014.61051

D. S. Hochbaum, The Pseudoflow Algorithm and the Pseudoflow-Based Simplex for the Maximum Flow Problem, Proceedings of the 6th International IPCO Conference on Integer Programming and Combinatorial Optimization, pp.325-337, 1998.
DOI : 10.1007/3-540-69346-7_25

B. G. Chandran and D. S. Hochbaum, Practical and theoretical improvements for bipartite matching using the pseudoflow algorithm

T. A. Davis and Y. Hu, The university of Florida sparse matrix collection, ACM Transactions on Mathematical Software, vol.38, issue.1, pp.1-1, 2011.
DOI : 10.1145/2049662.2049663

K. Kaya, J. Langguth, F. Manne, and B. Uçar, Experiments on push-relabelbased maximum cardinality matching algorithms for bipartite graphs, CERFACS, vol.33, p.France, 2011.

K. Kaya, J. Langguth, F. Manne, and B. Uçar, Investigations on pushrelabel based algorithms for the maximum transversal problem, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739360

L. Lovasz and M. D. Plummer, Matching Theory, North-Holland mathematics studies, 1986.

C. Berge, TWO THEOREMS IN GRAPH THEORY, Proceedings of the National Academy of Sciences of the USA, pp.842-844, 1957.
DOI : 10.1073/pnas.43.9.842

B. V. Cherkassky, A. V. Goldberg, P. Martin, J. C. Setubal, and J. Stolfi, Augment or push, Journal of Experimental Algorithmics, vol.3, issue.8, 1998.
DOI : 10.1145/297096.297140

A. Pothen and C. Fan, Computing the block triangular form of a sparse matrix, ACM Transactions on Mathematical Software, vol.16, issue.4, pp.303-324, 1990.
DOI : 10.1145/98267.98287

R. M. Karp and M. Sipser, Maximum matching in sparse random graphs, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981), pp.364-375, 1981.
DOI : 10.1109/SFCS.1981.21

J. Langguth, F. Manne, and P. Sanders, Heuristic initialization for bipartite matching problems, Journal of Experimental Algorithmics, vol.15, pp.1-1, 2010.
DOI : 10.1145/1671970.1712656

J. Magun, Greedy matching algorithms, an experimental study, Journal of Experimental Algorithmics, vol.3, issue.6, 1998.

J. C. Setubal, Sequential and parallel experimental results with bipartite matching algorithms, 1996.

J. Aronson, A. Frieze, and B. G. , Maximum matchings in sparse random graphs: Karp-Sipser revisited, Random Structures and Algorithms, vol.12, issue.2, pp.111-177, 1998.
DOI : 10.1002/(SICI)1098-2418(199803)12:2<111::AID-RSA1>3.0.CO;2-#

R. J. Kennedy and J. , Solving unweighted and weighted bipartite matching problems in theory and practice, pp.96-02908, 1995.

K. Mehlhorn and S. Näher, LEDA: A Platform for Combinatorial and Geometric Computing, 1999.

I. S. Duff, On Algorithms for Obtaining a Maximum Transversal, ACM Transactions on Mathematical Software, vol.7, issue.3, pp.315-330, 1981.
DOI : 10.1145/355958.355963

B. G. Chandran and D. S. Hochbaum, A Computational Study of the Pseudoflow and Push-Relabel Algorithms for the Maximum Flow Problem, Operations Research, vol.57, issue.2, pp.358-376, 2009.
DOI : 10.1287/opre.1080.0572