On the Stability of the Immersed finite element Method with High Order structural Elements

Cesare Corrado 1, *
* Auteur correspondant
1 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
Abstract : The Immersed Finite Element Method (IFEM) is a mathematical formulation for fluid-structure interaction problem like the Immersed Boundary method; in IFEM the immersed structure has the same space dimension of the fluid domain. We present a stability of IFEM for a scheme where the Dirac delta distribution is treated variationally, as in \cite{IBBoffiGastaldiHeltai}; moreover the finite element space related to the structure displacement consists of piecewise continuous Lagrangian elements, at least quadratic. The analysis is performed on two different time-stepping scheme. We demonstrate also that when the structure density is smaller than the fluid one, the stability is assured only if the time step size is bounded from below.
Type de document :
Article dans une revue
Computers and Structures, Elsevier, 2012, 112-113, pp.422-432. 〈10.1016/j.compstruc.2012.09.008〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00764564
Contributeur : Cesare Corrado <>
Soumis le : jeudi 13 décembre 2012 - 10:53:04
Dernière modification le : jeudi 11 janvier 2018 - 06:20:06

Identifiants

Collections

Citation

Cesare Corrado. On the Stability of the Immersed finite element Method with High Order structural Elements. Computers and Structures, Elsevier, 2012, 112-113, pp.422-432. 〈10.1016/j.compstruc.2012.09.008〉. 〈hal-00764564〉

Partager

Métriques

Consultations de la notice

134