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Abstract

Many different premium principles have been proposed in the literature. In this paper, we

focus on the Proportional Hazard Premium. Its asymptotic normality has been established in

the literature under suitable conditions which are not fulfilled in case of heavy-tailed distribu-

tions. We thus focus on this framework and propose a reduced-bias approach for the classical

estimators. A small simulation study is proposed to illustrate the efficiency of our approach.

Keywords: Bias correction · Extreme values · Heavy-tailed distribution · Proportional Hazard

Premium · Kernel estimators

1 Introduction

Several premium principles have been introduced in the actuarial literature. We refer to Govaerts

et al. (1984) for various examples and properties of such principles. One of the most commonly

used is the net premium defined for a non-negative loss random variable X with tail distribution

function F := 1 − F as

π := E(X) =

∫ ∞

0

F (x)dx.

In general, premiums are required to be greater than or equal to the net premium E(X) in order to

avoid that the insurer loses money on average. One way to achieve this goal consists in introducing

an increasing concave function g that maps [0, 1] onto [0, 1], such that g(0) = 0 and g(1) = 1 and

to define

π(g, F ) :=

∫ ∞

0

g(F (x))dx.
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An example of such distortion function g is g(x) = x
1
ρ , for ρ ≥ 1. It leads to the well-known

Proportional Hazard Premium (PHP) defined as the distorted expectation of X (see e.g. Wang,

1995, 1996):

π(ρ) :=

∫ ∞

0

(F (x))
1
ρ dx.

The parameter ρ ≥ 1 represents the distortion coefficient or the risk aversion index. It controls

the amount of risk loading in the premium. When the parameter is at its minimal value, ρ = 1,

then π(ρ) is the net premium π, and thus there is no loading. The risk loading increases when ρ

increases. This class of premium has been extensively studied in the literature in particular as it

can also be grounded in economics via Yaari’s (1987) dual theory of expected utility.

For high layer with retention level R > 0, the corresponding PHP can be defined as

πR(ρ) :=

∫ ∞

R

(F (x))
1
ρ dx.

In the case of high-excess loss layers (R → ∞), Necir and Boukhetala (2004), Vandewalle and

Beirlant (2006) and Necir et al. (2007) have introduced and studied different estimators for πR(ρ)

based on samples of heavy-tailed claim amounts.

However, in the no-retention case (R = 0), the technique of estimation of π(ρ) is different from the

case R large and has been only recently studied in the literature by Centeno and Andrade e Silva

(2005) via bootstrap techniques, and Necir and Meraghni (2009) via empirical processes arguments

and extreme value theory. This later approach is also the one used in this paper, but unlike Necir

and Meraghni (2009), we deal with the problem of bias of the proposed estimators.

Using the quantile function of F defined as Q(s) := inf{x > 0 : F (x) ≥ s}, s ∈ (0, 1], we may

rewrite π(ρ) as

π(ρ) = −
∫ 1

0

s1/ρd (Q(1 − s)) . (1)

Let X1, ..., Xn be a sample of independent and identically distributed random variables from F

and let X1,n ≤ ... ≤ Xn,n denote the order statistics. Set Fn the empirical distribution function

and Qn the empirical quantile function defined as Qn(s) = Xj,n for all (j − 1)/n < s ≤ j/n and

j = 1, ..., n with Qn(0) = X1,n.

A natural estimator for π(ρ) can be obtained by replacing Q by Qn and using an integration by

parts:

π̂n(ρ) =

n∑

j=1

((
j

n

)1/ρ

−
(

j − 1

n

)1/ρ
)

Xn−j+1,n. (2)

The main asymptotic properties of π̂n(ρ) have been established by Jones and Zitikis (2003): π̂n(ρ)

is consistent for all ρ ≥ 1 provided that E|X|η < ∞ for η > ρ. It is asymptotically normal if

ρ ∈ [1, 2) and under the same moment condition for X but this time restricted to η > 2ρ/(2 − ρ).

This paper deals with the estimation problem of the PHP within the class of heavy-tailed distri-
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bution, i.e. we assume that

F (x) = x−1/γℓF (x) (3)

where γ > 0 is the extreme value index and ℓF is a slowly varying function at infinity satisfying

ℓF (λx)/ℓF (x) → 1 as x → ∞ for all λ > 0. Moreover we focus our paper on the case γ ∈
(

1
2 , 1
)

and ρ ∈ [1, 1
γ ) in order to ensure that the PHP is finite and since in that case the results of Jones

and Zitikis (2003) cannot be applied, the second moment of X being infinite.

The estimation of γ has been extensively studied in the literature and the most famous estimator

is the Hill (1975) estimator defined as

γ̂H
n,k =

1

k

k∑

j=1

j (log Xn−j+1,n − log Xn−j,n) (4)

for an intermediate sequence k, i.e. a sequence such that k → ∞ and k/n → 0 as n → ∞.

More generally, Csörgő et al. (1985) extended the Hill estimator into a kernel class of estimators

γ̂K
n,k =

1

k

k∑

j=1

K

(
j

k + 1

)
Zj,k, (5)

where K is a kernel integrating to one and Zj,k = j (log Xn−j+1,n − log Xn−j,n). Note that the

Hill estimator corresponds to the particular case where K = K := 1l(0,1).

In this spirit, we propose a kernel-type estimator for the PHP. Indeed, recall that from (1), π(ρ)

can be rewritten as

π(ρ) =

{(
k

n

) 1
ρ

Q

(
1 − k

n

)
−
∫ k/n

0

s1/ρd(Q(1 − s))

}
+

{
1

ρ

∫ 1

k/n

s
1
ρ

−1Q(1 − s)ds

}

=: π
(1)
n,k(ρ) + π

(2)
n,k(ρ).

Thus, π(ρ) can be estimated by

π̃K
n,k(ρ) =

(k/n)1/ρ

1 − ργ̂K
n,k

Xn−k,n +

n∑

j=k+1

((
j

n

)1/ρ

−
(

j − 1

n

)1/ρ
)

Xn−j+1,n (6)

=: π̃
(K,1)
n,k (ρ) + π̃

(2)
n,k(ρ).

Note that to estimate π
(2)
n,k(ρ) we use the same trick as for (2), whereas for π

(1)
n,k(ρ) we use a

Weissman-type estimator for Q: Q̂(1 − s) := Xn−k,n

(
k
n

)γ̂K
n,k s−γ̂K

n,k , s → 0 (see Weissman, 1978).

Asymptotic normality for π̃K
n,k(ρ) is obviously related to the one of γ̂K

n,k. As usual in the extreme

value framework, to prove such type of results, we need a second-order condition on the function

U(x) = Q(1 − 1/x) such as the following:
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Condition (RU). There exist a function A(x) → 0 as x → ∞ of constant sign for large values of

x and a second order parameter ω < 0 such that, for every x > 0,

lim
t→∞

logU(tx) − logU(t) − γ log x

A(t)
=

xω − 1

ω
. (7)

Note that condition (RU) implies that |A| is regularly varying with index ω (see, e.g. Geluk and

de Haan, 1987). It is satisfied for most of the classical distribution functions such as the Pareto,

Burr and Fréchet ones.

The paper is organized as follows. In Section 2, we state the main asymptotic properties of the

kernel estimator γ̂K
n,k from which we deduce the ones of π̃K

n,k(ρ). This result illustrates the fact

that this estimator can exhibit severe bias in many situations as in Figure 1 below: The larger

ω, the larger the bias. To overcome this problem a reduced-bias approach is also proposed. The

efficiency of our method is shown on a small simulation study in Section 3. Section 4 is devoted

to the proofs.
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Figure 1: Median of π̃
K
n,k(1.1) as a function of k based on 500 samples of size 1 000 from a Burr

distribution defined as F (x) = (1 + x− 3ω
2 )1/ω. From the left to the right: ω = −0.75, ω = −1 and

ω = −1.5. The horizontal line represents the true value of the premium.
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2 Main results

We start to establish some results on the estimator γ̂K
n,k in Theorem 1. Then, the asymptotic

normality of the estimator of the PHP π̃K
n,k(ρ) is derived. As it exhibits some bias, we propose a

reduced-bias estimator whose asymptotic normality is also obtained.

2.1 Asymptotic results for the kernel estimator γ̂
K
n,k

To establish the asymptotic normality of the kernel estimator γ̂K
n,k, some classical assumptions

about the kernel are needed:

Condition (K). Let K be a function defined on (0, 1]

(i) K(s) ≥ 0, whenever, 0 < s ≤ 1 and K(1) = 0 ;

(ii) K(·) is differentiable, nonincreasing and right continuous on (0, 1];

(iii) K and K ′ are bounded;

(iv)
∫ 1

0
K(u)du = 1;

(v)
∫ 1

0
u−1/2K(u)du < ∞.

Theorem 1. Let K be a kernel satisfying (K) and assume that the distribution F satisfies (RU).

Then, as k → ∞, k/n → 0 and
√

kA(n/k) = O(1) as n → ∞, we have

√
k

(
γ̂K

n,k − γ − A(n/k)

∫ 1

0

s−ωK(s)ds

)
D
= γ

√
n

k

∫ 1

0

s−1
Bn

(
1 − sk

n

)
d(sK(s)) + oP(1),

where {Bn(s) n ≥ 1} is a sequence of standard Brownian bridges for s ∈ (0, 1).

Note that this result is similar to the ones in Csörgő et al. (1985) and Groeneboom et al. (2003)

but under slightly different assumptions: for instance a Karamata representation is not required

for Q and no assumption is made on the second derivative of the kernel.

Direct computations lead to the following asymptotic normalities.

Corollary 1. Under the assumptions of Theorem 1, we have

√
k

(
γ̂K

n,k − γ − A(n/k)

∫ 1

0

s−ωK(s)ds

)
D−→ N

(
0, γ2

∫ 1

0

K2(s)ds

)
.

In the case where K = K, we find back the classical result on the Hill estimator (see e.g. Theorem 1

of de Haan and Peng, 1998).

Corollary 2. Under the assumptions of Theorem 1 and in the special case where K = K, we have

√
k

(
γ̂

K
n,k − γ − A(n/k)

1 − ω

)
D−→ N

(
0, γ2

)
.
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As a consequence of Corollary 1, the Asymptotic Mean Squared Error (AMSE) of the kernel

estimator γ̂K
n,k is given by

AMSE(γ, A(n/k), ω) =
γ2

k

∫ 1

0

K2(s)ds + A2
(n

k

)(∫ 1

0

s−ωK(s)ds

)2

.

Thus, having an estimator for γ, A(n/k) and ω can lead to a selection criteria for k:

k = arg min AMSE(γ̂, Â(n/k), ω̂),

see also Beirlant et al. (2002), Section 4.

2.2 Asymptotic results for the PHP estimator

Theorem 2. Assume that F satisfies (RU) with γ ∈ (1/2, 1) and suppose that the quantile function

Q associated to F is continuously differentiable on [0,1). If further (K) holds and the sequence k

satisfies k → ∞, k/n → 0 and
√

kA(n/k) = O(1) as n → ∞, then for any 1 ≤ ρ < 1/γ we have

√
k

(k/n)1/ρU(n/k)

(
π̃K

n,k(ρ) − π(ρ)
) D

=
√

kA
(n

k

)
ABK(ρ, γ, ω) + Wn,1 + Wn,2(K) + Wn,3 + oP(1)

where

ABK(ρ, γ, ω) :=
ρ

1 − ργ

(
1

ργ + ρω − 1
+

1

1 − ργ

∫ 1

0

s−ωK(s)ds

)

and 



Wn,1 := − γ

1 − ργ

√
n

k
Bn(1 − k/n)

Wn,2(K) :=
ργ

(1 − ργ)2

√
n

k

∫ 1

0

s−1
Bn(1 − sk/n)d(sK(s))

Wn,3 := −
ρ−1

∫ 1

k/n
s1/ρ−1

Bn(1 − s)Q′(1 − s)ds

(k/n)1/ρ−1/2U(n/k)
.

Corollary 3. Under the assumptions of Theorem 2, if
√

kA(n/k) → λ ∈ R, we have

√
k

(k/n)1/ρU(n/k)

(
π̃K

n,k(ρ) − π(ρ)
) D−→ N (λABK(ρ, γ, ω), AVK(ρ, γ)) ,

where

AVK(ρ, γ) =
γ2ρ

(1 − ργ)2(2γρ + ρ − 2)
+

ρ2γ2

(1 − ργ)4

∫ 1

0

K2(s)ds.

This Corollary 3 generalizes Theorem 2 in Necir and Meraghni (2009) in case λ 6= 0 and when we

use a general kernel instead of K.

In view of these results, π̃K
n,k(ρ) is an estimator of π(ρ) with an asymptotic bias given by

(k/n)
1/ρ

U(n/k)A(n/k)ABK(ρ, γ, ω).
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This quantity depends on the original distribution through the functions U and A, the extreme-

value parameters γ and ω, the distortion parameter ρ, the kernel K and the ratio k/n of upper

order statistics. For a specific kernel, the asymptotic bias and variance can be computed. For

instance, we have the following corollary if K = K.

Corollary 4. Under the assumptions of Corollary 3 and in the special case where K = K, we

have
√

k

(k/n)1/ρU(n/k)

(
π̃

K
n,k(ρ) − π(ρ)

)
D−→ N

(
λ

ρω(ργ + ρ − 1)

(1 − ω)(ργ + ρω − 1)(1 − ργ)2
,

ργ2(ργ + ρ − 1)2

(2ργ + ρ − 2)(1 − ργ)4

)
.

Note that this Corollary 4 corrects a mistake in the asymptotic variance of Theorem 2 in Necir

and Meraghni (2009).

The goal of the next section is to propose a reduced-bias estimator of π(ρ).

2.3 Bias-correction for the PHP estimator

Recall that, from Theorem 2,

π̃K
n,k(ρ) − (k/n)

1/ρ
U(n/k)A(n/k)ABK(ρ, γ, ω) (8)

is an asymptotically unbiased estimator for π(ρ). Note that γ, ω, U(n/k) and A(n/k) are unknown

quantities that we have to estimate.

Using (RU), Feuerverger and Hall (1999) and Beirlant et al (1999, 2002) proposed the following

exponential regression model for the log-spacings of order statistics:

Zj,k ∼
(

γ + A(n/k)

(
j

k + 1

)−ω
)

+ εj,k, 1 ≤ j ≤ k, (9)

where εj,k are zero-centered error terms. If we ignore the term A(n/k) in (9), we retrieve the

Hill-type estimator γ̂H
n,k by taking the mean of the left-hand side of (9). By using a least-squares

approach, (9) can be further exploited to propose a reduced-bias estimator for γ in which ω is

substituted by a consistent estimator ω̂ = ω̂n,k (see for instance Beirlant et al, 2002) or by a

canonical choice, such as ω = −1 (see e.g. Feuerverger and Hall (1999) or Beirlant et al (1999)).

The least squares estimators for γ and A(n/k) are then given by




γ̂LS

n,k (ω̂) =
1

k

k∑

j=1

Zj,k −
ÂLS

n,k(ω̂)

1 − ω̂

ÂLS

n,k(ω̂) =
(1 − 2ω̂)(1 − ω̂)2

ω̂
2

1

k

k∑

j=1



(

j

k + 1

)−ω̂

− 1

1 − ω̂


Zj,k.

(10)

Note that γ̂LS

n,k (ω) can be viewed as the kernel estimator γ̂
(Kω)
n,k , where for 0 < u ≤ 1:

Kω(u) =
1 − ω

ω
K(u) +

(
1 − 1 − ω

ω

)
Kω(u) (11)
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with K(u) = 1l{0<u<1} and Kω(u) = ((1 − ω)/ω)(u−ω − 1)1l{0<u<1}, both kernels satisfying condi-

tion (K). On the contrary Kω does not satisfy statement (i) in (K). We refer to Gomes and Martins

(2004) and Gomes et al. (2007) for other techniques of bias reduction based on the estimation of

the second order parameter.

We are now able to obtain a reduced-bias estimator for the PHP from (8) and using the above

estimators for the different unknown quantities:

π̂K,ω̂
n,k (ρ) = π̃K

n,k(ρ) −
(

k

n

)1/ρ

Xn−k,nÂLS

n,k(ω̂)ABK

(
ρ, γ̂LS

n,k (ω̂), ω̂

)
(12)

=

(
k

n

)1/ρ

Xn−k,n

(
1

1 − ργ̂K
n,k

− ÂLS

n,k(ω̂)ABK

(
ρ, γ̂LS

n,k (ω̂), ω̂

)
)

+
n∑

j=k+1

((
j

n

)1/ρ

−
(

j − 1

n

)1/ρ
)

Xn−j+1,n.

Our next goal is to establish, under suitable assumptions, the asymptotic normality of π̂K,ω̂
n,k (ρ).

Theorem 3. Under the assumptions of Theorem 2, if ω̂ is a consistent estimator for ω, then we

have √
k

(k/n)1/ρU(n/k)

(
π̂K,ω̂

n,k (ρ) − π(ρ)
)

D−→ N
(

0, ÃVK(ρ, γ, ω)
)

with

ÃVK(ρ, γ, ω) = AVK(ρ, γ) + ω−2γ2(1 − 2ω)(1 − ω)2AB2
K(ρ, γ, ω)

+
2ργ2(1 − ω)(1 − 2ω)

ω2(1 − ργ)2

(
1 − (1 − ω)

∫ 1

0

s−ωK(s)ds

)
ABK(ρ, γ, ω).

Let us observe that π̂K,ω̂
n,k has a null asymptotic bias, which was not the case for π̃K

n,k (Corollary 3).

Corollary 5. Under the same assumptions as in Theorem 3 and in the special case where K = K,

we have
√

k

(k/n)1/ρU(n/k)

(
π̂

K,ω̂
n,k (ρ) − π(ρ)

)
D−→ N

(
0,

ργ2(ργ + ρ − 1)2(ργ + ρ − ρω − 1)2

(2ργ + ρ − 2)(ργ + ρω − 1)2(1 − ργ)4

)
.

Now, in the special case where K = Kω, as already mentioned, the estimator γ̂
(Kω)
n,k coincides with

γ̂LS

n,k (ω). The aim of the next corollary is to establish the asymptotic normality of the resulting

PHP estimator π̂Kω,ω̂
n,k , denoted by π̂LS,ω̂

n,k , when the least squares approach is adopted.

Corollary 6. Under the same assumptions as in Theorem 3 and in the special case where K = Kω,

we have √
k

(k/n)1/ρU(n/k)

(
π̂LS,ω̂

n,k (ρ) − π(ρ)
)

D−→ N
(

0, ÃVKω
(ρ, γ, ω)

)

8



with

ÃVKω
(ρ, γ, ω) =

ρ2γ2(1 − ω)2

ω2(1 − ργ)4
+

ργ2

(2ργ + ρ − 2)(1 − ργ)2

+
ρ2γ2(1 − 2ω)(1 − ω) (ργω + 2ρω + ργ − ω − 1)

ω2(1 − ργ)3(ργ + ρω − 1)2
.

3 A small simulation study

In this section, the biased estimator π̃
K
n,k(ρ) and the reduced-bias one π̂LS,ω̂

n,k (ρ) are compared on

a small simulation study. To this aim, 500 samples of size n ∈ {500, 1 000, 1 500} are simulated

from a Burr distribution defined as: F (x) = (1 + x− 3
2

ω)1/ω. The associated extreme-value index is

γ = 2/3 and ω is the second order parameter. The aversion index ρ is set to 1.1 and different values

of ω ∈ {−0.75, −1, −1.5} are considered to assess its impact. The median and median squared

error (MSE) of these estimators are estimated over the 500 replications. The results are displayed

on Figure 2 and Figure 3. It appears on Figure 2 that the closer ω is to 0, the more important is the

bias of π̃
K
n,k(1.1). As a comparison, the bias of π̂LS,ω̂

n,k (1.1) is much smaller and almost independent

of ω. Unsurprisingly, all the biases decrease when n increases. The effect of the bias correction on

the MSE is illustrated on Figure 3. It appears that it can lead to a slight increase of the MSE when

the bias is small, i.e when ω is small. However, the MSE of the reduced-bias estimator π̂LS,ω̂
n,k (1.1)

is almost constant with respect to k, especially when the bias of π̃
K
n,k(1.1) is strong, i.e when ω is

close to 0. This property makes the choice of k easier in practice. Similar results can be obtained

with other distributions.

4 Proofs

Let Y1, ..., Yn be independent and identically distributed random variables from the unit Pareto

distribution G, defined as G(y) = 1 − y−1, y ≥ 1. For each n ≥ 1, let Y1,n ≤ ... ≤ Yn,n be the order

statistics pertaining to Y1, ..., Yn. Clearly Xj,n
D
= U(Yj,n), j = 1, ..., n. In order to use results from

Csörgő et al. (1986), a probability space (Ω,A,P) is constructed carrying a sequence ξ1, ξ2, ... of

independent random variables uniformly distributed on (0, 1) and a sequence of Brownian bridges

Bn(s), 0 ≤ s ≤ 1, n = 1, 2.... The resulting empirical quantile is denoted by

βn(t) =
√

n (t − Vn(t))

where Vn(s) = ξj,n, j−1
n < s ≤ j

n , j = 1, ..., n and Vn(0) = 0.

4.1 Preliminary results

The following lemmas will be instrumental for our needs. Their proofs are postponed to Section 5.
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Lemma 1. Let λn be a sequence of positive numbers such that λn → 0 and nλn → ∞ as n → ∞.

Then ∫ 1/[λn(n+1)]

0

[log(1 − Vn(1 − sλn)) − log(sλn)] d(sK(s)) = oP

(
1√
nλn

)
.

Lemma 2. Let L(·) be an integrable, bounded and positive function on (0, 1) and k a sequence of

positive numbers such that k → ∞ and k/n → 0 as n → ∞. Set λn = k/(n + 1). Then for each

β > 0, we have ∫ 1

0

[(
Vn(sλn)

ξk+1,n

)β

− sβ

]
L(s)ds

P−→ 0, as n → ∞.

The next two lemmas establish asymptotic expansions of the two random terms appearing in (6).

Lemma 3. Under the assumptions of Theorem 2, we have
√

k

(k/n)1/ρU(n/k)

(
π̃

(K,1)
n,k (ρ) − π

(1)
n,k(ρ)

)
D
=

√
kA(n/k)ABK(ρ, γ, ω) + Wn,1 + Wn,2(K) + oP(1).

Lemma 4. Under the assumptions of Theorem 2, we have
√

k

(k/n)1/ρU(n/k)

(
π̃

(2)
n,k(ρ) − π

(2)
n,k(ρ)

)
D
= Wn,3 + oP(1).

To establish Theorem 3, we need to introduce the following additional lemma. It is dedicated to

the asymptotic behaviour of the least-squares estimates of γ and A(n/k).

Lemma 5. Suppose that the distribution F satisfies (RU). If k → ∞, k/n → 0 and
√

kA(n/k) =

O(1) as n → ∞, then, for any consistent estimator ω̂ of ω, we have

√
k
(
γ̂LS

n,k (ω̂) − γ
) D

= γ

√
n

k

∫ 1

0

s−1
B

(
1 − sk

n

)
d(sKω(s)) + oP(1),

and

√
k
(

ÂLS

n,k(ω̂) − A(n/k)
)

D
= γ(1 − ω)

√
n

k

∫ 1

0

s−1
B

(
1 − sk

n

)
d(s(K(s) − Kω(s))) + oP(1).

Last lemma is a direct consequence of Karamata’s theorem (see Proposition 1.5.8 in Bingham et

al., 1987).

Lemma 6. Let ℓ be a slowly varying function at 0. Then, for all α > 1,

lim
s→0

1

s1−αℓ(s)

∫ 1

s

t−αℓ(t)dt =
1

α − 1
.

4.2 Proofs of the main results

Proof of Theorem 1. As already mentioned, our assumptions (K) are similar to those in Csörgő

et al. (1985). In particular our kernel estimator γ̂K
n,k is a particular example of their estimate

a−1
n =

n∑

j=1

1

nλn
K̃

(
j

nλn

)
Zj,k

(∫ 1
λn

0

K̃(u)du

)−1

,

10



where λn = k+1
n , K̃ = K on (0, 1] and 0 otherwise. Consequently, the weak consistency of γ̂K

n,k

yields

γ̂K
n,k =

n∑

j=1

1

nλn
K̃

(
j

nλn

)
Zj,k + OP

(
1

k

)

=

∫ 1/λn

0

log Qn(1 − sλn)d(sK̃(s)) + OP

(
1

k

)

=

∫ 1

0

log Qn(1 − sλn)d(sK(s)) + OP

(
1

k

)

D
=

∫ 1

0

[log Qn(1 − sλn) − log Q(1 − ξk+1,n)] d(sK(s)) + OP

(
1

k

)
,

by Lemma 2(i) in Csörgő et al. (1985). Finally, it follows that

γ̂K
n,k

D
=

∫ 1

0

[log Q(1 − Vn(sλn)) − log Q(1 − ξk+1,n)] d(sK(s)) + OP

(
1

k

)
.

Note that, according to de Haan and Ferreira (2006, page 74), the second-order condition (RU)

implies that for a possibly different function A0, with A0(t) ∼ A(t), t → ∞, and for each δ > 0,

there exists a t0(δ) such that for t ≥ t0(δ), x ≥ 1,

∣∣∣∣
logU(tx) − logU(t) − γ log x

A0(t)
− xω − 1

ω

∣∣∣∣ ≤ δxω+δ. (13)

Thus,

γ̂K
n,k = γ

∫ 1

0

log

(
ξk+1,n

Vn(sλn)

)
d(sK(s)) + A0

(
1

ξk+1,n

)∫ 1

0

(
ξk+1,n

Vn(sλn)

)ω

− 1

ω
d(sK(s))

+oP

(
A0

(
1

ξk+1,n

))∫ 1

0

(
ξk+1,n

Vn(sλn)

)ω+δ

d(sK(s)) + OP

(
1

k

)

=: An1 + An2 + An3 + OP

(
1

k

)

and each term is studied separately.

Term An1: Again, by Lemma 2(i) in Csörgő et al. (1985), we have

An1 = −γ

∫ 1/λn

0

logVn(sλn)d(sK̃(s))
D
= γ − γ

∫ 1

0

[logVn(sλn) − log(sλn)] d(sK(s)),

by Lemma 2(ii) in Csörgő et al. (1985). It follows that

An1
D
= γ − γ

∫ 1

0

[log (1 − Vn(1 − sλn)) − log(sλn)] d(sK(s))

D
= γ − γ

∫ 1

1/[λn(n+1)]

[log (1 − Vn(1 − sλn)) − log(sλn)] d(sK(s)) + oP

(
1√
nλn

)
,

11



from Lemma 1. A straightforward expansion of the integral yields

An1
D
= γ − γ

∫ 1/λn

1/[λn(n+1)]

[
log (1 − Vn(1 − sλn)) − log(sλn) +

Bn(1 − sλn)

sλn
√

n

]
d(sK̃(s))

+γ

∫ 1/λn

1/[λn(n+1)]

Bn(1 − sλn)

sλn
√

n
d(sK̃(s)) + oP

(
1√
nλn

)

D
= γ + γ

∫ 1/λn

1/[λn(n+1)]

Bn(1 − sλn)

sλn
√

n
d(sK̃(s)) + oP

(
1√
nλn

)

by Lemma 12 in Csörgő et al. (1985). Finally, Lemma 8 in Csörgő et al. (1985) entails that

An1
D
= γ + γ

∫ 1

0

Bn(1 − sλn)

sλn
√

n
d(sK(s)) + oP

(
1√
nλn

)
(14)

under our assumptions on k and (K).

Term An2: Let L(s) = d(sK(s))/ds = L
+(s) − L

−(s) where L
±(s) are positive and bounded

functions. We have

An2 =
1

ω
A0

(
1

ξk+1,n

)∫ 1

0

(
Vn(sλn)

ξk+1,n

)−ω

L(s)ds

=
1

ω
A0

(
1

ξk+1,n

){∫ 1

0

(
Vn(sλn)

ξk+1,n

)−ω

L
+(s)ds −

∫ 1

0

(
Vn(sλn)

ξk+1,n

)−ω

L
−(s)ds

}

=
1

ω
A0

(
1

ξk+1,n

)(∫ 1

0

s−ω
L

+(s)ds −
∫ 1

0

s−ω
L

−(s)ds + oP(1)

)
,

by Lemma 2. An integration by parts yields

An2 =
1

ω
A0

(
1

ξk+1,n

)(∫ 1

0

s−ω
L(s)ds + oP(1)

)

= A0

(
1

ξk+1,n

)(∫ 1

0

s−ω K(s) ds + oP(1)

)

= A0

(n

k

)(∫ 1

0

s−ω K(s) ds + oP(1)

)
(15)

since A0 is regularly varying at infinity.

Term An3: Similarly as for the preceding term, by Lemma 2 with β = −ω − δ > 0, and under our

assumptions

An3 = oP

(
A
(n

k

))
. (16)

Finally, combining (14), (15) and (16), Theorem 1 follows.

Proof of Theorem 2. Combining Lemmas 3 and 4, we get

√
k

(k/n)1/ρU(n/k)

(
π̃K

n,k(ρ) − π(ρ)
) D

=
√

kA
(n

k

)
ABK(ρ, γ, ω) + Wn,1 + Wn,2(K) + Wn,3 + oP(1).

Theorem 2 is thus established.

12



Proof of Corollary 3. From Theorem 2, we only have to compute the asymptotic variance of

the limiting process. The computations are tedious but quite direct. We only give below the main

arguments. Remark that

Jα(s)

sαQ(1 − s)
:=

∫ 1

s
tαQ′(1 − t)dt

sαQ(1 − s)
= 1 + α

∫ 1

s
tα−1Q(1 − t) dt

sαQ(1 − s)

= 1 + α

∫ 1

s
tα−γ−1ℓ(t) dt

sα−γℓ(s)
−→ γ

γ − α
if γ > α

by Lemma 6 and using the fact that Q(1− .) is regularly varying at 0 with index −γ under (3), that

is, Q(1 − s) = s−γℓ(s) with ℓ a slowly varying function at 0. This allows us to prove in particular

that ∫ 1

s
J2

1
ρ

−1
(t)dt

sJ2
1
ρ

−1
(s)

−→ ρ

2γρ − 2 + ρ
as s → 0.

Also, from Proposition 1.3.6 in Bingham et al. (1987), it follows that

∀ε > 0, x−εℓ(x) −→ ∞ as x → 0

∀δ > 0, xδℓ(x) −→ 0 as x → 0.

Thus, choosing 0 < δ < −γ + 1
ρ and 0 < ε < γ − 1

ρ + 1
2 entails

0 ≤ s

(
J 1

ρ
(s)

s
1
ρ Q(1 − s)

)2

= s

(
1 +

1

ρ

∫ 1

s
t

1
ρ

−γ−1ℓ(t)dt

s
1
ρ

−γℓ(s)

)2

≤ s
(

1 + Csγ− 1
ρ

−ε
)2

= O
(

s1+2[γ− 1
ρ

−ε]
)

= o(1)

under our assumptions, where C is a suitable constant.

Proof of Theorem 3. According to Theorem 2 and (12), we have

√
k
(

π̂K,ω̂
n,k (ρ) − π(ρ)

)

(k/n)1/ρU(n/k)

D
= Wn,1 + Wn,2(K) + Wn,3 + Wn,4(K) + oP(1), (17)

where

Wn,4(K) :=
√

k

(
A(n/k)ABK(ρ, γ, ω) − ÂLS

n,k(ω̂)ABK

(
ρ, γ̂LS

n,k (ω̂), ω̂

) Xn−k,n

U(n/k)

)

= −ABK(ρ, γ, ω)
√

k
(

ÂLS

n,k(ω̂) − A(n/k)
)

−
√

kÂLS

n,k(ω̂)
(
ABK

(
ρ, γ̂LS

n,k (ω̂), ω̂

)
− ABK(ρ, γ, ω)

)

−
√

kÂLS

n,k(ω̂)ABK

(
ρ, γ̂LS

n,k (ω̂), ω̂

)(Xn−k,n

U(n/k)
− 1

)

D
= −ABK(ρ, γ, ω)γ(1 − ω)

√
n

k

∫ 1

0

s−1
Bn

(
1 − sk

n

)
d(s(K(s) − Kω(s))) + oP(1),

by Lemma 5, using the consistency and the inequality | ex−1
x −1| ≤ e|x| −1 for all x ∈ R. Moreover,

direct computations lead to the desired asymptotic variance which ends the proof of Theorem 3.
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Proof of Corollary 6. Recall that Kω does not satisfy condition (K) but it can be rewritten

as (11) with both K and Kω satisfying (K). So, following the lines of proof of Theorem 3 and

using Lemma 5, Corollary 6 follows.

5 Proofs of auxiliary results

Proof of Lemma 1. Our aim is to study

Qn :=

∫ 1/[λn(n+1)]

0

[log(1 − ξn,n) + log(n + 1)] d(sK(s)) −
∫ 1/[λn(n+1)]

0

log(sλn(n + 1))d(sK(s))

=: Q(1)
n + Q(2)

n .

Recall that limn→∞ P (− log(1 − ξn,n) − log(n + 1) ≤ x) = e−e−x

since an exponential variable is

in the Gumbel domain of attraction. Thus,

√
nλnQ(1)

n =
√

nλn OP(1)

∫ 1/[λn(n+1)]

0

d(sK(s)) = oP(1),

by Lemma 1(i) in Csörgő et al. (1985). Similarly, by Lemmas 1(i) and 2(ii) in Csörgő et al. (1985):

√
nλnQ(2)

n = −
√

nλn

∫ 1/[λn(n+1)]

0

log(sλn(n + 1))d(sK(s))

=
√

nλn

∫ 1/[λn(n+1)]

0

K(s)ds

= oP(1).

This achieves the proof of Lemma 1.

Proof of Lemma 2. It is a direct consequence of Lemma 3.2 in Groeneboom et al (2003).

Proof of Lemma 3. Note that π̃
(K,1)
n,k (ρ) can be rewritten as follows

π̃
(K,1)
n,k (ρ) =

(k/n)1/ρ

1 − ργ̂K
n,k

U (Yn−k,n) .

As a consequence, the following expansion holds:

√
k

(k/n)1/ρU(n/k)

(
π̃

(K,1)
n,k (ρ) − π

(1)
n,k(ρ)

)
=

4∑

j=1

Tn,j ,

where

Tn,1 :=

√
k

1 − ργ̂K
n,k

[
U (Yn−k,n)

U(n/k)
−
(

k

n
Yn−k,n

)γ]
,

Tn,2 :=

√
k

1 − ργ̂K
n,k

[(
k

n
Yn−k,n

)γ

− 1

]
,

Tn,3 :=
ρ

(1 − ργ̂K
n,k)(1 − ργ)

√
k
(
γ̂K

n,k − γ
)

,

Tn,4 :=

√
k

(k/n)1/ρU(n/k)

[
(k/n)1/ρ

1 − ργ
U(n/k) − π

(1)
n,k(ρ)

]
.
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We study each term separately.

Term Tn,1. According to de Haan and Ferreira (2006, p. 60 and Theorem 2.3.9, p. 48), for any

δ > 0, we have

U (Yn−k,n)

U(n/k)
−
(

k

n
Yn−k,n

)γ

= A0

(n

k

){(k

n
Yn−k,n

)γ ( k
n Yn−k,n

)ω − 1

ω
+ oP(1)

(
k

n
Yn−k,n

)γ+ω±δ
}

,

where A0(t) ∼ A(t) as t → ∞.

Thus, since kYn−k,n/n = 1 + oP(1) and γ̂K
n,k

P→ γ, it readily follows that

Tn,1 = oP(1). (18)

Term Tn,2. The equality Yn−k,n
D
= (1 − ξn−k,n)−1 yields

√
k

[(
k

n
Yn−k,n

)γ

− 1

]
D
=

√
k

((n

k
(1 − ξn−k,n)

)−γ

− 1

)

= −γ
√

k
(n

k
(1 − ξn−k,n) − 1

)
(1 + oP(1)) by a Taylor expansion

= −γ

√
n

k
βn

(
1 − k

n

)
(1 + oP(1))

= −γ

√
n

k

(
Bn

(
1 − k

n

)
+ OP(n−ν)

(
k

n

)1/2−ν
)

(1 + oP(1)),

for 0 ≤ ν < 1/2, by Csörgő et al. (1986). Thus, using again that γ̂K
n,k

P→ γ, it follows that

Tn,2
D
= − γ

1 − ργ

√
n

k
Bn

(
1 − k

n

)
(1 + oP(1)) = Wn,1 + oP(1). (19)

Term Tn,3. According to Theorem 1 and by the consistency in probability of γ̂K
n,k, we have

Tn,3
D
=

ρ

(1 − ργ)2

{√
kA
(n

k

)∫ 1

0

s−ωK(s)ds + γ

√
n

k

∫ 1

0

s−1
Bn

(
1 − k

n

)
d(sK(s))

}
+ oP(1)

=
ρ

(1 − ργ)2

√
kA
(n

k

)∫ 1

0

s−ωK(s)ds + Wn,2(K) + oP(1). (20)

Term Tn,4. A change of variables and an integration by parts yield

Tn,4 =
√

k

{
1

1 − ργ
− 1

ρ

∫ ∞

1

x−1−1/ρU(nx/k)

U(n/k)
dx

}

= −1

ρ

√
k

∫ ∞

1

x−1−1/ρ

(
U(nx/k)

U(n/k)
− xγ

)
dx.

Thus, Theorem 2.3.9 in de Haan and Ferreira (2006) entails that, for γ ∈ (1/2, 1) and 1 ≤ ρ < 1/γ,

Tn,4 = −1

ρ

√
kA0

(n

k

)∫ ∞

1

xγ−1−1/ρ xω − 1

ω
dx (1 + o(1))

=
√

kA
(n

k

) ρ

(1 − ργ)(ργ + ρω − 1)
(1 + oP(1)). (21)

Combining (18)-(21), Lemma 3 follows.
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Proof of Lemma 4. The proof follows from the proof of Theorem 2 in Necir and Meraghni

(2009).

Proof of Lemma 5. Note that the first quantity of interest can be expanded as

√
k
(
γ̂LS

n,k (ω̂) − γ
)

=
√

k
(
γ̂LS

n,k (ω̂) − γ̂LS

n,k (ω)
)

+
√

k
(
γ̂LS

n,k (ω) − γ
)

=
√

k
1

k

k∑

j=1

{
K

∗

ω̂

(
j

k + 1

)
− K

∗

ω

(
j

k + 1

)}
Zj,k +

√
k
(
γ̂LS

n,k (ω) − γ
)

where

K
∗

ω (x) =
(1 − ω)2

ω2
− (1 − ω)(1 − 2ω)

ω2
x−ω.

Thus, according to the proof of Theorem 3.2 of Beirlant et al. (2002), we have

√
k
(
γ̂LS

n,k (ω̂) − γ
)

=
√

k
(
γ̂LS

n,k (ω) − γ
)

+ oP(1).

Recall now that γ̂LS

n,k (ω) can be viewed as the kernel estimator γ̂Kω

n,k . Consequently,

γ̂LS

n,k (ω) =
1 − ω

ω
γ̂

K
n,k +

(
1 − 1 − ω

ω

)
γ̂

K
ω

n,k ,

and Theorem 1 yields

√
k

(
γ̂

K
n,k − γ − A(n/k)

1 − ω

)
D
= γ

√
n

k

∫ 1

0

s−1
B

(
1 − sk

n

)
d(sK(s)) + oP(1),

√
k

(
γ̂

K
ω

n,k − γ − A(n/k)

1 − 2ω

)
D
= γ

√
n

k

∫ 1

0

s−1
B

(
1 − sk

n

)
d(sKω(s)) + oP(1).

Combining the last two equalities leads to the first part of Lemma 5.

Focussing on the second part, (10) entails

ÂLS

n,k(ω̂) = (1 − ω̂)
(

γ̂
K
n,k − γ̂LS

n,k (ω̂)
)

.

Thus,

√
k
(

ÂLS

n,k(ω̂) − A(n/k)
)

= (1 − ω̂)
√

k

(
γ̂

K
n,k − γ − A(n/k)

1 − ω

)
− (1 − ω̂)

√
k
(
γ̂LS

n,k (ω̂) − γ
)

+
√

kA
(n

k

)(1 − ω̂

1 − ω
− 1

)

which leads to the desired result.
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Figure 2: Median of π̃
K
n,k(1.1) (dotted line) and π̂LS,ω̂

n,k (1.1) (full line) as a function of k based

on 500 samples of size n = 500 (top), n = 1 000 (middle) and n = 1 500 (bottom) from a Burr

distribution defined as F (x) = (1 + x− 3ω
2 )1/ω. From the left to the right: ω = −0.75, ω = −1 and

ω = −1.5. The horizontal line represents the true value of the premium.
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Figure 3: MSE of π̃
K
n,k(1.1) (dotted line) and π̂LS,ω̂

n,k (1.1) (full line) as a function of k based on 500

samples of size n = 500 (top), n = 1 000 (middle) and n = 1 500 (bottom) from a Burr distribution

defined as F (x) = (1 + x− 3ω
2 )1/ω. From the left to the right: ω = −0.75, ω = −1 and ω = −1.5.
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