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Abstract. The steepest-descent method is a well-known and effsatigie-objective descent
algorithmwhen the gradient of the objective function is known. Herpwopose a particular
generalization of this method to multi-objective optiniiza by considering the concurrent
minimization ofn smooth criteria{J;} (: = 1,...,n). The novel algorithm is based on the
following observation: consider a finite set of vectéis} (u; € RY, n < N); in the convex
hull of this family, there exists a unique element of minimaim, sayw € RY; then, the
scalar product ofw with any vector in the convex hull, and in particular, withyam;, is at
least equal tojw||®> > 0. Applying this to the objective-function gradients (= V.J;), we
conclude that eitheww = 0, and the current design point belongs to the Pareto set-oris

a descent direction common to all objective functions. Vdg@se to construct a fixed-point
iteration in which updates of the elementare used as successive directions of search. This
method converges to a point on the Pareto set. This resuliespio both finite-dimensional
and functional design spaces. Numerical illustrationsénaeen provided in both cases using
either analytical objective functions, or (discretizedpétionals in [9] [5]. Here, following
[6], a domain-decomposition framework is used to illustréihe necessity, in a (discretized)
functional setting, to scale the gradients appropriately.
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1 INTRODUCTION

Classically, in multi-objective optimization, severahflamental concepts are introduced:
dominance in efficiendyetween design pointBareto setmade of non-dominated solutions in
design space, andareto fronf its image in function space![8]. The Pareto front provides t
designer with the system maximum attainable performanaecédmplex systems, in particular
those governed by partial-differential equations, a caiapenal challenge is to devise algo-
rithms permitting to identify numerically the Pareto sattlee most useful portions of it. In
this respect, certain evolutionary strategies have beaptad to achieve this goal, and appear
to provide the most robust algorithmBISGA-II1[2] is certainly one of the most widely-used
methods for this purpose.

In the context of differentiable optimization, one wouldext adequate strategies based on
gradient evaluations to also be capable of capturing P&natts, with less generality or robust-
ness, but often far greater cost efficiency. However clakgchniques, such as minimizing an
agglomerated criterion, or one criterion at a time undercivestraints of the others, are lim-
ited by hypotheses on the pattern of the Pareto front w.ehvexity and, or continuity. The
Multiple-Gradient Descent AlgorithnMGDA ), originally introduced in([3], and again formal-
ized in [5], is based on a very general principle permittingléfine at each iteration,descent
direction common to all criteriaThis direction is the support of the minimum-norm element i
the convex hull of the local gradients. The efficacy of theoathm to identify the Pareto front
has been demonstrated in [9] [5] in a test-case in which thet®&ont was non-convex. The
method was compared in cost efficiency with an evolutiontigtesgy, and was found to offer
very promising performance.

More recently, a variantylGDA-II, has been proposed in which the descent direction is cal-
culated by a direct procedure [4], which provides a valuabtglification of implementation.

Here,MGDAIs tested in the fairly different context of a simulation byndain partitioning,
as a technique to match the different interface componeaswrently. For this, the very
simple test-case of the finite-difference discretizatibthe Dirichlet problem over a square is
considered. Full details have been provided in [6]. Theysauohs at assessing the performance
of MGDAIn a discretized functional setting. One of the main teaghiis the necessity, here
found imperative, to scale the gradients appropriately.

2 DIRICHLET PROBLEM, DOMAIN PARTITIONING AND MATCHING DEFE CTS
We consider the model problem consisting in solving Laptaequation,
—Au=f () 1)

over the square

subject to homogeneous boundary conditions:
u=20 (I'=0Q) 3)

For this, the domaif is partitioned in four disjoint sub-domains:

(4)
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with the following interfaces supported by the coordinatesaa

m={0<z<1;y=0}
r={z=0;0<y<1}
Y3={-1<2<0;y=0}
Ya={z=0; —1<y<0}

along which the following Dirichlet controls are applied:

(see Fig[).

s u=uv(x)
D u=u(y)
:u=vs(x)

()

DU =gy

(5)

(6)

Figure 1: Partition of a square in sub-domaffis } ;—;

A first calculation of the compound solution

u= (Ul, Ug, us, u4>t

3

4) to solve the Dirichlet problem

(7)
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(where the superscripstands for transposition) is made based on a certain seftiihg inter-
face controls:
v = (U17U27U37U4)t (8)

by solving, possibly in parallel, the partial problemsfet 1, ..., 4:

— Au; = / (Qz)

u; = r 6QZ
Ui = v (vi)

U; = Viq1 (%+1)

In the above, and all throughout thereafter, by periodi¢itg index: is understood modulo 4,
i.e.us = ug, 75 = 7, etc.

Since the interface controls are of Dirichlet type, the &sgicompound solution is contin-
uous, and its derivative along each interface is also coatis. However, in general, unless the
specified controls;’s are equal to the restrictions of the global solution, tbenmal derivatives
exhibit jump discontinuitiess;’s. Here, each interface is supported by a coordinate ari$, a
we adopt the following sign conventionn the interfacey; which is supported by the (resp.

y) axis fori = 1 and 3 (resp. 2 and 4), the jump,(z) (resp.s;(y)), is defined as the increment
of the partial derivativeé)u/dy (resp.du/0x) asy (resp.z) goes fronh)~ to 0". Thus:

e overy; (0 <z < 15y =0): si(x) = g—;(x, 0+) — g—;(x, 07) = {%—‘; - %—Lﬂ (2,0):
eovery(z=0;0<y<1) sy = %(oﬂy) — %(o,y) — [% _ %} (0,);
o overyy (10 <03y = 0) sala) = o (0,0) — 5207 = {%_“; - %_ﬂ (z,0);
e overy (z=0; —1<y<0)s4y) = %(oJf,y) - %(0—,3/) — [% _ %} (0, 7).

The above local measures of the defect in matching condittan be associated with global
measures defined as separate functionals defined over ¢niaogs:

si= [ astea (10)
Yi
that is, explicitly:

s2(y)* w(y) dy (11)

N[

1 1
Jp :/ 1si(z)? w(z) dz Ja :/
0 0

= [ slePu@de = [ P ew)dy 12)

-1 -1

ol

Here,w(t) (¢t € [0, 1]) is an optional weighting function, and(—t) = w(t).

The jumps; depends on the partial solutions ; andu;, which themselves, depend on
(vi—1,v;) and (v;, v;41) respectively. Hence, the integrd] depends on all four sub-controls
exceptv;,». Nevertheless, these four integrals are thereafter ceregicas functionals af.

4
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The coordination problem is to devise a convergent itematiothe controb to satisfy in the
limit the matching conditions
J=Jh=J3=J,=0 (13)

To achieve this, the functional gradients are firstly essaleld using the classical adjoint-equation
approach, and several strategies are proposed and testedicaily.

3 ADJOINT PROBLEMS AND FUNCTIONAL GRADIENTS

A first calculation is made based on the four-component obntr= (vy, vo, v3, v4)", re-
sulting in the compound solutian= (uy, us, us, us)*, and the multi-component criterioh =
(Jla J27 J37 J4)t-

Then, one perturbs the controbf

U/ = (Ui, Uév Uév Uﬁl)t = <5U1 (ZC)’ 57}2 (y)v 5U3<x)7 51}4(y)>t (14)

Consequently, the compound solutieis perturbed of

t

u' = (u/1> u/27 Ug, ug)t = <5u1(x, y)v 5u2(x, y)v 5U3(l‘, y), 5U4($, y)) (15)

in which u, is the solution of the following linearized system posed ob-domairt?;:

w0 o (16)
u; = v (i)
Ui = vy (7it1)
These state perturbations induce the following functigesturbations:
J=06J; = / sistw dy; a7)
Vi
in which s, = ds;. Bult:
(,  [Our  Oug] [Ou]  Ouf]
s187 = el (z,0)
o _6U1 6U2- _6U,1 6U,2-
2= x| e ox) OV
- 1A, - (18)
s — | Uz _ Ous| [Ou; Ouy (,0)
oy oyl oy oyl
I _6U4 6U3- _6U£1 (?ug-
Sl i i vl B et vl AUED

We now recall Green’s formula for two functiopsandy € H?(w), for a simply-connected
planar domaino with smooth enough boundary. Since

[ oso= [[ oviwor= [ v [[ vovs 19
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wherer is outward unit vector normal to the boundady, andv, = 0v/on the normal

derivative, and symmetrically,

/L@qus://w@w.(w): aww"_//ww-w

whereg,, = d¢/0n is the normal derivative af, one has:

| wav—vae = | @u-ve

Consider the following eight adjoint systems (two per soioadin):

Ap; =0 (Qz) Ag; =0 (Qz)
pi=0 (0S4 \:) ¢ =0 (092 \Vig1)
pi = Siw (%) q; = Si+1W (%+1)

Then apply Green’s formuld, (R1), to the eight cases coomdipg to
w=0;(=1,2,3,4), ¢=p;0rqg, v=.u,
so thatA¢ = Ay = 0in w giving:
P thn = Y ¢n
08 o9
On the boundargw = 0¢);:
e ¢ = (0 except forp = p; = s;w along~y;, andg = ¢; = s; . w along~;1;

!/

v, alongv;
o p=u;=q v alongy
0 alongl' N €

Hence[(24) reduces to:

/
/ S; Uinw = /
Yi Yi Yi+1

/ /
Pin U; + / Pin Vit
/ . / /
Si+1 Uy, W = [ Qi V; + Gin Vit1
Yi+1 Yi Yi+1
for ¢ = q;.

These two equations are particularized to sub-donfajras follows.

for ¢ = p;, and to:

Sub-domainQ;: on~: 7 =iy = —J; 0Ny, 7l = 1o = —7. Thus [25){(26) write:

/01 51(2) (-%‘3@,0)) w(a:)d:c:/ol (—%—1;1(:5,0)) v;(:c)d:c+/01 (
)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

P10.)) o) dy

w<y>dy=/01 (—%—qyl(:c,O)) Ug(@dH/Ol (_8_?

<o,y>) W) dy

(27)
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Sub-domainQ,:  on~,: 7 = 7iy; = +7; ONy3, 1l = Tlp3 = —J. Thus [25)4(26) write:

/01 55(1) (%f(o,y)) w(y) dyz/o1 (%(o,y)) vh(y) dy+/01 (—%—];2(93,0)) v () dr

0 ouj 1 0qs , 0 s ,
[ o) (-5w0) wwr= [ (SEon) swas [ (-52w0) b
Sub-domainQs:  onws: i = gy = +J; 0Ny, 7 = 7ige = +2. Thus [25)(26) write:

/01 53(2) (%‘5’@,0)) w(z) dx:/i <%—py3(x,0)) vi(z) dx+/01 (%(O,y)) Vi (y) dy

/01 s1(y) (%‘f’ (o,y)) w(y) (sz/()1 (%—q;(x,m) () dx+/01 (%(o,y)) o) dy
(29)

Sub-domain€,: on~,: 7@ = fiy3 = —7, 0Ny, 1T = 7igy = +7. Thus [(25)4(26) write:

) (- 200)) way= [ (~Pop) v [ (L0 i ar
1 1 0 Y
[ s () wwa= [ (-220.0) doa+ [ (Le0) e

(30)
Then, [27)4(30) are injected in_(118) and17) to get:

(

N R T
Jl_/o s1(x) sl(:c)w(a:)dx—/o s1(x) [(‘}y - ay] (z,0) w(zx)dz

= [Pt 0@ e+ [ B omdmdr [ S0y
1= [ swswumn= s 52 -5 0w iy

- [ o [ 2020 s [ w0 do

NN LN TR
Jy = /_1 s3(x) s3(x) w(z) de = /_1 s3(x) [83/ - 8y} (x,0)w(z)dx

- %(O,y) L) dy+/1 a(QQ8;p3)(x,0)vg(x) dr— | %(O,y)%(y) dy
i~ [ swsiema= [ s[5 -55) 0w i

Opa / * Ogs / * O(ps — g3) /

[ P [ Peou@ s [ S0, 00
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These formulas are of the form:
4
j=17

in which the kernels{G, ;}, are partial gradients given in terms of the partial deiest of the

eight adjoint state$p;, g; } (i1,... 4)-

4 DISCRETIZATION

For purpose of numerical treatment, we assume that eacprebibem is discretized by stan-
dard centered finite-differences over a uniform (sub-)neshmensionNy x Ny rectangular
cells. This permits a fast direct inversion by discrete s&fan of variables:

up = (QX ® Qy) (AX @ AY)_1 (QX ® QY) fh (33)

Qx and(Q)y are respectively th& y x Nx and Ny x Ny orthogonal matrices associated with the
discrete sine transform. For Dirichlet boundary condsgidimese matrices are also symmetric.
The matrices\ y and Ay are diagonal matrices of the known eigenvalues of the seocael
difference operators im andy respectively (see [6] for details).

For each sub-domaif;, derivatives normal to a given interface are calculatedrmrsided
second-order finite differences, and tangential derieatibpy central differencing.

The matching-defect integrals are then approximated byrépezoidal rule:

Nx—1 Ny —1 Nx—1 Ny —1

Ll by hy hy

2 2 : 2 :
J1 = S15Wj, Jo = 5 S2') Wk, J3 = 5 ssjwj, Jy= 5

2
2 54719 wk .
j=1 k=1 j=1 k=1

(34)
Two adjoint problems are solved on each sub-donfgjragain by direct inversions, to get
the functiong; andg; whose derivatives are then approximated along interfacgsgected in

@1). Thenl[6]:

4 Ng
‘]z, = ZZ Gi,j.kvjfk hZ (Z = 1,,4) (35)
=1 k=1
The discrete gradient of the criterioiw.r.t. the nodal values of the contra] is given by:
aJ;
=G h 36
aijC Gz,].k Z ( )

For each criteriow;, four such discrete gradients are calculated (one peralanjr except that
one of them is equal to 0. These four vectors are assemblatkirtioereafter denotéd.J;, of
dimensior2(Ny + Ny — 2).

Now, knowing (second-order approximations of) the crétgt; };— .. 4) and their gradients
{VJi}=1,..4 W.r.t. the2(Nx + Ny — 2) nodal controls, we need to set up a strategy to iterate
on these controls to satisfy the matching conditions at emence.

5 GRADIENT-BASED COORDINATION ITERATIONS

Our main objective is to compare the standard steepesedestethod with théviultiple-
Gradient Descent AlgorithmMGDA ) as potential iterative methods to satisfy the matching
conditions by driving the defect functionals to O.

8
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5.1 Conventional steepest-descent method

In the conventional approach, one considessngle matching defect measuteeating all
interfaces as one:

J=>"1J (37)

The discrete gradient is then simply equal to the sum of thevisual contributions of the
interfaces:

4
Vi=> Vv (38)
i=1

The above global criterion can then be driven to 0 by the waksteepest-descent method
[1] [7]: at iteration?, the controlv is updated proportionally to (the opposite of) the discrete
gradient:

D — 0 ngJ(Z) (39)

for some appropriate positive step-size(see below), and a new compound solutight)
is calculated, the defect-functional and its gradient a@eated, and so on until a satisfactory
convergence is achieved.

Strictly speaking, in the standard steepest-descent migtinwe the direction of search is
identified, by the calculation of the gradiexit)‘), the step-size, is often defined via a one-
dimensional minimization:

pe = Argmin, j(p): j(p) == (10 — pvJ0) (40)

This minimization is usually carried out by a numerical prdare. However here, we know
of an additional information: the targeted valueJok known: J = 0. An estimation of the
variation ofJ is given by the differential:

I

60 = VIO .50 = —p, || VIO (41)

Hence, the step-size expected to dimini$hof the amountJ = —<J® is estimated to be:

J®

V@ )

Pr

In particular fore = 1, we get the quasi-Newton method since the employed disgratient
is only approximately equal to the gradient of the disciete

5.2 Multiple-gradient descent algorithm (MGDA)

In this subsection, we propose an alternative coordinatigarithm in which the matching
of the sub-solutions is treated as a multi-objective oanon problem, considering that all
defect-functionals/;’s should be driven to O concurrently.

In the Multiple Gradient Descent Algorithm MGD&ee [3] for a detailed definition and
convergence proof), once the individual discrete gradient
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are known, one considers the convex RLbf these vectors, and identifies its minimum-norm
elementw:

. 2
w = Argmin, Ju]

4 4
U:{UGRN/u:Zaiui;aiZO(W);Zaizl} (44)

=1 =1
In our problem, the dimensioN is the number of nodal controls:
N =2(Nx + Ny —2) (45)

A special parameterization of the convex hull is proposefdd¢ditate the determination of the
elementv by a numerical optimization procedure (see Appendix A).

Then, once the elementis determined, it; = 0, the current iterate is, or is treated as Pareto
stationary. But here, the Pareto front is made of only onatpmrresponding td; = 0 for all
7. This situation corresponds to full convergence of the dmation algorithm. Otherwise
(w # 0), —w is a descent direction for all criteria simultaneously. $H39) is replaced by:

£+1) 0)

oD = ) — pw® (46)

Here again, we propose to adjust the step-gjz&ccording to[(42). However here, it is not
cleara priori that the proper scaling correspondste 1.

6 NUMERICAL EXPERIMENTATION
6.1 Test-case

Let o andb be two adjustable constants, and:

(v=(r+a)+(y+b)’ (-1<z<l)  (-1<y<1)
1
"7 (a® + 1)
¢=rT1lne (47)
f@) =122 fW) =1 — 2
L u, = f(w)f(y)qg

As a resultgp is a harmonic function:
A¢p =0 (48)

and this permits us to simplify somewhat the expressionettiplacian of,:

Au, = A (f(:v)f(y)) b+ 2V (f(r)f(y)) Vo + (f(r)f(y)) A¢
- _9 (f(r)f(y)) ¢+ 2V (f(r)f(y)) Vo (49)
= _fe (50)

where g
fe=2(f0 1) 6+~

In the numerical implementation, this condition is relaxete: ||w|| < TOL, for a given toleranc&OL.

[2(z +a) f¥ + y(y + b) ] (51)

10
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Hence, forf = f., the exact solution of the continuous problen is u..

The constants andb have been introduced to destroy the symmetry in the solutitore
specifically, the following settings were made= % andb = % The corresponding problem
has been discretized and solved using either one domaintdblisd a reference, or four to
experiment multi-criterion optimization algorithms.

The single-domain discrete solutian is depicted in Fig.[12 as a surface in 3D, and the

corresponding contour map is given more precisely in[Big. 3.

bo6bE coocoormh
nhwNRORWONORWS
.
55666 coooore
BRGNhobaaNeRk

Figure 3: Single-domain discrete solutiap; contour

Figure 2: Single-domain discrete solutiop map

6.2 Quasi-Newton steepest descent

In a first series of numerical experiments, the steepestedésnethod was applied to drive
to O the global criterion. After a few trials, it appeared that best convergence waiaed by
settinge to 1 in (42), which corresponds to the quasi-Newton method.

Two experiments are reported presently. They differ in #targg of the initial interface con-
ditions. In the first, the),’s are initially assigned the restriction to the correspongdnterface
of the exact solution., which differs from the discrete solution by truncationoes: In this
case, iterative errors are initially very small, which pésithe asymptotic convergence to be
assessed. In the second experiment, the controls ardlyrseato O in order to assess the global
convergence.

Asymptotic convergence. The convergence history of the global criteridras well as its
from2.9 x 1072 to a Ie\;é’l belowl0~%. Note that.J, is somewhat smaller in magnitude and
more subject to oscillations.

Global convergence. The convergence history of the global criteribas well as its individual
parts,{.J; } =1, is represented in Fid.] 5. The criteridnin 200 iterations, is reduced by 8
orders of magnitude. The different criteria, apart from Bgcillations, converge at essentially
the same rate. In a linear convergence process, this ragasied by the most persistent mode,
present in all criteria when the initial condition is arhity.

Convergence of the gradients. The evolution of the four gradien{$)J /0v; } ;=1,... 1) Over 200
iterations is given on Fid.]6-Fid¢.] 9. They appear as higlptfemcy modes. Each one vanishes
asymptotically over the corresponding interface.

11
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Figure 6: Quasi-Newton steepest descent - 200 iteigure 7: Quasi-Newton steepest descent - 200 itera-
tions of 0J/0v, tions of 0J/0v,

0.4
DISCRETIZED FUNCTIONAL GRADIENT OF J = SUM_i J_i WR.T. V3| —— DISCRETIZED FUNCTIONAL GRADIENT OF J = SUM_i J_i W.R.T. V4 ——

03
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02|
03}

04|

05|
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0 2 4 6 8 10 12 14 16 18 20 0 2 ) 6 8 10 12 14 16 18 20

Figure 8: Quasi-Newton steepest descent - 200 iteigure 9: Quasi-Newton steepest descent - 200 itera-
tions of0J/0vs tions of 9J/0vy

Discrete solution. The four-domain discrete solution is found perfectly srhoat fact even
smoother than the above single-domain discrete solutimys(EL0 and_111). This is due to a
higher degree of iterative convergence.

6.3 BasicMGDA

Practical determination of the minimum-norm elementw. In the experiments of this sec-
tion, at each iteration, the 3 parameters ¢, andc; of (78) have been discretized uniformly
by step of 0.01, and was set equal to the vector of minimum norm among the es#ignti
corresponding candidates. The resulting vector was thexet very coarse approximation of
the actual vectow.

12
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u_h contour lines

=
Z
=
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NRBRNROR RN G W
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566 cocoorr®
05605 ooooopr
GRoNRORBONGR®

Figure 11: Four-domain discrete solutiap; contour

Figure 10: Four-domain discrete solutiop map

Asymptotic convergence For this experiment, the discretized continuous solutgoagain
imposed initially at the interfaces. The convergence hystd the above basic algorithm is in-
dicated in Fig[_IPR for 20 iterations. After some initial asljment, the trend is towards decaying,
but at a deceiving slow rate.

100

11—
J2

Elalwhoe

3

Seooo

Ia
J = SUM TOTAL J=SUMTO
10000 - B 1t

100 4 001 F

1r q 0.0001 T e et

Figure 12: BasidViIGDA- asymptotic convergence hibigure 13: MGDAbased on logarithmic gradients -
tory of criteria asymptotic convergence history of criteria

In an attempt to explain this poor convergence, the follgnobservation was made: sup-
pose the gradients of the individual criter{@)J;/0v}-1... 1), are very different in magnitude.
Remember that in a linear iterative process, unless irdtatitions are very special, all quan-
tities converge at the same rate, €ay"**"), wherep is the spectral radius, ard a constant
which depends on the quantity considered. For example giptavious experimentl, itself
was observed to be somewhat smaller than the other critaréhso was its gradient. Then,
the convex-hull minimum-norm elementis paradoxically dominated by the gradient of small-
est magnitude, since in the convex combination of the grasligoutting the largest weight on
the smallest has the effect of reducing the norm of the coatigin. But this is not efficient,
since this gradient corresponds to the already small mitdor which minimization is the least
necessary. This observation has led us to calculate thetidines as the minimum-norm ele-
ment in the convex hull ofiormalized gradientsHere, the normalization was made by scaling
each gradient to the corresponding value of the individatdron. In other wordslogarithmic
gradientswere considered. In fact, that is exactly what Newton’s raéttioes with the global
criterion J.

The above experiment was then repeated, using logarithmawitents to determine the vector
w. The corresponding convergence history is indicated in[Eg This new result is now found
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very similar to the analogous result previously achievedhgyquasi-Newton method (Figl 4).
The importance of scaling is therefore confirmed.

Global convergence. All interface controlsy;’s are initially set to 0. The resulting conver-

gence history over 200 iterations is indicated in Fig. 14tfarbasic algorithm, and in Fig. 15

for the scaled algorithm based on logarithmic gradientse flist algorithm seems to conver-

gence, but at a very slow rate. The second seems to subjectitteats and to experience a
difficulty to enter the asymptotic convergence phase. Thera stagnate. This may be caused
by many factors on which current investigation is focused:

¢ the insufficiently accurate determinationuof
¢ the non-optimality of the scaling of gradients;

¢ the non-optimality of the step-size, the parametar (42) being maintained equal to 1
throughout;

¢ the large dimension of the design space, here 76 (4 interfaxsociated with 19 d.o.f.’s).
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Figure 15: BasitMGDAbased on logarithmic gradients:

Figure 14: BasicMGDA: global convergence
global convergence

6.4 MGDA-II

Recently, a variantylGDA-II , has been proposed in which the descent direction is cédclla
by a direct procedure, which provides a valuable simplifocadf implementation, as well as
more accurate definition of the direction of search [4]. Tiesv algorithm is now presented
again along with a new variamtAGDA-II b), and tested on the DDM problem.

Basic definition, scaling. In MGDA-II, the possibility to prescribe scales for the gradients,
{Siti=1,...n) (Si > 0 (V4)) is offered. In the following experiments, at a given itévat these
scales are either set all equal to 1 (“no scaling prescripedequal to the current values of the
criteria (“prescribed scaling”):

the latter implies that the descent direction is basedogarithmic gradients These scales
being supplied by the user, we define the following "scaledlgants”:
VJ;
J = !
% Sz

(53)
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Assuming that the gradients form a linearly-independemilfg an assumption never con-
tradicted in the numerical experiments, a family of orthagp but usually not orthonormal
vectors are formedu; } ;—1,...») according to the following:

and, for: = 2,3, ..., n:
JL = D s Cikun

_ 55
u n (55)
where: ,
J:,
Yk <i ¢ ocig = (%5, 0) (56)
(uku uk)
and
1-Y ¢y ifnonzero
€ otherwise
for some arbitrary, but smadl (0 < |¢;] < 1).
The minimum-norm element in the convex of the famity } ;—1,... ) is given by:
W = Z ;U (58)
i=1
and one finds: . .
[Jwill Zj:lW 1+Z#iW
which confirms thatv does belong to the interior of the convex hull, so that:
A . o
Vi oo ]’ = B (a given Lagrange multiplier), (60)
and: \
Vk (uk,w) = qy, ||uk||2 =5 = ||cu||2 ) (61)

Convening that; = 0 in the regular cased(, _, ¢;» # 1), and otherwise by modifying slightly
the definition of the scaling factor to be

S/ = (1+¢)S: (62)

and redefining the "scaled gradient” accordingly£ V.J;/S!), the following holds:

(T w) = llwl* (Vi) (63)

that is, the same positive constant [4].

As a result of this direct, fast and accurate constructiba,viectorw is usually different
from the former definition, except in special cases, as farmgde, whem = 2 and the angle
between the two gradients is obtuse. Nevertheless, thesrsdgso provides a descent direction
common to all criteria, scaled essentially as initiallygumbed.

15



Jean-Antoine Désideéri

Automatic rescaling: MGDA-II b. The examination of the case= 2 has led us to propose
a slightly different handling of the scales. Here, one lets

A =85 — Cik (64)

only when this number is strictly-positive. Otherwise, gealeS; is redefined (“automatic
rescaling”) as follows:

Si = Ci ke (65)

b
Il
—

and one setgl; = ¢,.5;, for some smalt;.

The result in[(6B) is still valid, and it now provides an infeation on gradients that have
been weighted as prescribed whenever- 22;11 ¢k, and otherwise by the procedure itself.
This rescaling procedure is certainly perfectible.

Convergence experiments and discussion.MGDA-II has been tested on the partitioning prob-
lem in the four possible options corresponding to “no sepprescribed” vs “prescribed scal-
ing”, and “automatic rescale off” vs “on”. IMGDA-IIb, when}, _. ¢; ;, was found greater or
equal the prescribef; (=1 or J;), ¢; was set to 0.01 (and maintained to O otherwise).

A first observation was made: the new procedure for detengiwiis much faster, and
MGDA-II seems to be less sensitive to round-off errors.

In Fig. [16 and Fig[17, the automatic rescale is off, and tfecebf scaling alone is eval-
uated. Over the first 200 iterations, the result is about #mees However the scaled version
indicates a trend to convergence acceleration to be cordirme

In Fig. [18 and Fig[ 19, the automatic rescale is on, and themptf prescribed scaling is
off/on. Again a better convergence is achieved when scagegrascribed.

In order to confirm these results, the best option “presdridmles and automatic rescale”
is compared with the basic method in Fig.] 20 and Higl 21 ovérifrations. The trends
indicate a linear convergence for the first method, and a segyrquadratic convergence for
the second. Compared to the quasi-Newton method of_[FitylGDA-II b is grossly-speaking
twice slower, but it indicates a more definite trend to asytiptonvergence acceleration.

One last remark: in these experiments, we observe thahgdadis the effect of making the
convergence curves associated with the different critdoiser to one another.
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Figure 16:MGDA-I11, no scaling prescribed Figure 17:MGDA-II, prescribed scaling
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7 CONCLUSION

In this study, various versions of tiMultiple-Gradient Descent AlgorithMGDA) have
been tested numerically over a domain-partitioning pnobiieeated as a multi-objective prob-
lem in which matching defect integrals at the different ifdees are to be minimized concur-
rently, and in fact, all driven to 0.

The major objective of this experimentation was to assesgttential ofMGDAto handle
multi-objective problems in which the finite-dimensionettsng was the result of discretization,
thus approaching a more general functional setting. Irrésigect, the demonstration was made.
Indeed convergence was achievedMdDA. However the quasi-Newton method applied to
the agglomerated criterion was globally found more effigidmt in the most sophisticated
version MGDA-II b), the algorithm seems to demonstrate a promising asyneptiytiquadratic
convergence.

Thus, if the convergence was not always found satisfactemeral observations should tem-
per this somewhat deceiving conclusion, and many promidiregtions of improvement can
be envisaged:

e in the problem under study, the Pareto set was reduced tartje point corresponding
to all criteria equal to 0 associated with the unique sofutib the discretized Poisson
problem; this situation is really atypical of standard maltjective problems; addition-
ally, the criteria to be minimized were not really antagtinjssince they all converged
at almost the same rate with the quasi-Newton method, lgditife possibility of im-
provement from the start; for these two reasbiGDAhas been tested in a very straining
situation for which it was not devised originally;
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e the large dimension of the design space, here 76 (4 interfaxsociated with 19 d.o.f.’s),

was probably a handicap;

e a robust procedure to define the step-size should be deviisemr experiments, the

parametee was not optimized but maintained equal to 1 throughout;

¢ the determination af) in the basic method should be made more accurately by werati

refinement;

e the scaling of gradients was found important; alternatieethe logarithmic gradients

should be analyzed and rationalized; more generally, piditioning remains an open
guestion;

o the MGDA-Il variant was found faster and more robust;

e at present, our most sophisticated algoritiGDA-I1b, also involves an automatic

rescaling procedure; it indicates a definite trend to asgtiptonvergence acceleration
(quadratic convergence).
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Jean-Antoine Désideéri

A GENERALITIES ABOUT CONVEX HULLS AND PARAMETERIZATION

Notations

n (66)
constraints¥i : a; > 0 Z ai=1:n<N
=1

Parameterization - The convex hull may parameterized by identifying the setliofxable
coefﬁcients{ozl-}(i:1 . To satisfy the positivity condition automatically, onésle

..... n)

o = o’ (i=1,..,n) (67)
Then, the equality constraint
=) ol =1 (68)
=1 i=1
states that
o= (01,09,...,0,) € Sy (69)

whereS,, is the unit sphere dR”, and precisely naR”. This sphere is easily parameterized
using trigonometric functions of — 1 independent arcs,, ¢, ..., ¢, _1:

(

01 = COS¢p . COS¢y . COSQP3 . . COSQp_1
0y = sin¢g; . coS¢y . COSP3 . . COSPp_1
03 = 1 . singy . cosgsz . . COSQp_1 (70)
Op—1 = 1 . 1 . sin d)n,Q . COS (bn,1
[ On = 1 ) 1 ) . 1 . sin¢,_1q
that is: )
0; = sin ¢;_1. H COS @; (71D

J=t
with ¢, = 7. It is sufficient to consider the portion of the sphere cqraegling tog; € [0, 7]
for all # > 1 since the sign of the;’s makes no difference.
The usage of trigonometric functions is not really necassamce one can let:

c; = cos® ¢; (1=1,...,n) (72)
and get:
( o = C1 . Co . C3 . . Cn—1
g = (1 — Cl) . Co . C3 . . Cn—1
3 = 1 . (1 — CQ) . C3 . . Cn—1
(73)
Ap_1 = 1 . 1 e (1 - Cn,Q) . Cn—1
| an = 1 ) 1 Co 1 o (I =cno1)
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that is:

n—1

a=01-c1). || ¢ (74)

<.
Il
-

with ¢y = 0, andc; € [0, 1] forall ¢ > 1.
In this way, the constraints on the coefficiedts;} have been replaced by the bounds 0
and 1 on the new parametels }, independently of one another. However, the criterion to be

minimized,
Jull* = ZZ ooy (u, ug) (75)

i=1 j=1

is now a polynomial of possibly large degree, nanly — 1), of the new parametefs:; }.

In the particular case of the coordination of 4 sub-domaynsIBDA, and independently of
the degree of refinement of the spatial discretization odiett by the integerd’y andNy, n =
4, and once the 10 scalar produ¢ts, u,) (i, = 1, ...,4) calculated, the determination of the
minimum-norm element is equivalent to minimizing a 6th-degree polynomial(ef, c,, c3)
in theR3 unit cube (limits included):

;= C1C2C3

Qo = (1 — 01)0203

(76)
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