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Exploiting Channel Memory for Wireless
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Paolo Giaccone, Emilio Leonardi

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino (Italy)

Abstract—We consider a wireless downlink communica-
tion system with N parallel channels under the following
two assumptions: (1) the channels states can be explicitly
sensed at a limited rate λs, (2) channels are modeled as
i.i.d., ON/OFF Markov chains with stationary distribution
[πOFF ,πON ]. The goal of this paper is to characterize
the fundamental trade-off between system throughput and
channel sensing rate λs in the challenging scenario in
which N → ∞ and jointly πON → 0. To this end, we pro-
pose a simple scheduling algorithm that effectively exploits
channel memory to maximize the successful transmission
probability. We obtain sufficient and necessary conditions
to achieve maximum (in order sense) system throughput.
Finally, we show the performance of our policy under a
non-asymptotic scenario.

I. INTRODUCTION

Downlink communications from a wireless station to
a large set of users are an important aspect that can be
optimized to improve the performance and the scalability
of the whole wireless network. We consider the specific
case in which each user is associated with one channel
and the channel state for each user evolves with the time.
Throughput efficient scheduling algorithms for multi-
user wireless download links are well known, when
a perfect knowledge of channels states is assumed at
all times. Indeed, the seminal work of Tassiulas and
Ephremides [1] and its later extensions [2] permit to
perfectly characterize both the achievable throughput as
well as the optimal throughput schedulers under perfect
channel information.

Realistic scenarios are much more challenging since
either channel state information is not available, or it is
only partially available.

Under the assumption that the state of channels
evolves “slowly” with time, information about the cur-
rent channels state can be inferred by past measurements.
This is the idea exploited by recent papers [3], [4] where
a preliminary investigation on the achievable capacity

have been carried out in absence of channel state in-
formation. In particular both papers [3], [4] consider a
download link with N users, whose associated channels
evolve as independent ON/OFF Markov chains. Packets
can be successfully transmitted only if the corresponding
channels are in the ON state. The transmitter has to select
a channel for transmission at every time so to maximize
the overall throughput.

Unfortunately the problem of perfectly characteriz-
ing the achievable system throughput turns out to be
very difficult. Even under the simplistic assumption that
all transmission queues are constantly backlogged, the
characterization of the achievable capacity requires the
solution of a complex Markov Decision Process over an
infinite number of states. Approximate solutions can be
obtained only in toy cases (such as the case for N = 2)
as shown [4]. In [3], instead, an inner and an outer bound
on the capacity region are derived, but the obtained
bounds are shown to be tight only when the number
of users grows large and the traffic is symmetric.

In this paper we explore a different but tightly re-
lated problem. We characterize the fundamental trade-
off between system throughput and channel sensing rate
in the challenging scenario in which jointly the number
of channels N tends to infinity and the probability of
finding an individual channel in the ON state tends to
zero. Note that the latter assumption makes the problem
harder, indeed, if the probability for the channel to be
in the ON state remains finite, then the number of ON
channels tends to infinity, for N → ∞, and the problem
degenerates. In particular, we assume that our system
is able to probe (equivalently, we say “sense”) channels
at a maximum rate λs, which grows sub-linearly with
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respect to N (i.e.,1 λs = o(N).) to avoid the complexity
of sensing the whole, in order sense, set of channels. We
propose a simple sensing and transmission scheduling
algorithm, which effectively exploits channel memory
to maximize the successful transmission probability. We
obtain the sufficient and necessary conditions to achieve
the maximum (in order sense) system throughput.

II. SYSTEM DESCRIPTION

We consider a wireless station transmitting data to
N users through N independent Markovian channels.
Each channel is modeled as a two-state ON/OFF Markov
chain with transition rates α from OFF to ON state, and
β from ON to OFF state. Hence, the average sojourn
time in state ON is E[TON ] = 1/β and the average
sojourn time in OFF is E[TOFF ] = 1/α. A fixed
non-null data rate µ is achieved when transmitting on
any ON channel; the transmission rate is instead zero
for any OFF channel. The wireless station is provided
with N parallel queues, in which packets are queued
according to their destined user. Queues, for simplicity,
are assumed constantly backlogged. The station senses
channels according to an homogeneous Poisson process
at a rate λs; when a sensing event occurs, one channel
is sampled. The transmission scheduling process occurs
independently from the sensing process, even if it ex-
ploits some information from it. Our goal is to relate the
system performance (i.e., the saturation throughput) to
the following parameters: the sensing rate λs, the number
of users/channels N and the channel dynamical behavior
described by α and β.

A. Channel sensing policy

We consider a sensing policy with a limited storage
available for the channels that have been recently sensed
and found in the ON state. When a new packet must be
transmitted, the scheduling policy access such storage
and select the user/channel to whom/on which transmit.
Note that the transmission policy may select an OFF
channel, since this was sensed ON in the past but it has
changed its state in the meanwhile.

We model the storage of the channels in the following
way. Channels are dynamically divided into two classes:
tracked channels and untracked channels. At time t, a

1As reminder of Landau notation, given two functions f(n) ≥

0 and g(n) ≥ 0: f(n) = o(g(n)) means limn→∞ f(n)/g(n) =
0; f(n) = O(g(n)) means lim supn→∞

f(n)/g(n) = c < ∞;
f(n) = ω(g(n)) is equivalent to g(n) = o(f(n)); f(n) = Ω(g(n))
is equivalent to g(n) = O(f(n)); f(n) = Θ(g(n)) means that both
f(n) = O(g(n)) and g(n) = O(f(n)) hold.

channel is tracked if it was sensed ON during its last
sensing event. Otherwise, a channel is untracked, since it
was sensed OFF last time. We consider a double sensing
process: tracked channels are sensed to check if they
are still ON, whereas untracked channels are sensed to
discover new ON channels. As soon as a tracked channel
is sensed OFF, it becomes untracked. On the contrary, as
soon as an untracked channel is sensed ON, it becomes
tracked.

We denote with k(t) the number of tracked channels at
time t. To limit the maximum complexity of the sensing
algorithm, we set a maximum number of tracked chan-
nels equal to K. Every tracked channel is periodically
sensed at rate λTC = λs/K; while randomly selected
untracked channels are sensed at rate λs − k(t)λTC .

B. Channel selection policy
We assume that the wireless station at the end of

a packet transmission gets immediate feedback of the
state of the corresponding channel. Channel selection
for packet transmissions follows these rules. If the last
packet has been correctly transmitted (i.e. the corre-
sponding channel has not become OFF during the last
packet transmission), at the end of its transmission a new
packet is transmitted on the same channel. Otherwise the
most recently sensed tracked channel is selected for the
packet transmission.

III. ASYMPTOTIC ANALYSIS

In this section we analyze the dynamics of the number
of tracked channels k(t). Observe that such dynamics
are complex to analyze due to the non-memoryless
nature of sensed channels. Indeed, the probability that
either a tracked or untracked channel n is found in ON
state when sensed at time t, depends on τ , defined as the
time elapsed since the last sensing event for the channel
n. Indeed, it can shown that the probability of being ON
for a tracked channel is

p̂ON
tr (τ) = πON + (1− πON )e−(α+β)τ

where πON = α/(α + β) is the stationary distribution
of ON state for each channel. Similarly, the probability
of being OFF for an untracked channel is:

p̂ON
un (τ) = πON − πONe−(α+β)τ

Observe that p̂ON
tr (τ) is a decreasing function of its

argument while p̂ON
un (τ) is increasing.

The dependence of p̂ON
tr and p̂ON

un on their arguments
induces a complex structure in the temporal memory
of k(t), whose evolution in an interval [t, t + ∆t)
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turns out to depend on the current number of tracked
channels, k(t), as well as on the times elapsed since
the last measurements for all channels (both tracked and
untracked ones). Furthermore the process describing the
evolution of k(t) is not reversible, thus, an exact analysis
of k(t) dynamics appears prohibitive.

We analyze the dynamics of k(t) under the simplifying
assumptions that the above mentioned dependencies are
negligible, i.e., every tracked channel is sensed in ON
with some given probability pON

tr which is a fixed
value approximating (in order sense) p̂ON

tr (τ), and every
untracked channel is sensed in ON state with some fixed
probability pON

un , independently from the time elapsed
since the last sensing measurement.

In the latter case the dynamic behavior of k(t) de-
generates into a simple birth-and-death Markov Chain,
whose steady state solution can be expressed as, for
h = 0, . . . ,K:

Pr{k(t) = h} =
(

λTC pON
un

λTC(1− pON
tr )

)h h
∏

j=1

(K − j)

j

K
∑

l=1





(

λTC pON
un

λTC(1− pON
tr )

)l l
∏

j=1

(K − j)

j





(1)

From this simplified model, it is possible to estimate in
order sense the asymptotic behavior of the performance
in our system when N → ∞. One of the key steps in
the reasoning is that it can be shown that the number
of tracked channels can be bounded by below, and
by above, using two simplified systems, with different
parameters, whose performance are the same (in order
sense) than the original one we are investigating. How-
ever, we skip the detailed proof.

A. A challenging scenario
The first asymptotic scenario we consider, is a chal-

lenge scenario in which the number of channels in ON
does not scale with N . This implies that

lim inf
N→∞

NπON > 0 (2)

and
lim inf
N→∞

NπON < ∞ (3)

Observe that (2) expresses the minimal requirement to
have a finite throughput even for the ideal condition
in which the state of every channel is perfectly known
by the scheduler. In this scenario we will evaluate the
minimum sensing rate that guarantees a non vanishing

throughput, exploiting channel memory. This minimum
channel rate will critically come to depend on the
channel persistence β−1. In general we are interested
to the case in which β → 0, i.e. channel persistence is
very large with respect to packet transmission rate. This
condition is typically met in networks characterized by
marginal mobility.

In the simplified birth-and-death chain model, first, for
tracked channels we set:

pON
tr = λTC

∫

pON
tr (τ)e−λTCτdτ

i.e. pON
tr represents the probability that a sampled tracked

channel is found in the ON state, unconditionally over
the time since the last measurement. Instead, as men-
tioned before, for untracked channels we set pON

un =
πON . This approximation is reasonable when the typical
lag between two successive sensing events at the same
channel is equal or larger than the average cycle time
associated to channel evolution.

Observe that when N → ∞, a necessary condition to
have a non-vanishing throughput in the simplified system
is that:

lim inf
N→∞

Pr{k(t) > 0} > 0

This can be obtained by setting K = Θ(1/(NπON )) =
Θ(1).

Indeed, observe that the probability of successfully
transmitting a new packet at time t, given that k(t) > 0
is, by construction, lower bounded, in order sense, by
pON
tr . In case the last packet transmission was successful,

the next packet is transmitted on the same channel; the
resulting probability that the new packet is successfully
transmitted can be evaluated as the probability that the
tracked channel remains in ON for the whole trans-
mission of the considered new packet. Let po denote
such probability. Typically po ≈ 1 % pON

tr , since the
transmission time of a packet is very short with respect to
the dynamics of the channels, under the limited mobility
considered in this work. In the case the last packet
transmission was not successful, the most recently sensed
tracked channel is selected for packet transmission. In
this case, the transmission of the new packet is successful
if the sampled tracked channel is sampled ON and the
channel remains ON during the packet transmission;
thus, the probability of successful transmission is pON

tr po.
As a conclusion, to sustain a non-vanishing through-

put, it must be pON
tr po > 0. If λTC is sufficiently large,

in particular it is faster than the ON-OFF transition rate
(i.e., λTC = Ω(β)), then

pON
tr > 0
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and the throughput is finite. As a consequence, the
overall sensing rate λs = KλTC must be asymptotically
lower bounded as Ω(β/πON ).

As a summary, we have provided the main insights
for which the following property holds:
Property 1: In the wireless downlink scenario in

which πON → 0 and lim infN→∞NπON > 0, a storage
size K = Θ(1/(NπON )) = Θ(1) and a sensing rate
λs = Ω(β/πON ) are sufficient to obtain a non-vanishing
throughput.

B. A more favorable scenario
Now, we consider the more favorable scenario in

which the average number of ON channels grows to
infinity, i.e.

lim inf
N→∞

NπON → ∞

even if we still assume that the probability of finding a
channel in the ON state vanishes, i.e.,

lim sup
N→∞

πON → 0

Also in this case, we assume that β → 0.
In this case, if the storage is enough large as K =

ω(1/(NπON )) (but still K = o(N)), then we obtain:

lim inf
N→∞

Pr{k(t) > 0} → 1

while

pON
tr = λTC

∫

p̂ON
tr (τ)e−λTCτdτ → 1

iff λTC = ω(β).
As a consequence, also under λTC = ω(β) and K =

ω(1/πON ) the maximum throughput is asymptotically
achieved by our sensing and scheduling policy. Under
the weaker conditions λTC = Ω(β) and K = Ω(1/πON )
the throughput system throughput is also non-vanishing.

IV. NUMERICAL ANALYSIS

Throughout some simulations, we have investigated
the performance of the proposed sensing and trans-
mission schedule policy in a discrete-time system, in
which the state of each channel evolves according to
a discrete-time Markov chain. Our simulated system
is representative of the continuous-time Markov chain
considered in the analytical model.

Similarly to the algorithm described in Sections II-A
and II-B, the wireless station senses in total λs channels
per timeslot according to the following rules: at each
timeslot, the station starts to sense the tracked channels
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Fig. 1. Throughput for N = 1000 users/channels, under πON =
0.01 and different values of channel auto-covariance γ

TABLE I
AUTO-COVARIANCE γ OF THE CHANNEL AND CORRESPONDING

DURATION OF ON AND OFF PERIODS

γ E[TON ] E[TOFF ]
0.10 1.122 111.2
0.30 1.443 142.9
0.50 2.020 200.0
0.70 3.367 333.3
0.90 10.10 1000
0.95 20.2 2000
0.99 101 10000

and then eventually senses other random untracked chan-
nels, until λs channels are sensed. If a channel is sensed
ON, it becomes/remains tracked and its state is stored
in the station. Otherwise, it becomes/remains untracked.
Note that λs is an indicator of the storage requirement
needed to track the channels since, by construction, at
most λs channels are tracked at the same time.

We model the channel memory through the auto-
covariance coefficient of the Markov chain, which is
an indicator of the “persistency” of the state of the
channel. Let ps1,s2 be the transition probability from
state s1 ∈ {ON,OFF} to s2 ∈ {ON,OFF}. It can
be shown [3] that the auto-covariance coefficient γ is
equal to:

γ = E[(S(t) − ES(t))(S(t+ 1)− ES(t+ 1))]

= pON,ON − pOFF,ON

In a typical scenario, γ > 0 since each state is positively
correlated. Note that γ = 0 means that the states are i.i.d.
over the timeslots and the channel state is not persistent;
on the contrary, when γ → 1 the channel state becomes
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Fig. 2. Throughput for N = 10000 users/channels, under πON =
0.001 and different values of channel auto-covariance γ

more and more persistent since transitions between states
are rare. As a reference, Table I reports the values of
average duration of ON and OFF states for the specific
values of γ considered in the following simulations. For
simplicity, we assume the same value of γ for all the
channels.

We have considered two scenarios, with increasing
number of users/channels N while decreasing the prob-
ability πON of being ON for each channel, in order to
keep the average number of ON channels available at
each time equal to the constant value 10. Fig.s 1-2 show
the throughput obtained for different values of sampling
rate λs and different values of channel persistency. In
both figures we added the curves RND corresponding to
a random sampling of λs channels per slot and without
storing any tracked channel. These curves were obtained
by evaluating 1− (1− πON)λs .

For high channel persistency, i.e. higher values of γ,
Fig. 1 shows that our policy achieves high throughput
even if the number of sampled channels is very limited,
being around 1-10% of all the channels, whereas the
average number of channels that are ON at the same time
is just 1% of all the channels. When the channel state
is less persistent, the effect of the storing the tracked
channel is less effective, since the channel states tend
to become i.i.d. and the past history of the channel is
less meaningful. As expected, in the worst case, our
policy approaches the random sampling policy RND for
i.i.d. channels for which storing the tracked channels is
useless.

Fig. 2 shows a similar qualitative behavior for a larger
number of users/channels. Notably, in this scenario the

average number of ON channels is just 0.1% of all the
channels, and some relevant throughput can be obtained
even by sampling only 10 channels per slot (i.e., around
0.1% of all the channels), when the channel persistence
is enough large.

V. CONCLUSIONS

We have investigated a downlink wireless scenario in
which a station communicates with a large number of
users and in which the channels’ states evolve with the
time, and they can be partially probed by the station,
which is provided with some limited sensing capability.
We showed some fundamental tradeoff between the
dynamics of the channels and the sensing rate to achieve
an non-negligible throughput in an asymptotic scenario.
We propose a sensing policy that leverages the channels
persistency to track the best channel candidates for trans-
mission and optimize (in order sense) the throughput.
This result is achieved through a limited storage and
capability for channel tracking.

Finally, we have simulated the performance of our
policy in some scenarios, with a large (but finite) number
of users/channels. Our results highlight the potentials of
our policy also in non-asymptotic scenarios.
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