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Abstract. The steepest-descent method is a well-known and effectivesingle-objective descent
algorithmwhen the gradient of the objective function is known. Here, we propose a particular
generalization of this method to multi-objective optimization by considering the concurrent
minimization ofn smooth criteria{Ji} (i = 1, . . . , n). The novel algorithm is based on the
following observation: consider a finite set of vectors{ui} (ui ∈ R

N , n ≤ N); in the convex
hull of this family, there exists a unique element of minimalnorm, sayω ∈ R

N ; then, the
scalar product ofω with any vector in the convex hull, and in particular, with any ui, is at
least equal to‖ω‖2 ≥ 0. Applying this to the objective-function gradients (ui = ∇Ji), we
conclude that eitherω = 0, and the current design point belongs to the Pareto set, or−ω is
a descent direction common to all objective functions. We propose to construct a fixed-point
iteration in which updates of the elementω are used as successive directions of search. This
method converges to a point on the Pareto set. This result applies to both finite-dimensional
and functional design spaces. Numerical illustrations have been provided in both cases using
either analytical objective functions, or (discretized) functionals in [9] [5]. Here, following
[6], a domain-decomposition framework is used to illustrate the necessity, in a (discretized)
functional setting, to scale the gradients appropriately.
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1 INTRODUCTION

Classically, in multi-objective optimization, several fundamental concepts are introduced:
dominance in efficiencybetween design points,Pareto set, made of non-dominated solutions in
design space, andPareto front, its image in function space [8]. The Pareto front provides the
designer with the system maximum attainable performance. For complex systems, in particular
those governed by partial-differential equations, a computational challenge is to devise algo-
rithms permitting to identify numerically the Pareto set, or the most useful portions of it. In
this respect, certain evolutionary strategies have been adapted to achieve this goal, and appear
to provide the most robust algorithms.NSGA-II [2] is certainly one of the most widely-used
methods for this purpose.

In the context of differentiable optimization, one would expect adequate strategies based on
gradient evaluations to also be capable of capturing Paretofronts, with less generality or robust-
ness, but often far greater cost efficiency. However classical techniques, such as minimizing an
agglomerated criterion, or one criterion at a time under theconstraints of the others, are lim-
ited by hypotheses on the pattern of the Pareto front w.r.t. convexity and, or continuity. The
Multiple-Gradient Descent Algorithm (MGDA ), originally introduced in [3], and again formal-
ized in [5], is based on a very general principle permitting to define at each iteration, adescent
direction common to all criteria. This direction is the support of the minimum-norm element in
the convex hull of the local gradients. The efficacy of the algorithm to identify the Pareto front
has been demonstrated in [9] [5] in a test-case in which the Pareto front was non-convex. The
method was compared in cost efficiency with an evolutionary strategy, and was found to offer
very promising performance.

More recently, a variant,MGDA-II , has been proposed in which the descent direction is cal-
culated by a direct procedure [4], which provides a valuablesimplification of implementation.

Here,MGDAis tested in the fairly different context of a simulation by domain partitioning,
as a technique to match the different interface components concurrently. For this, the very
simple test-case of the finite-difference discretization of the Dirichlet problem over a square is
considered. Full details have been provided in [6]. The study aims at assessing the performance
of MGDAin a discretized functional setting. One of the main teachings is the necessity, here
found imperative, to scale the gradients appropriately.

2 DIRICHLET PROBLEM, DOMAIN PARTITIONING AND MATCHING DEFE CTS

We consider the model problem consisting in solving Laplace’s equation,

−∆u = f (Ω) (1)

over the square
Ω = [−1, 1]× [−1, 1] (2)

subject to homogeneous boundary conditions:

u = 0 (Γ = ∂Ω) (3)

For this, the domainΩ is partitioned in four disjoint sub-domains:


















Ω1 = [0, 1]× [0, 1]

Ω2 = [−1, 0]× [0, 1]

Ω3 = [−1, 0]× [−1, 0]

Ω4 = [0, 1]× [−1, 0]

(4)
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with the following interfaces supported by the coordinate axes:


















γ1 = { 0 ≤ x ≤ 1 ; y = 0 }

γ2 = { x = 0 ; 0 ≤ y ≤ 1}

γ3 = {−1 ≤ x ≤ 0 ; y = 0 }

γ4 = { x = 0 ; − 1 ≤ y ≤ 0 }

(5)

along which the following Dirichlet controls are applied:


















γ1 : u = v1(x)

γ2 : u = v2(y)

γ3 : u = v3(x)

γ4 : u = v4(y)

(6)

(see Fig. 1).

-1 0 1

1

-1

Γ = ∂Ω :
u = 0

γ1 : u = v1(x)γ3 : u = v3(x)

γ2 : u = v2(y)

γ4 : u = v4(y)

Ω1Ω2

Ω4Ω3

x

y

Figure 1: Partition of a square in sub-domains{Ωi}(i=1,...,4) to solve the Dirichlet problem

A first calculation of the compound solution

u = (u1, u2, u3, u4)
t (7)
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(where the superscriptt stands for transposition) is made based on a certain settingof the inter-
face controls:

v = (v1, v2, v3, v4)
t (8)

by solving, possibly in parallel, the partial problems fori = 1, ..., 4:


















−∆ui = f

ui = 0

ui = vi

ui = vi+1

(Ωi)

(Γ ∩ ∂Ωi)

(γi)

(γi+1)

(9)

In the above, and all throughout thereafter, by periodicity, the indexi is understood modulo 4,
i.e. u5 = u1, γ5 = γ1, etc.

Since the interface controls are of Dirichlet type, the resulting compound solutionu is contin-
uous, and its derivative along each interface is also continuous. However, in general, unless the
specified controlsvi’s are equal to the restrictions of the global solution, the normal derivatives
exhibit jump discontinuities,si’s. Here, each interface is supported by a coordinate axis, and
we adopt the following sign convention:on the interfaceγi which is supported by thex (resp.
y) axis fori = 1 and 3 (resp. 2 and 4), the jump,si(x) (resp.si(y)), is defined as the increment
of the partial derivative∂u/∂y (resp.∂u/∂x) asy (resp.x) goes from0− to 0+. Thus:

• overγ1 (0 ≤ x ≤ 1 ; y = 0): s1(x) =
∂u

∂y
(x, 0+)−

∂u

∂y
(x, 0−) =

[

∂u1
∂y

−
∂u4
∂y

]

(x, 0);

• overγ2 (x = 0 ; 0 ≤ y ≤ 1): s2(y) =
∂u

∂x
(0+, y)−

∂u

∂x
(0−, y) =

[

∂u1
∂x

−
∂u2
∂x

]

(0, y);

• overγ3 (−1 ≤ x ≤ 0 ; y = 0): s3(x) =
∂u

∂y
(x, 0+)−

∂u

∂y
(x, 0−) =

[

∂u2
∂y

−
∂u3
∂y

]

(x, 0);

• overγ4 (x = 0 ; − 1 ≤ y ≤ 0): s4(y) =
∂u

∂x
(0+, y)−

∂u

∂x
(0−, y) =

[

∂u4
∂x

−
∂u3
∂x

]

(0, y).

The above local measures of the defect in matching conditions can be associated with global
measures defined as separate functionals defined over the interfaces:

Ji =

∫

γi

1
2
s2i w dγi (10)

that is, explicitly:

J1 =

∫ 1

0

1
2
s1(x)

2 w(x) dx J2 =

∫ 1

0

1
2
s2(y)

2w(y) dy (11)

J3 =

∫ 0

−1

1
2
s3(x)

2w(x) dx J4 =

∫ 0

−1

1
2
s4(y)

2w(y) dy (12)

Here,w(t) (t ∈ [0, 1]) is an optional weighting function, andw(−t) = w(t).
The jumpsi depends on the partial solutionsui−1 and ui, which themselves, depend on

(vi−1, vi) and (vi, vi+1) respectively. Hence, the integralJi depends on all four sub-controls
exceptvi+2. Nevertheless, these four integrals are thereafter considered as functionals ofv.

4
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The coordination problem is to devise a convergent iteration on the controlv to satisfy in the
limit the matching conditions

J1 = J2 = J3 = J4 = 0 (13)

To achieve this, the functional gradients are firstly established using the classical adjoint-equation
approach, and several strategies are proposed and tested numerically.

3 ADJOINT PROBLEMS AND FUNCTIONAL GRADIENTS

A first calculation is made based on the four-component control v = (v1, v2, v3, v4)
t, re-

sulting in the compound solutionu = (u1, u2, u3, u4)
t, and the multi-component criterionJ =

(J1, J2, J3, J4)
t.

Then, one perturbs the controlv of

v′ = (v′1, v
′
2, v

′
3, v

′
4)

t
=

(

δv1(x), δv2(y), δv3(x), δv4(y)
)t

(14)

Consequently, the compound solutionu is perturbed of

u′ = (u′1, u
′
2, u

′
3, u

′
4)

t
=

(

δu1(x, y), δu2(x, y), δu3(x, y), δu4(x, y)
)t

(15)

in whichu′i is the solution of the following linearized system posed on sub-domainΩi:



















∆u′i = 0

u′i = 0

u′i = v′i
u′i = v′i+1

(Ωi)

(Γ ∩ ∂Ωi)

(γi)

(γi+1)

(16)

These state perturbations induce the following functionalperturbations:

J ′
i = δJi =

∫

γi

sis
′
i w dγi (17)

in which s′i = δsi. But:



















































s1s
′
1 =

[

∂u1
∂y

−
∂u4
∂y

] [

∂u′1
∂y

−
∂u′4
∂y

]

(x, 0)

s2s
′
2 =

[

∂u1
∂x

−
∂u2
∂x

] [

∂u′1
∂x

−
∂u′2
∂x

]

(0, y)

s3s
′
3 =

[

∂u2
∂y

−
∂u3
∂y

] [

∂u′2
∂y

−
∂u′3
∂y

]

(x, 0)

s4s
′
4 =

[

∂u4
∂x

−
∂u3
∂x

] [

∂u′4
∂x

−
∂u′3
∂x

]

(0, y)

(18)

We now recall Green’s formula for two functionsφ andψ ∈ H2(̟), for a simply-connected
planar domain̟ with smooth enough boundary. Since

∫∫

̟

φ∆ψ =

∫∫

̟

φ∇.(∇ψ) =

∫

∂̟

φψn −

∫∫

̟

∇φ.∇ψ (19)

5
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where~n is outward unit vector normal to the boundary∂̟, andψn = ∂ψ/∂n the normal
derivative, and symmetrically,

∫∫

̟

ψ∆φ =

∫∫

̟

ψ∇.(∇φ) =

∫

∂̟

ψ φn −

∫∫

̟

∇ψ.∇φ (20)

whereφn = ∂φ/∂n is the normal derivative ofφ, one has:
∫∫

̟

(φ∆ψ − ψ∆φ) =

∫

∂̟

(φψn − ψ φn) (21)

Consider the following eight adjoint systems (two per sub-domain):










∆pi = 0

pi = 0

pi = siw

(Ωi)

(∂Ωi\γi)

(γi)











∆qi = 0

qi = 0

qi = si+1w

(Ωi)

(∂Ωi\γi+1)

(γi+1)

(22)

Then apply Green’s formula, (21), to the eight cases corresponding to

̟ = Ωi (i = 1, 2, 3, 4), φ = pi or qi, ψ = u′i (23)

so that∆φ = ∆ψ = 0 in ̟ giving:
∫

∂Ωi

φψn =

∫

∂Ωi

ψ φn (24)

On the boundary∂̟ = ∂Ωi:

• φ = 0 except forφ = pi = siw alongγi, andφ = qi = si+1w alongγi+1;

• ψ = u′i =











v′i alongγi
v′i+1 alongγi+1

0 alongΓ ∩ Ωi

Hence (24) reduces to:
∫

γi

si u
′
inw =

∫

γi

pin v
′
i +

∫

γi+1

pin v
′
i+1 (25)

for φ = pi, and to:
∫

γi+1

si+1 u
′
inw =

∫

γi

qin v
′
i +

∫

γi+1

qin v
′
i+1 (26)

for φ = qi.
These two equations are particularized to sub-domainsΩi as follows.

Sub-domainΩ1: onγ1: ~n = ~n14 = −~ ; onγ2, ~n = ~n12 = −~ı. Thus (25)-(26) write:


















∫ 1

0

s1(x)

(

−
∂u′1
∂y

(x, 0)

)

w(x) dx =

∫ 1

0

(

−
∂p1
∂y

(x, 0)

)

v′1(x) dx+

∫ 1

0

(

−
∂p1
∂x

(0, y)

)

v′2(y) dy

∫ 1

0

s2(y)

(

−
∂u′1
∂x

(0, y)

)

w(y) dy =

∫ 1

0

(

−
∂q1
∂y

(x, 0)

)

v′1(x) dx+

∫ 1

0

(

−
∂q1
∂x

(0, y)

)

v′2(y) dy

(27)
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Sub-domainΩ2: onγ2: ~n = ~n21 = +~ı; onγ3, ~n = ~n23 = −~ . Thus (25)-(26) write:


















∫ 1

0

s2(y)

(

∂u′2
∂x

(0, y)

)

w(y) dy =

∫ 1

0

(

∂p2
∂x

(0, y)

)

v′2(y) dy +

∫ 0

−1

(

−
∂p2
∂y

(x, 0)

)

v′3(x) dx

∫ 0

−1

s3(x)

(

−
∂u′2
∂y

(x, 0)

)

w(x) dx =

∫ 1

0

(

∂q2
∂x

(0, y)

)

v′2(y) dy +

∫ 0

−1

(

−
∂q2
∂y

(x, 0)

)

v′3(x) dx

(28)

Sub-domainΩ3: onγ3: ~n = ~n32 = +~ ; onγ4, ~n = ~n34 = +~ı. Thus (25)-(26) write:


















∫ 0

−1

s3(x)

(

∂u′3
∂y

(x, 0)

)

w(x) dx =

∫ 0

−1

(

∂p3
∂y

(x, 0)

)

v′3(x) dx+

∫ 0

−1

(

∂p3
∂x

(0, y)

)

v′4(y) dy

∫ 0

−1

s4(y)

(

∂u′3
∂x

(0, y)

)

w(y) dy =

∫ 0

−1

(

∂q3
∂y

(x, 0)

)

v′3(x) dx+

∫ 0

−1

(

∂q3
∂x

(0, y)

)

v′4(y) dy

(29)

Sub-domainΩ4: onγ4: ~n = ~n43 = −~ı; onγ1, ~n = ~n41 = +~ . Thus (25)-(26) write:


















∫ 0

−1

s4(y)

(

−
∂u′4
∂x

(0, y)

)

w(y) dy =

∫ 0

−1

(

−
∂p4
∂x

(0, y)

)

v′4(y) dy +

∫ 1

0

(

∂p4
∂y

(x, 0)

)

v′1(x) dx

∫ 1

0

s1(x)

(

∂u′4
∂y

(x, 0)

)

w(x) dx =

∫ 0

−1

(

−
∂q4
∂x

(0, y)

)

v′4(y) dy +

∫ 1

0

(

∂q4
∂y

(x, 0)

)

v′1(x) dx

(30)
Then, (27)-(30) are injected in (18) and (17) to get:



































































































































J ′
1 =

∫ 1

0

s1(x) s
′
1(x)w(x) dx =

∫ 1

0

s1(x)

[

∂u′1
∂y

−
∂u′4
∂y

]

(x, 0)w(x) dx

=

∫ 1

0

∂(p1 − q4)

∂y
(x, 0) v′1(x) dx+

∫ 1

0

∂p1
∂x

(0, y) v′2(y) dy +

∫ 0

−1

∂q4
∂x

(0, y) v′4(y) dy

J ′
2 =

∫ 1

0

s2(y) s
′
2(y)w(y) dy =

∫ 1

0

s2(y)

[

∂u′1
∂x

−
∂u′2
∂x

]

(0, y)w(y) dy

=

∫ 1

0

∂q1
∂y

(x, 0) v′1(x) dx+

∫ 1

0

∂(q1 − p2)

∂x
(0, y) v′2(y) dy +

∫ 0

−1

∂p2
∂y

(x, 0) v′3(x) dx

J ′
3 =

∫ 0

−1

s3(x) s
′
3(x)w(x) dx =

∫ 0

−1

s3(x)

[

∂u′2
∂y

−
∂u′3
∂y

]

(x, 0)w(x) dx

= −

∫ 1

0

∂q2
∂x

(0, y) v′2(y) dy +

∫ 0

−1

∂(q2 − p3)

∂y
(x, 0) v′3(x) dx−

∫ 0

−1

∂p3
∂x

(0, y) v′4(y) dy

J ′
4 =

∫ 0

−1

s4(y) s
′
4(y)w(y) dy =

∫ 0

−1

s4(y)

[

∂u′4
∂x

−
∂u′3
∂x

]

(0, y)w(y) dy

= −

∫ 1

0

∂p4
∂y

(x, 0) v′1(x) dx−

∫ 0

−1

∂q3
∂y

(x, 0) v′3(x) dx+

∫ 0

−1

∂(p4 − q3)

∂x
(0, y) v′4(y) dy

(31)
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These formulas are of the form:

J ′
i =

4
∑

j=1

∫

γj

Gi,j v
′
j dγj (i = 1, ..., 4) (32)

in which the kernels,{Gi,j}, are partial gradients given in terms of the partial derivatives of the
eight adjoint states{pi, qi}(i=1,...,4).

4 DISCRETIZATION

For purpose of numerical treatment, we assume that each sub-problem is discretized by stan-
dard centered finite-differences over a uniform (sub-)meshof dimensionNX ×NY rectangular
cells. This permits a fast direct inversion by discrete separation of variables:

uh = (ΩX ⊗ ΩY ) (ΛX ⊕ ΛY )
−1 (ΩX ⊗ ΩY ) fh (33)

ΩX andΩY are respectively theNX×NX andNY ×NY orthogonal matrices associated with the
discrete sine transform. For Dirichlet boundary conditions these matrices are also symmetric.
The matricesΛX andΛY are diagonal matrices of the known eigenvalues of the second-order
difference operators inx andy respectively (see [6] for details).

For each sub-domainΩi, derivatives normal to a given interface are calculated by one-sided
second-order finite differences, and tangential derivatives, by central differencing.

The matching-defect integrals are then approximated by thetrapezoidal rule:

J1
.
=
hZ
2

NX−1
∑

j=1

s1
2
,j wj , J2

.
=
hY
2

NY −1
∑

k=1

s2
2
,k wk , J3

.
=
hX
2

NX−1
∑

j=1

s3
2
,j wj , J4

.
=
hY
2

NY −1
∑

k=1

s4
2
,k wk .

(34)
Two adjoint problems are solved on each sub-domainΩi, again by direct inversions, to get

the functionspi andqi whose derivatives are then approximated along interfaces and injected in
(31). Then [6]:

J ′
i

.
=

4
∑

j=1

NZ
∑

k=1

Gi,j .k
vj

′
,k
hZ (i = 1, ..., 4) (35)

The discrete gradient of the criterionJi w.r.t. the nodal values of the controlvj is given by:

∂Ji
∂vj ,k

.
= Gi,j .k

hZ (36)

For each criterionJi, four such discrete gradients are calculated (one per control vj), except that
one of them is equal to 0. These four vectors are assembled in one, thereafter denoted∇Ji, of
dimension2(NX +NY − 2).

Now, knowing (second-order approximations of) the criteria{Ji}(i=1,...4) and their gradients
{∇Ji}(i=1,...,4) w.r.t. the2(NX +NY − 2) nodal controls, we need to set up a strategy to iterate
on these controls to satisfy the matching conditions at convergence.

5 GRADIENT-BASED COORDINATION ITERATIONS

Our main objective is to compare the standard steepest-descent method with theMultiple-
Gradient Descent Algorithm (MGDA ) as potential iterative methods to satisfy the matching
conditions by driving the defect functionals to 0.
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5.1 Conventional steepest-descent method

In the conventional approach, one considers asingle matching defect measure, treating all
interfaces as one:

J =

4
∑

i=1

Ji (37)

The discrete gradient is then simply equal to the sum of the individual contributions of the
interfaces:

∇J =

4
∑

i=1

∇Ji (38)

The above global criterion can then be driven to 0 by the classical steepest-descent method
[1] [7]: at iterationℓ, the controlv is updated proportionally to (the opposite of) the discrete
gradient:

v(ℓ+1) = v(ℓ) − ρℓ∇J(ℓ) (39)

for some appropriate positive step-sizeρℓ (see below), and a new compound solutionu(ℓ+1)

is calculated, the defect-functional and its gradient reevaluated, and so on until a satisfactory
convergence is achieved.

Strictly speaking, in the standard steepest-descent method, once the direction of search is
identified, by the calculation of the gradient∇J(ℓ), the step-sizeρℓ is often defined via a one-
dimensional minimization:

ρℓ = Argminρ j(ρ) ; j(ρ) := J
(

v(ℓ) − ρ∇J(ℓ)
)

(40)

This minimization is usually carried out by a numerical procedure. However here, we know
of an additional information: the targeted value ofJ is known: J = 0. An estimation of the
variation ofJ is given by the differential:

δJ = ∇J(ℓ).δv(ℓ) = −ρℓ
∥

∥∇J(ℓ)
∥

∥

2
(41)

Hence, the step-size expected to diminishJ(ℓ) of the amountδJ = −εJ(ℓ) is estimated to be:

ρℓ =
εJ(ℓ)

‖∇J(ℓ)‖
2 (42)

In particular forε = 1, we get the quasi-Newton method since the employed discretegradient
is only approximately equal to the gradient of the discreteJ.

5.2 Multiple-gradient descent algorithm (MGDA )

In this subsection, we propose an alternative coordinationalgorithm in which the matching
of the sub-solutions is treated as a multi-objective optimization problem, considering that all
defect-functionalsJi’s should be driven to 0 concurrently.

In the Multiple Gradient Descent Algorithm MGDA(see [3] for a detailed definition and
convergence proof), once the individual discrete gradients,

ui = ∇Ji (i = 1, ..., 4) (ui ∈ R
N ) (43)

9
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are known, one considers the convex hullU of these vectors, and identifies its minimum-norm
elementω:















ω = Argminu∈U ‖u‖2

U =

{

u ∈ R
N / u =

4
∑

i=1

αiui ; αi ≥ 0 (∀i) ;
4

∑

i=1

αi = 1

}

(44)

In our problem, the dimensionN is the number of nodal controls:

N = 2(NX +NY − 2) (45)

A special parameterization of the convex hull is proposed tofacilitate the determination of the
elementω by a numerical optimization procedure (see Appendix A).

Then, once the elementω is determined, ifω = 01, the current iterate is, or is treated as Pareto
stationary. But here, the Pareto front is made of only one point corresponding toJi = 0 for all
i. This situation corresponds to full convergence of the coordination algorithm. Otherwise
(ω 6= 0), −ω is a descent direction for all criteria simultaneously. Thus, (39) is replaced by:

v(ℓ+1) = v(ℓ) − ρℓω
(ℓ) (46)

Here again, we propose to adjust the step-sizeρℓ according to (42). However here, it is not
cleara priori that the proper scaling corresponds toε ∼ 1.

6 NUMERICAL EXPERIMENTATION

6.1 Test-case

Let a andb be two adjustable constants, and:






































ψ = (x+ a)2 + (y + b)2 (−1 ≤ x ≤ 1) (−1 ≤ y ≤ 1)

τ =
1

ln(a2 + b2)

φ = τ lnψ

f (x) = 1− x2 f (y) = 1− y2

ue = f (x)f (y)φ

(47)

As a result,φ is a harmonic function:
∆φ = 0 (48)

and this permits us to simplify somewhat the expression of the Laplacian ofue:

∆ue = ∆
(

f (x)f (y)
)

φ+ 2∇
(

f (x)f (y)
)

.∇φ+
(

f (x)f (y)
)

∆φ

= −2
(

f (x)f (y)
)

φ+ 2∇
(

f (x)f (y)
)

.∇φ (49)

= −fe (50)

where

fe = 2
(

f (x)f (y)
)

φ+
8τ

ψ

[

x(x+ a)f (y) + y(y + b)f (x)
]

(51)

1In the numerical implementation, this condition is relaxedto be: ||ω|| < TOL, for a given toleranceTOL.
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Hence, forf = fe, the exact solution of the continuous problem isu = ue.
The constantsa andb have been introduced to destroy the symmetry in the solution. More

specifically, the following settings were made:a = 5
4

andb = 3
4
. The corresponding problem

has been discretized and solved using either one domain to establish a reference, or four to
experiment multi-criterion optimization algorithms.

The single-domain discrete solutionuh is depicted in Fig. 2 as a surface in 3D, and the
corresponding contour map is given more precisely in Fig. 3.
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Figure 2: Single-domain discrete solutionuh
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Figure 3: Single-domain discrete solutionuh; contour
map

6.2 Quasi-Newton steepest descent

In a first series of numerical experiments, the steepest-descent method was applied to drive
to 0 the global criterionJ. After a few trials, it appeared that best convergence was achieved by
settingε to 1 in (42), which corresponds to the quasi-Newton method.

Two experiments are reported presently. They differ in the setting of the initial interface con-
ditions. In the first, thevi’s are initially assigned the restriction to the corresponding interface
of the exact solutionue, which differs from the discrete solution by truncation errors. In this
case, iterative errors are initially very small, which permits the asymptotic convergence to be
assessed. In the second experiment, the controls are initially set to 0 in order to assess the global
convergence.

Asymptotic convergence. The convergence history of the global criterionJ as well as its
individual parts,{Ji}(i=1,...,4) is represented in Fig. 4. The criterionJ, in 20 iterations, goes
from 2.9 × 10−2 to a level below10−4. Note thatJ4 is somewhat smaller in magnitude and
more subject to oscillations.

Global convergence. The convergence history of the global criterionJ as well as its individual
parts,{Ji}(i=1,...,4) is represented in Fig. 5. The criterionJ, in 200 iterations, is reduced by 8
orders of magnitude. The different criteria, apart from small oscillations, converge at essentially
the same rate. In a linear convergence process, this rate is imposed by the most persistent mode,
present in all criteria when the initial condition is arbitrary.

Convergence of the gradients. The evolution of the four gradients{∂J/∂vi}(i=1,...,4) over 200
iterations is given on Fig. 6-Fig. 9. They appear as high-frequency modes. Each one vanishes
asymptotically over the corresponding interface.
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Figure 4: Quasi-Newton steepest descent - convergence
history of criteria (discretized continuous solution im-
posed initially at interfaces)
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Figure 5: Quasi-Newton steepest descent - convergence
history of criteria (zero initial interface conditions)
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Figure 6: Quasi-Newton steepest descent - 200 itera-
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Figure 7: Quasi-Newton steepest descent - 200 itera-
tions of∂J/∂v2
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Figure 8: Quasi-Newton steepest descent - 200 itera-
tions of∂J/∂v3
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Figure 9: Quasi-Newton steepest descent - 200 itera-
tions of∂J/∂v4

Discrete solution. The four-domain discrete solution is found perfectly smooth, in fact even
smoother than the above single-domain discrete solution (Figs. 10 and 11). This is due to a
higher degree of iterative convergence.

6.3 BasicMGDA

Practical determination of the minimum-norm elementω. In the experiments of this sec-
tion, at each iteration, the 3 parametersc1, c2 andc3 of (76) have been discretized uniformly
by step of 0.01, andω was set equal to the vector of minimum norm among the essentially 106

corresponding candidates. The resulting vector was therefore a very coarse approximation of
the actual vectorω.
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Figure 11: Four-domain discrete solutionuh; contour
map

Asymptotic convergence For this experiment, the discretized continuous solution is again
imposed initially at the interfaces. The convergence history of the above basic algorithm is in-
dicated in Fig. 12 for 20 iterations. After some initial adjustment, the trend is towards decaying,
but at a deceiving slow rate.
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Figure 12: BasicMGDA- asymptotic convergence his-
tory of criteria
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Figure 13: MGDAbased on logarithmic gradients -
asymptotic convergence history of criteria

In an attempt to explain this poor convergence, the following observation was made: sup-
pose the gradients of the individual criteria,{∂Ji/∂v}(i=1,...,4), are very different in magnitude.
Remember that in a linear iterative process, unless initialconditions are very special, all quan-
tities converge at the same rate, sayCρ(iter), whereρ is the spectral radius, andC a constant
which depends on the quantity considered. For example, in the previous experiment,J4 itself
was observed to be somewhat smaller than the other criteria,and so was its gradient. Then,
the convex-hull minimum-norm elementω is paradoxically dominated by the gradient of small-
est magnitude, since in the convex combination of the gradients, putting the largest weight on
the smallest has the effect of reducing the norm of the combination. But this is not efficient,
since this gradient corresponds to the already small criterion for which minimization is the least
necessary. This observation has led us to calculate the directionω as the minimum-norm ele-
ment in the convex hull ofnormalized gradients. Here, the normalization was made by scaling
each gradient to the corresponding value of the individual criterion. In other words,logarithmic
gradientswere considered. In fact, that is exactly what Newton’s method does with the global
criterionJ.

The above experiment was then repeated, using logarithmic gradients to determine the vector
ω. The corresponding convergence history is indicated in Fig. 13. This new result is now found
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very similar to the analogous result previously achieved bythe quasi-Newton method (Fig. 4).
The importance of scaling is therefore confirmed.

Global convergence. All interface controlsvi’s are initially set to 0. The resulting conver-
gence history over 200 iterations is indicated in Fig. 14 forthe basic algorithm, and in Fig. 15
for the scaled algorithm based on logarithmic gradients. The first algorithm seems to conver-
gence, but at a very slow rate. The second seems to subject to accidents and to experience a
difficulty to enter the asymptotic convergence phase. The criteria stagnate. This may be caused
by many factors on which current investigation is focused:

• the insufficiently accurate determination ofω;

• the non-optimality of the scaling of gradients;

• the non-optimality of the step-size, the parameterε in (42) being maintained equal to 1
throughout;

• the large dimension of the design space, here 76 (4 interfaces associated with 19 d.o.f.’s).
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Figure 14: BasicMGDA: global convergence
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Figure 15: BasicMGDAbased on logarithmic gradients:
global convergence

6.4 MGDA-II

Recently, a variant,MGDA-II , has been proposed in which the descent direction is calculated
by a direct procedure, which provides a valuable simplification of implementation, as well as
more accurate definition of the direction of search [4]. Thisnew algorithm is now presented
again along with a new variant (MGDA-II b), and tested on the DDM problem.

Basic definition, scaling. In MGDA-II , the possibility to prescribe scales for the gradients,
{Si}(i=1,...,n) (Si > 0 (∀i)) is offered. In the following experiments, at a given iteration, these
scales are either set all equal to 1 (“no scaling prescribed”), or equal to the current values of the
criteria (“prescribed scaling”):

Si = Ji (i = 1, ..., 4) ; (52)

the latter implies that the descent direction is based onlogarithmic gradients. These scales
being supplied by the user, we define the following ”scaled gradients”:

J′i =
∇Ji
Si

(53)
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Assuming that the gradients form a linearly-independent family, an assumption never con-
tradicted in the numerical experiments, a family of orthogonal, but usually not orthonormal
vectors are formed{ui}(i=1,...,n) according to the following:

u1 = J′1 (54)

and, fori = 2, 3, ..., n:

ui =
J′i −

∑

k<i ci,kuk

Ai

(55)

where:

∀k < i : ci,k =

(

J′i, uk
)

(

uk, uk
) (56)

and

Ai =







1−
∑

k<i

ci,k if nonzero

εi otherwise
(57)

for some arbitrary, but smallεi (0 < |εi| ≪ 1).
The minimum-norm element in the convex of the family{ui}(i=1,...,n) is given by:

ω =

n
∑

i=1

αiui (58)

and one finds:

αi =
1

‖ui‖
2∑n

j=1
1

‖uj‖
2

=
1

1 +
∑

j 6=i
‖ui‖

2

‖uj‖
2

< 1 (59)

which confirms thatω does belong to the interior of the convex hull, so that:

∀i : αi ‖ui‖
2 =

λ

2
(a given Lagrange multiplier), (60)

and:

∀k :
(

uk, ω
)

= αk ‖uk‖
2 =

λ

2
= ‖ω‖2 . (61)

Convening thatεi = 0 in the regular case (
∑

k<i ci,k 6= 1), and otherwise by modifying slightly
the definition of the scaling factor to be

S ′
i = (1 + εi)Si , (62)

and redefining the ”scaled gradient” accordingly (J′i = ∇Ji/S
′
i), the following holds:

(

J′i, ω
)

= ‖ω‖2 (∀i) (63)

that is, the same positive constant [4].
As a result of this direct, fast and accurate construction, the vectorω is usually different

from the former definition, except in special cases, as for example, whenn = 2 and the angle
between the two gradients is obtuse. Nevertheless, the newω also provides a descent direction
common to all criteria, scaled essentially as initially prescribed.
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Automatic rescaling: MGDA-II b. The examination of the casen = 2 has led us to propose
a slightly different handling of the scales. Here, one lets

Ai = Si −

i−1
∑

k=1

ci,k (64)

only when this number is strictly-positive. Otherwise, thescaleSi is redefined (“automatic
rescaling”) as follows:

Si =

i−1
∑

k=1

ci,k (65)

and one setsAi = εiSi, for some smallεi.
The result in (63) is still valid, and it now provides an information on gradients that have

been weighted as prescribed wheneverSi >
∑i−1

k=1 ci,k, and otherwise by the procedure itself.
This rescaling procedure is certainly perfectible.

Convergence experiments and discussion.MGDA-II has been tested on the partitioning prob-
lem in the four possible options corresponding to “no scaling prescribed” vs “prescribed scal-
ing”, and “automatic rescale off” vs “on”. InMGDA-II b, when

∑

k<i ci,k was found greater or
equal the prescribedSi (=1 orJi), εi was set to 0.01 (and maintained to 0 otherwise).

A first observation was made: the new procedure for determining ω is much faster, and
MGDA-II seems to be less sensitive to round-off errors.

In Fig. 16 and Fig. 17, the automatic rescale is off, and the effect of scaling alone is eval-
uated. Over the first 200 iterations, the result is about the same. However the scaled version
indicates a trend to convergence acceleration to be confirmed.

In Fig. 18 and Fig. 19, the automatic rescale is on, and the option of prescribed scaling is
off/on. Again a better convergence is achieved when scales are prescribed.

In order to confirm these results, the best option “prescribed scales and automatic rescale”
is compared with the basic method in Fig. 20 and Fig. 21 over 500 iterations. The trends
indicate a linear convergence for the first method, and a seemingly-quadratic convergence for
the second. Compared to the quasi-Newton method of Fig. 5,MGDA-II b is grossly-speaking
twice slower, but it indicates a more definite trend to asymptotic convergence acceleration.

One last remark: in these experiments, we observe that scaling has the effect of making the
convergence curves associated with the different criteriacloser to one another.
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Figure 16:MGDA-II , no scaling prescribed
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Figure 17:MGDA-II , prescribed scaling
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Figure 18:MGDA-II , no scaling prescribed, automatic
rescale
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Figure 19: MGDA-II b, prescribed scaling, automatic
rescale
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Figure 20:MGDA-II , no scaling prescribed, automatic
rescale off, 500 iterations
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Figure 21: MGDA-II b, prescribed scaling, automatic
rescale, 500 iterations

7 CONCLUSION

In this study, various versions of theMultiple-Gradient Descent Algorithm(MGDA) have
been tested numerically over a domain-partitioning problem treated as a multi-objective prob-
lem in which matching defect integrals at the different interfaces are to be minimized concur-
rently, and in fact, all driven to 0.

The major objective of this experimentation was to assess the potential ofMGDAto handle
multi-objective problems in which the finite-dimensional setting was the result of discretization,
thus approaching a more general functional setting. In thisrespect, the demonstration was made.
Indeed convergence was achieved byMGDA. However the quasi-Newton method applied to
the agglomerated criterion was globally found more efficient, but in the most sophisticated
version (MGDA-II b), the algorithm seems to demonstrate a promising asymptotically-quadratic
convergence.

Thus, if the convergence was not always found satisfactory,several observations should tem-
per this somewhat deceiving conclusion, and many promisingdirections of improvement can
be envisaged:

• in the problem under study, the Pareto set was reduced to the single point corresponding
to all criteria equal to 0 associated with the unique solution of the discretized Poisson
problem; this situation is really atypical of standard multi-objective problems; addition-
ally, the criteria to be minimized were not really antagonistic, since they all converged
at almost the same rate with the quasi-Newton method, leaving little possibility of im-
provement from the start; for these two reasonsMGDAhas been tested in a very straining
situation for which it was not devised originally;
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• the large dimension of the design space, here 76 (4 interfaces associated with 19 d.o.f.’s),
was probably a handicap;

• a robust procedure to define the step-size should be devised;in our experiments, the
parameterε was not optimized but maintained equal to 1 throughout;

• the determination ofω in the basic method should be made more accurately by iterative
refinement;

• the scaling of gradients was found important; alternativesto the logarithmic gradients
should be analyzed and rationalized; more generally, preconditioning remains an open
question;

• theMGDA-II variant was found faster and more robust;

• at present, our most sophisticated algorithm,MGDA-II b, also involves an automatic
rescaling procedure; it indicates a definite trend to asymptotic convergence acceleration
(quadratic convergence).
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tion. Comptes rendus - Mathématique, 350(5-6):313–318, March 2012 .
http://dx.doi.org/10.1016/j.crma.2012.03.014.

[6] Jean-Antoine Désidéri. Application of MGDA to domainpartitioning. Research Report
7968, INRIA, May 2012.http://hal.inria.fr/hal-00694039.

[7] Ph. E. Gill, W. Murray, and M. H. Wright.Practical Optimization. Academic Press, New
York London, 1986.

[8] R. Miettinen. Nonlinear Multiobjective Optimization. Kluer Academic Publishers, Boston
London Dordrecht, 1999.

[9] A. Zerbinati, J.-A. Désidéri, and R. Duvigneau. Comparison between MGDA and PAES
for Multi-Objective Optimization. Research Report 7667, INRIA, June 2011 .
http://hal.inria.fr/inria-00605423.

18

http://en.wikipedia.org/wiki/Gradient_descent
http://hal.inria.fr/inria-00389811
http://hal.inria.fr/hal-00685762
http://dx.doi.org/10.1016/j.crma.2012.03.014
http://hal.inria.fr/hal-00694039
http://hal.inria.fr/inria-00605423


Jean-Antoine Désidéri

A GENERALITIES ABOUT CONVEX HULLS AND PARAMETERIZATION

Notations






















u =

n
∑

i=1

αiui ; {ui}(i=1,...,n) : given family of vectors inRN

constraints:∀i : αi ≥ 0 ;
n

∑

i=1

αi = 1 ; n ≤ N

(66)

Parameterization - The convex hull may parameterized by identifying the set of allowable
coefficients{αi}(i=1,...,n). To satisfy the positivity condition automatically, one lets:

αi = σ2
i (i = 1, ..., n) (67)

Then, the equality constraint
n

∑

i=1

αi =
n

∑

i=1

σ2
i = 1 (68)

states that
σ = (σ1, σ2, ..., σn) ∈ Sn (69)

whereSn is the unit sphere ofRn, and precisely notRN . This sphere is easily parameterized
using trigonometric functions ofn− 1 independent arcsφ1, φ2, ..., φn−1:



































σ1 = cosφ1 . cosφ2 . cosφ3 . ... . cosφn−1

σ2 = sinφ1 . cosφ2 . cosφ3 . ... . cosφn−1

σ3 = 1 . sinφ2 . cosφ3 . ... . cosφn−1
...

...
σn−1 = 1 . 1 . ... . sinφn−2 . cosφn−1

σn = 1 . 1 . ... . 1 . sin φn−1

(70)

that is:

σi = sin φi−1.

n−1
∏

j=i

cosφj (71)

with φ0 = π
2
. It is sufficient to consider the portion of the sphere corresponding toφi ∈ [0, π

2
]

for all i ≥ 1 since the sign of theσi’s makes no difference.
The usage of trigonometric functions is not really necessary, since one can let:

ci = cos2 φi (i = 1, ..., n) (72)

and get:


















































α1 = c1 . c2 . c3 . ... . cn−1

α2 = (1− c1) . c2 . c3 . ... . cn−1

α3 = 1 . (1− c2) . c3 . ... . cn−1

...
...

αn−1 = 1 . 1 . ... . (1− cn−2) . cn−1

αn = 1 . 1 . ... . 1 . (1− cn−1)

(73)
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that is:

αi = (1− ci−1) .
n−1
∏

j=i

cj (74)

with c0 = 0, andci ∈ [0, 1] for all i ≥ 1.
In this way, the constraints on the coefficients{αi} have been replaced by the bounds 0

and 1 on the new parameters{ci}, independently of one another. However, the criterion to be
minimized,

‖u‖2 =
n

∑

i=1

n
∑

j=1

αiαj (ui, uj) (75)

is now a polynomial of possibly large degree, namely2(n− 1), of the new parameters{ci}.
In the particular case of the coordination of 4 sub-domains by MGDA, and independently of

the degree of refinement of the spatial discretization controlled by the integersNX andNY , n =
4, and once the 10 scalar products(ui, uj) (i, j = 1, ..., 4) calculated, the determination of the
minimum-norm elementω is equivalent to minimizing a 6th-degree polynomial of(c1, c2, c3)
in theR3 unit cube (limits included):



















α1 = c1c2c3

α2 = (1− c1)c2c3

α3 = (1− c2)c3

α4 = (1− c3)

(76)
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