B. Barnier, G. Madec, T. Penduff, J. Molines, A. Treguier et al., Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn, pp.10-1007, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00183257

B. Blanke and P. Delecluse, Variability of the Tropical Atlantic Ocean Simulated by a General Circulation Model with Two Different Mixed-Layer Physics, Journal of Physical Oceanography, vol.23, issue.7, pp.1363-1388, 1993.
DOI : 10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-01143309

D. L. Chertok and R. W. Lardner, Variational data assimilation for a nonlinear hydraulic model, Applied Mathematical Modelling, vol.20, issue.9, pp.675-682, 1996.
DOI : 10.1016/0307-904X(96)00048-0

P. Gaspar, Y. Grégoris, and J. Lefevre, A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site, Journal of Geophysical Research, vol.105, issue.C9, p.95, 1990.
DOI : 10.1029/JC095iC09p16179

J. C. Gilbert and C. Lemarechal, Some numerical experiments with variable-storage quasi-Newton algorithms, Mathematical Programming, vol.11, issue.2, pp.407-435, 1989.
DOI : 10.1007/BF01589113

A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optimization methods and software, pp.35-54, 1992.

L. Hascoët and V. Pascual, Tapenade 2.1 user's guide, 2004.

A. W. Heemink, E. E. Mouthaana, M. R. Roesta, E. A. Vollebregta, K. B. Robaczewskab et al., Inverse 3D shallow water flow modelling of the continental shelf, Continental Shelf Research, vol.22, issue.3, pp.465-484, 2002.
DOI : 10.1016/S0278-4343(01)00071-1

B. Ingleby and M. Huddleston, Quality control of ocean temperature and salinity profiles ??? Historical and real-time data, Journal of Marine Systems, vol.65, issue.1-4, pp.158-175, 2007.
DOI : 10.1016/j.jmarsys.2005.11.019

M. Janisková, J. Thpaut, and J. Geleyn, Simplified and Regular Physical Parameterizations for Incremental Four-Dimensional Variational Assimilation, Monthly Weather Review, vol.127, issue.1, pp.26-45, 1999.
DOI : 10.1175/1520-0493(1999)127<0026:SARPPF>2.0.CO;2

E. Kazantsev, Identification of optimal topography of the barotropic ocean model in the North Atlantic by variational data assimilation, Journal of Physical Mathematics, vol.1, pp.1-23, 2009.
DOI : 10.4303/jpm/S090702

E. Kazantsev, Identification of an optimal derivatives approximation by variational data assimilation, Journal of Computational Physics, vol.229, issue.2, pp.256-275, 2010.
DOI : 10.1016/j.jcp.2009.09.018

URL : https://hal.archives-ouvertes.fr/inria-00388884

E. Kazantsev, Optimal boundary discretization by variational data assimilation, International Journal for Numerical Methods in Fluids, vol.128, issue.3, pp.1231-1259, 2011.
DOI : 10.1002/fld.2240

URL : https://hal.archives-ouvertes.fr/inria-00388862

E. Kazantsev, Boundary conditions control for a shallow-water model, International Journal for Numerical Methods in Fluids, vol.106, issue.1, pp.625-641, 2012.
DOI : 10.1002/fld.2526

URL : https://hal.archives-ouvertes.fr/hal-00764540

E. Kazantsev, Sensitivity of a shallow-water model to parameters. Nonlinear Analysis Series B: Real World Applications, pp.1416-1428, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00652299

A. Lazar, G. Madec, and P. Delecluse, The Deep Interior Downwelling, the Veronis Effect, and Mesoscale Tracer Transport Parameterizations in an OGCM, Journal of Physical Oceanography, vol.29, issue.11, pp.2945-2961, 1999.
DOI : 10.1175/1520-0485(1999)029<2945:TDIDTV>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-00154240

F. Dimet, A general formalism of variational analysis, 1982.

F. Dimet and M. Ouberdous, Retrieval of balanced fields: an optimal control method, Tellus A, vol.45, issue.5, pp.449-461, 1993.
DOI : 10.1034/j.1600-0870.1993.00009.x

F. Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, pp.97-110, 1986.
DOI : 10.1111/j.1600-0870.1986.tb00459.x

J. M. Lellouche, J. L. Devenon, and I. Dekeyser, Boundary control of Burgers' equation???a numerical approach, Computers & Mathematics with Applications, vol.28, issue.5, pp.33-44, 1994.
DOI : 10.1016/0898-1221(94)00138-3

Y. Leredde, J. M. Lellouche, J. L. Devenon, and I. Dekeyser, On initial, boundary conditions and viscosity coefficient control for Burgers' equation, International Journal for Numerical Methods in Fluids, vol.26, issue.1, pp.113-128, 1998.
DOI : 10.1002/(SICI)1097-0363(19980715)28:1<113::AID-FLD702>3.0.CO;2-1

J. Lions, Contrôle optimal de systèmes gouvernés pas deséquationsdeséquations aux dérivées parielles. Dunod, 1968.

M. Losch and C. Wunsch, Bottom Topography as a Control Variable in an Ocean Model, Journal of Atmospheric and Oceanic Technology, vol.20, issue.11, pp.1685-1696, 2003.
DOI : 10.1175/1520-0426(2003)020<1685:BTAACV>2.0.CO;2

G. Madec, P. Delecluse, M. Imbard, and C. Levy, Opa 8.1 ocean general circulation model reference manual, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00154217

G. I. Marchuk, Formulation of the theory of perturbations for complicated models, Applied Mathematics & Optimization, vol.2, issue.3, pp.1-33, 1975.
DOI : 10.1007/BF01458193

W. J. Merryfield, G. Holloway, and A. E. Gargett, A Global Ocean Model with Double-Diffusive Mixing, Journal of Physical Oceanography, vol.29, issue.6, pp.1124-1142, 1999.
DOI : 10.1175/1520-0485(1999)029<1124:AGOMWD>2.0.CO;2

F. Mesinger and A. Arakawa, Numerical methods used in Atmospheric models, 1976.

I. M. Navon, Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynamics of Atmospheres and Oceans, vol.27, issue.1-4, pp.55-79, 1997.
DOI : 10.1016/S0377-0265(97)00032-8

V. G. Panchang and J. J. O-'brien, On the Determination of Hydraulic Model Parameters Using the Strong Constraint Formulation Modeling Marine Systems, pp.5-18, 1988.

G. Roullet and G. Madec, Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models, Journal of Geophysical Research: Oceans, vol.97, issue.C10, pp.927-950, 2000.
DOI : 10.1029/2000JC900089

URL : https://hal.archives-ouvertes.fr/hal-00772157

I. Shulman, Local Data Assimilation in Specification of Open Boundary Conditions, Journal of Atmospheric and Oceanic Technology, vol.14, issue.6, pp.1409-1419, 1997.
DOI : 10.1175/1520-0426(1997)014<1409:LDAISO>2.0.CO;2

I. Shulman, J. K. Lewis, A. F. Blumberg, and B. N. Kim, Tide in the Yellow Sea, Journal of Atmospheric and Oceanic Technology, vol.15, issue.4, pp.1066-1071, 1998.
DOI : 10.1175/1520-0426(1998)015<1066:OBCADA>2.0.CO;2

V. Taillandier, V. Echevin, L. Mortier, and J. Devenon, Controlling boundary conditions with a four-dimensional variational data-assimilation method in a non-stratified open coastal model, Ocean Dynamics, vol.54, issue.2, pp.284-298, 2004.
DOI : 10.1007/s10236-003-0068-1

URL : https://hal.archives-ouvertes.fr/hal-00153988

M. Tber, L. Hascoët, A. Vidard, and B. Dauvergne, Building the tangent and adjoint codes of the ocean general circulation model OPA with the automatic differentiation tool tapenade, Research Report, vol.6372, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00192415

P. G. Ten-brummelhuis, A. W. Heemink, H. F. Van-den, and . Boogaard, Identification of shallow sea models, International Journal for Numerical Methods in Fluids, vol.91, issue.8, pp.637-665, 1993.
DOI : 10.1002/fld.1650170802

X. Zou, I. M. Navon, and F. Dimet, An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation, Quarterly Journal of the Royal Meteorological Society, vol.116, issue.508, pp.1163-1186, 1992.
DOI : 10.1002/qj.49711850808