N
N

N

HAL

open science

A Process for Continuous Validation of Self-Adapting
Component Based Systems

Viet Hoa Nguyen, Francois Fouquet, Noél Plouzeau, Olivier Barais

» To cite this version:

Viet Hoa Nguyen, Francois Fouquet, Noél Plouzeau, Olivier Barais. A Process for Continuous Valida-
tion of Self-Adapting Component Based Systems. 7th International Workshop on Models@run.time

of the MODELS 2012 Conference., Oct 2012, Innsbruck, Austria. hal-00764706

HAL Id: hal-00764706
https://inria.hal.science/hal-00764706
Submitted on 13 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00764706
https://hal.archives-ouvertes.fr

A Process for Continuous Validation of
Self-Adapting Component Based Systems
(Position Paper) -

Viet Hoa Nguyen
INRIA, Centre Rennes -
Bretagne Atlantique
Rennes, France

viet-hoa.nguyen@inria.fr

Francois Fouquet

IRISA, Université de Rennes1

Rennes, France

francois.fouquet@irisa.fr

ABSTRACT

In this paper we propose an approach to integrate the use
of time-related stochastic properties in a continuous design
process based on models at runtime. Time-related specifica-
tion of services are an important aspect of component-based
architectures, for instance in distributed, volatile networks
of computation nodes. The models at runtime approach
eases the management of such architectures by maintain-
ing abstract models of architectures synchronized with the
physical, distributed execution platform. For self-adapting
systems, prediction of delays and throughput of a compo-
nent assembly is of utmost importance to take adaptation
decision and accept evolutions that conform to time spec-
ifications. To this aim we define a metamodel extension
based on stochastic Petri nets as an internal time model
for prediction. We design a library of patterns to ease the
specification and prediction of common time properties of
models at runtime and make the synchronization of behav-
iors and structural changes easier. Our prediction engine is
fast enough to perform prediction at runtime in a realistic
setting and validate models at runtime.

Keywords
model driven engineering, performance prediction, valida-
tion at runtime

*The research leading to the results stated in this paper
has received funding from the European Community’s Sev-
enth Framework Program (FP7) under the grant of CHESS
Artemis project.)

*Copyright 2012 ACM 978-1-4503-1802-0/12/10 ...$15.00.

Noél Plouzeau

IRISA, Université de Rennes1

Rennes, France
noel.plouzeau@irisa.fr

Olivier Barais
INRIA, Centre Rennes -
Bretagne Atlantique and

IRISA, Université de Rennes1

_ Rennes, France
olivier.barais@irisa.fr

1. INTRODUCTION

Component-based software design is now a well established
approach for building reusable and trustable systems. In
these systems, trust relies on precise specifications of com-
ponent interfaces and on application of validation techniques
on component implementations. Specifications include typ-
ing properties, behaviors and quantitative properties [4].
Soft real-time systems emphasize time related performance
as a vital quality. Specifications for this kind of system
rank response time and throughput as first class attributes
of the expected system behavior. Designers therefore rely
on quantitative analysis techniques to validate implementa-
tions against specifications. This validation task is mainly
a design time activity, which provides prediction of quan-
titative properties for the system’s needs and capabilities
before these systems are deployed. Designers rely on these
predictions to engineer an appropriate architecture that will
meet the specifications, as long as a set of corresponding
requirements remains valid at run time.

Soft real time systems such as Internet of Things systems
(e.g. networks of smart sensors and personal digital assis-
tants) are a particular class of component based systems, be-
ing highly flexible in their design and configuration. In this
paper we focus on this category of systems that must support
major architectural changes at runtime, without stopping
but instead by hotdeploying. Such a kind of systems are
sometimes named eternal systems. Architectural changes
are a consequence of two main evolution causes: (1) changes
of system’s service definition; (2) changes of system’s imple-
mentation. Changes of service definition include changes of
systems specification stemming from changes of users’ needs,
for instance addition or removal of functionalities, changes in
timing and throughput requirements, changes of preferences
for power management on a mobile device, etc. Changes
of service implementation include changes in resource avail-
ability from the supporting environment of the system, for
instance fluctuations of network bandwidth, or addition of
new computation nodes e.g. sensor equipped mobiles.

Internet of Things systems are large sets of computation
nodes. These systems are opportunistic by design: for a
given application, its execution platform is made of a con-
tinuously evolving set of computation nodes, with very di-
verse computing power and communication capabilities. For
example, a real time cooperative social system can connect
users that share geographical properties (e.g. cycling in the
same city). As users move and switch activities, their per-
sonal digital assistants frequently connect to and disconnect
from the social network, while their communication capabil-
ities fluctuate rapidly[16].

Such systems must be able to reconfigure on the fly, and even
self reconfigurable in real time, without requiring a restart
after reconfiguration. These systems indeed have specific
architectural features, and their design techniques are an
active research topic [5]. However, flexibility should not be
implemented at the expense of loss of trust in the correctness
of these adaptive systems. As these systems’ designs evolve
continuously without human supervision and intervention,
they must also implement self validation without human in-
tervention. Therefore an autonomous self-validation subsys-
tem must be present in the self-adapting system.

In this paper we introduce a design and validation process for
on the fly prediction of time related extra-functional prop-
erties. Our approach is three-fold:

1. We integrate stochastic colored Petri nets as a meta-
model extension for specifying time-related component
properties (Section 2.4).

2. We set up a library of frequently used patterns to help
designers to superimpose timed behavior descriptions
on functional models (Section 2.5). These patterns
also map timing evaluation results back into higher
level system models.

3. We provide an integration of timing evaluation tools
in the models at runtime paradigm (Section 3), with
an evaluation time compatible with rapid changes in
the architecture.

2. OUR APPROACH
2.1 Background

Our work targets highly dynamic software architectures that
rely on the models at runtime technique (M@R for short)[14].
At the heart of M@R lies the capability to evaluate archi-
tecture variants continuously while the system is running,
together with the ability to analyze these architectures in
real time before deploying them, while the current archi-
tecture is running. Most applications need to master per-
formance, in order to offer adequate quality of service. In
the case of applications of the Internet of Things category
(IoT), computing and communication resources are scarce,
and therefore it is important to tune architectures wisely
and to look for optimality of configurations, even while the
underlying platform itself is changing its topology and ca-
pacities constantly.

As a practical example of highly flexible system we are de-
veloping a real time multi-user tactical decision platform
for firefighters. Our experimentation configuration includes

data processing nodes in vehicles, hand held tablets for com-
manding officers on the field, and sensors in personal pro-
tective equipment of firefighters. This platform helps us to
evaluate our approach in a real life situation. We are design-
ing most layers from scratch, from the distributed dynamic
component model up to the computer supported coopera-
tion application. Emergency situations evolve at a fast pace.
Therefore our system must scale up as more and more teams
are dispatched and arrive on site (resource driven changes).
Moreover, user needs evolve on the field when commanding
officers reorganize task forces (user needs driven changes).
Similarly, communication needs and means evolve contin-
uously, as our system deploys various wireless networks to
maintain connectivity between its computation nodes. In
this paper our sample example is taken from this experi-
mentation architecture for firefighters.

2.2 General approach

Our approach builds on the models at runtime one, as we
provide extension means to manage time related stochas-
tic properties (e.g. average delay and throughput, worst
case execution time). More precisely, we rely on structural
models at runtime [14] superimposed with high level design
patterns of timed behavioral descriptions. The monitor, an-
alyze, plan and execute adaptation techniques (MAPE) op-
erate at the platform level, while models at runtime support
higher abstraction levels. MAPE and timed models at run-
time are complementary: using our time extension, MAPE
can use models at runtime time related properties to reason
on models before deployment. Reciprocally, estimates com-
puted at abstract level by prediction algorithms for models
at runtime can be checked against real life values gathered
by monitoring the platform after execution of the hot de-
ployment plan.

However, the true power of models at runtime comes from
the use of prediction: when the current architecture does not
fulfill its goals, alternative architectures have to be generated
and evaluated. Prediction algorithms can help to evaluate
the quantitative properties of these architectures. These al-
gorithms are often specialized and take specific partial mod-
els as inputs and outputs, leading again to the problem of
mapping between the architecture model and the specialized
prediction models used by the tools.

Our design process aims at combining specific quantitative
prediction techniques with models at runtime. To this aim
we rely on metamodel extensions to the Kevoree component
metamodel [6, 1]. These extensions support description of
timed behaviors using design patterns of colored stochastic
Petri nets. The extension to augment component models
with colored stochastic colored Petri nets in shown on Fig-
ure 1. These behaviors can be bound to component ports
(required or provided), they can be bound to operations
from the same component specification, or on operations
in an assembly of component instances.

Our evaluation tool chain is managed as a virtual platform:
using model at runtime we generate a configuration for this
virtual platform, which operates with a simulated time scale.
In a few seconds we can get performance results that would
require long executions on a real platform. The use of a vir-
tual platform improves the evaluation process by easing its

- 0.
0.1 input 0.* arcs J/
H PortTypeBehavio 0.4 &l Node target H arc
1 > = annotation : EStrin = annotation : EStrin
 nodes 9] 0.1 output g
¢ source 0.*
|
H Transition H Place
= fusionGroup : ElntegerObject
0.1 marking
H InternalAction H Externalcall i |
| . |
[] [] [1
1
0.1
priarity 0.1 time condition J{O"I
[Hcode Jo.a1

H priority |
|

El Time | [E condition |
| |

|
| lcode | ! |

Figure 1: CPN extension to the Kevoree metamodel

integration into the global models at runtime architecture.

The models for the virtual platform use a specific platform
metamodel that eases the transformation from timed com-
ponent models to simulation models for the CPN Tools soft-
ware [9]. This virtual platform provides estimates, for pre-
dicting time properties and checking them against specifica-
tions, and it is also able to generate abstract monitors that
can be injected into the running system at the platform level.
In this paper we will address the prediction features only.
2.3 A sample example

In the rest of this paper we present a simplified excerpt from
our experimental platform as a sample example to illustrate
the performance prediction principles. This example de-
scribes a network of sensors that monitors the temperature
outside firefighters’ personal protective equipment. Period-
ically, these sensors send data to a remote server, with a
typical period of 1 second. Sensors are connected to the
application platform through a combination of XBee mesh
networks, Ethernet and 3G networks. We abstract commu-
nication between a sensor and the platform with a simple
channel of the broadcast type, as shown in Figure 2. We
focus here on the following quantitative properties: trans-
mission delay of data between sensors and server, packet
loss rate, throughput of incoming data in the notifier com-
ponent. Our sample configuration is made of 3 sensors that
periodically send information about the most recent updated
temperature to a first server, named server #1 (or Temper-
atureNotifier component) on the centre_node. This server
will then check that the temperature is in the acceptable
interval; if it is greater than 80 or less than 5 than server #1
will transfer this information to server #2 (or Temperature-
Processor, on the centre_node), which monitors abnormal
conditions for the whole firefighter’s team.

The Kevoree component model in Figure 2 defines a system
that includes three sensor components, a group communica-
tion channel, a data log component (TemperatureNotifier)
and a temperature monitoring component. Typically the
sensor Kevoree components are hosted on low power nodes,
while data log and monitoring are deployed in a field com-
putation cloud, usually on a compact ARM based node.

To describe the timed stochastic behavior of this system, this
Kevoree architectural model is transformed automatically

into a colored Petri net model shown in Figure 3. This
model defines the semantics of timed stochastic behaviors for
the sensor components, including the stochastic generation
of values and the exponential distribution of transmission
time. This stochastic generation added into the model can
be seen as the usage model or the open workload of the
system model.

Channel type definition. In Kevoree channel types are fully
user definable, and they carry the binding semantics. The
Kevoree model transformation process must map each chan-
nel instance to a colored Petri net. Channel instances are de-
veloped by fragments, one fragment on each node that con-
nects to the channel using the FIFO semantic. This means
that someChannelFragment communicate with local ports,
and other ChannelFragment of remote ports. As shown in
Figure 3 there are four instances of the Channel 1 imple-
mented on each sensor node and on server node, because all
three sensors and the server node contain components that
connect to the channel. Channel 1 is a broadcast channel,
therefore, as we can see in Figure 4, the CPN model of the
Channel 1 instance on the node 1 derived from the compo-
nent model using a Broadcast Channel Pattern, which will
be explained below. We can see that this instance of Chan-
nel 1 has only two interfaces, which are Arrive and Chan-
nell places because the channel instance on node 1 has only
one required port on server connect to. The transmission
delay between Node 1 and centre_node is expressed by the
distribution function: expTime(10) marked on the toServer
transition.

Figure 5 defines the behavioral view of the TemperatureNo-
tifier component. This component processes input packets
with a thread pool and a FIFO queue. Upon processing a
packet the TemperatureNotifier sends it to the Temperature-
Processor if the data it contains indicates that the sensor’s
temperature is out of bounds. Figure 4 shows the internal
model of the channel, which transfers packets to the com-
ponent. The TemperatureProcessor logs abnormal temper-
atures received from the TemperatureNotifier.

Notifier 9
— TemperatureNofifier ="

Alarm
TemperatureProcessor

Sensor
Temperature Sensor

cAREF—— Sensor2
| &
Temperature Sensor

Figure 2: Architecture of the system wusing the
Kevoree graphical notation

2.4 Injection of performance indicators

MESSAGE

Channel1_2 Channsll

Channell =

MESSAGE MESSAGE

MESSAGE

Processor|
ToCessor

Figure 3: CPN toplevel model generated by Ker-
meta from Kevoree model

MESSAGE MESSAGE

ml~~[m] 10f mi ’

m » ‘—.J
1 Lo e
il m

MESSAGE m::m UNIT

MESSAGES

MESSAGEXHOSTS

@+expTime(10)

[not{check("Server”, 1)]]
m
CThannell
toServer
O]

MESSAGE

Figure 4: The CPN model after the transformation
of the Channel 1 instance implemented in node 1

Following separation of concerns principles, we separate per-
formance indicators from service definition and implementa-
tion. Service definition consists in interfaces bound to ports
of component types. Service implementation is either source
code or assembly of component instances connected by in-
stances of connector types (our Kevoree component meta-
model supports user defined connector types with arbitrary
communication and coordination properties). Component
types designers use instances of our DPPMmetamodel to
specify behavior and performance properties.

Definition of performance indicators. In our approach
component developers describe quantitative properties of
their component implementation by providing an abstract
model of its behavior, including timing properties. We use
colored stochastic Petri nets (CPN for short) to define ab-
straction. CPNs include time variables and distribution
functions to define stochastic behaviors.

CPNs are used as a description of a component timed behav-
ior, both for behaviors known in advance and for the defini-
tion of performance indicators where time variables are un-
known in advance and must be solved by simulation. These
two uses of CPNs correspond to two different activities of
designers in component based systems:

e when defining a component type implementation, a de-
signer provides sufficient definition of the implementa-
tion properties;

e when assembling components a designer must know

3’ thread@o

3" thread@o

ForeadPool

if (#t packet) > 80
then 1" packet
I

else
if (#t packet) <5
then 1" packet
else empty

(thread,packet)
@+proctime

s
Packets cutput (proctime; Packet
ction

a
xpTime(60);

Thread«Packet

Figure 5: Behavioral view of TemperatureNotifier
component

the behavior of these components and the behavior of
the assembly.

Monitor concept. A monitor serves this dual purpose of
specification and simulation, they are constructed from stochas-
tic colored Petri nets extended with measurement and sim-
ulation controls. Our tool chain uses the CPN Tools soft-
ware [9] to implement this monitor notion. Monitors can
observe, inspect, alter a running simulation of a CPN model,
and periodically extract information from the markings and
binding elements during the simulation, to use the informa-
tion for different purposes (performance measuring for ex-
ample). We have adapted the existing Access/CPN Eclipse
plug-in to transmit simulation results on the fly while the
simulation is running. Thanks to the definition of specific
monitors, we can forward simulation results to specific Kevoree
components and therefore provide the timing properties of a
given architectural model to the models at runtime engine.

For example, Figure 6 represents a simple assembly of two
components A and B, with a black transition to denote a
message send. Once a component assembly has been made,
the reasoning engine must select which global non-functional
properties need to be measured, before proceeding to gen-
eration of the CPN model of the system derived from the
component model. In Figure 6 example, the reasoner needs
an estimate for the time elapsed between removal of a token
from place PO and arrival of a token into place P2, in order
to compute the end-to-end response time. From a simula-
tion point of view, we control the update of variables on
monitor instances by defining a color as a record that con-
tains a field named AT, which represents the arrival time
of the user request. Our monitor composition engine gener-
ates a monitor instance with this color, in order to measure
the time elapsed between places P1 and P2. This monitor
associated with the T2 transition, when the T2 transition
occurs, the response time can be calculated by subtracting
the value of the AT field for the request from current model
time.

2.5 Separation of concerns through patterns

While stochastic colored Petri nets are a powerful means of
timed behavior specification, they are too fined grained to
be used directly by designers of component based systems.
Timing concerns are design concerns that can be managed
more easily using patterns, to promote separation of tim-
ing concerns and ease reuse of timing specifications. In [15]
the authors have proposed a set of empirical design patterns
for modeling process-aware information systems, communi-
cation protocols, embedded systems, distributed systems,

sComponents sComponents
=1A [=g

v b

PO TO F T2 P4

Figure 6: Example of a simple system made of a two
components assembly

etc. We have applied this notion to prepare a set of frequent
timed behavior specifications in the form of templates for
Kevoree component types and channel types.

A template is a CPN abstracted as a single transition with
parameters. Just like the well-known design pattern con-
cept, each of CPN pattern addresses a specific timed behav-
ior need. For instance, the broadcast channel pattern defines
a parameterized time behavior useful for channel types that
have a one to many message transmission semantics. Fig-
ure 7 describes the structure of the CPN template when the
receiver set size N is 3.

colset MESSAGEXHOSTS = product MESSAGE * HOSTS;

colsat MESSAGES= list MESSAGE;
colset HOSTS = list HOST;
L0l varei, 2,3t HOST;
Daletad 1

var | : HOSTS;
UNIT var ml | MESSAGES;

MESSAGE

[size(l) = 3]

(m)
, “host3"::1)

Figure 7: Broadcast Channel Pattern.

In this pattern model, we have N + 1 interface places, rep-
resented in blue, and a generic token type named Message.
The internal token types (color sets) are declared in the top
left part of Figure 7.

Using the Kermeta model transformation language we in-
stantiate the broadcast channel pattern from the Kevoree
model. To allow such transformation we have extended
the Kevoree metamodel with a specific metamodel extension
that provide support for pattern definition and reference in
component models.

fusionGroup.

—

H BehaviorTypere

H FusionGroup

0.*

L

¢ fusionGroup | 0.1

patterns

Ou;‘. . O”'o'\.'

nodes
H node

H Pattern | interfaces
O pame : EString [0.

H Transition H Place

I

H Externalcall

H Internalaction

Figure 8: Metamodel extension for CPN patterns

3. SUITABILITY FOR MODELS AT RUN-
TIME

Our process has been designed to offer a balance of power of
prediction and prediction computation time. The tool chain
consists in a set of Kermeta compiled transformations, the
CPNtools external analysis software (packaged as an Eclipse
compatible plugin), a set of generated monitors created from
the patterns instantiated in the Kevoree model and Kevoree
wrapper components that interface with the models at run-
time engine. Running the tool chain on a Kevoree model of
dozen of components produces useful timing predictions in
less than 10 seconds, the longest computation step being the
parsing of the CPNTools model by the external CPN/Ac-
cess plugin [9]. Running the toolchain on an ARM based
node with one GB of memory is possible. In our current
pervasive system configuration, we use this kind of node as
support nodes that perform this kind of models at runtime
computation.

4. RELATED WORK

In this paper we described how CPN models can be used
for component based systems, using the Petri nets as an
abstraction of control flow through the component. In this
regard Petri nets play a role similar to Service Effect Spec-
ifications (SEFFs) in [3]: they describe how a provided ser-
vice of a component calls its required services at some level
of abstraction. In [2], the resource demanding SEFFs (RD-
SEFFs) have been introduced for performance prediction.
The RDSEFFs describe dependencies between required and
provided services of a component. As Finite State Machines
(FSM) are insufficient for quality of service analysis, they
can be extended with stochastic information and QoS char-
acteristics (such as execution time) to make them analyzable
for QoS properties. Paper [8] uses stochastic Petri nets to
model SEFFs for QoS analyses. Paper [13] uses stochastic
regular expressions to model SEFFs. Paper [12] uses anno-
tated UML 2.0 activities as SEFF models. In [8] the authors
give the necessary extension of RDSEFF with Stochastic
Petri nets to model multithreaded systems. This helps to

detect resource conflicts in considering the influence of con-
currency on Quality of Service attributes. Using stochas-
tic Petri nets we can model competition for resources, e.g.
thread pool resources, which has to be considered in a per-
formance prediction model for distributed systems. As in
our approach, [7] relies on CPNs to describe behavioral as-
pects of software architectures. The authors apply quality
models to evaluate security, efficiency and reliability with
CPN descriptions. Interfaces of components are modeled as
colored places, components and connectors are represented
with CPNs, but [7] does not support hierarchical compo-
nents. While [7] supports non-functional aspects by attach-
ing them to tokens, it does not address generation of mon-
itors to measure these non-functional aspects. Composition
of token colors is not managed for component assembly,
which is an important limitation for the dynamic compo-
nent architectures that we address. In [10], the authors show
how Queuing Petri Net models (QPN models) can be used
to predict performance of distributed component-based sys-
tems. QPN models describe hardware and software aspects
of system behavior, such as hardware contention, schedul-
ing strategies, software contention, resource possession, and
synchronization, blocking, synchronization processing. The
active resources are usually modeled using queuing places
and passive resources such as threads, processes are mod-
eled using tokens inside ordinary places. The interaction be-
tween components are described by connecting component
transitions that are modeled as QPN places. The composite
transactions are modeled using composite tokens, so that a
separate token color is used for every sub-transaction. In
this paper, the author assumed that the total service de-
mand of a transaction at a given system resource is spread
evenly over its sub-transactions. The modeling of the sys-
tem may become much more complicated if one would not
like to apply this assumption (this would sound more re-
alistic). Paper [11] presents a research roadmap aiming to
implement intelligent techniques for self-aware performance
and resource management. The authors aim at making their
PCM architecture performance models usable at runtime.
They propose a process based on an online performance
query mechanism for retrieving and combining the models
of all involved services into a single architecture-level perfor-
mance model aiming to answer performance-related queries
arising during operation. This process combine two main
steps : the first uses model composition techniques to make
an architecture-level performance model and the second one
is an automatic model-to-model transformation to gener-
ate the target predictive model (layered queuing network,
queuing Petri nets) from the architecture level performance
model.

5. CONCLUSION AND FUTURE WORK

We have presented the principles we use to perform predic-
tion of time related properties for the models at runtime
approach. We have experimented with a separation of con-
cern strategy based on specific design patterns for the time
dimension, together with automated model transformation.
Our first results show that this approach is implementable
and useful in the context of adaptive, dynamic pervasive sys-
tems that include some reasonably powerful nodes as servers
for models at runtime management. We are currently build-
ing a larger experimental setup to evaluate the scalability of
the approach and check our pattern library against adapta-
tion algorithm for large distributed systems.

6. REFERENCES

[1] Kevoree web site. http://www.kevoree.org.

[2] S. Becker, H. Koziolek, and R. Reussner. Model-based
performance prediction with the palladio component model.
In Proceedings of the 6th international workshop on
Software and performance, pages 54—65. ACM, 2007.

[3] S. Becker, H. Koziolek, and R. Reussner. The palladio
component model for model-driven performance prediction.
J. Syst. Softw., 82:3-22, January 2009.

[4] A. Beugnard, J. Jézéquel, N. Plouzeau, and D. Watkins.
Making components contract aware. Computer,
32(7):38-45, 1999.

[5] B. e. Cheng. Software engineering for self-adaptive systems:
A research roadmap. In B. Cheng, R. de Lemos, H. Giese,
P. Inverardi, and J. Magee, editors, Software Engineering
for Self-Adaptive Systems, volume 5525 of Lecture Notes in
Computer Science, pages 1-26. Springer Berlin /
Heidelberg, 2009.

[6] F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau,
and J.-M. Jezequel. A dynamic component model for cyber
physical systems. In Proceedings of the 15th ACM
SIGSOFT symposium on Component Based Software
Engineering, CBSE 12, pages 135144, New York, NY,
USA, 2012. ACM.

[7] K. Fukuzawa and M. Saeki. Evaluating software
architectures by coloured petri nets. In Proceedings of the
14th international conference on Software engineering and
knowledge engineering, SEKE ’02, pages 263—270, New
York, NY, USA, 2002. ACM.

(8] J. Happe and V. Firus. Using stochastic petri nets to
predict quality of service attributes of component-based
software architectures. In Proceedings of the Tenth
Workshop on Component Oriented Programming
(WCOP2005), volume 94. Citeseer, 2005.

9] K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri
nets and cpn tools for modelling and validation of
concurrent systems. In International Journal on Software
Tools for Technology Transfer, page 2007, 2007.

[10] S. Kounev. Performance modeling and evaluation of
distributed component-based systems using queueing petri
nets. IEEE Trans. Softw. Eng., 32:486-502, July 2006.

[11] S. Kounev, F. Brosig, N. Huber, and R. Reussner. Towards
self-aware performance and resource management in
modern service-oriented systems. In Proceedings of the
2010 IEEE International Conference on Services
Computing, SCC ’10, pages 621624, Washington, DC,
USA, 2010. IEEE Computer Society.

[12] H. Koziolek, J. Happe, and S. Becker. Parameter
Dependent Performance Specifications of Software
Components. In Proceedings of the 2nd International
Conference on Quality of Software Architectures (QoSA),
2006.

[13] H. Koziolek and R. Reussner. A model transformation from
the palladio component model to layered queueing
networks. In Proceedings of the SPEC international
workshop on Performance Evaluation: Metrics, Models
and Benchmarks, pages 58—78, Berlin, Heidelberg, 2008.
Springer-Verlag.

[14] B. Morin, O. Barais, G. Nain, and J.-M. Jézéquel. Taming
Dynamically Adaptive Systems with Models and Aspects.
In 31st International Conference on Software Engineering
(ICSE’09), Vancouver, Canada, May 2009.

[15] N. Mulyar and W. M. van der Aalst. Towards a pattern
language for colored petri nets, 2005.

[16] F. Rahimian, T. Nguyen Huu, and S. Girdzijauskas.
Locality-awareness in a peer-to-peer publish/subscribe
network. In K. GAfischka and S. Haridi, editors,
Distributed Applications and Interoperable Systems, volume
7272 of Lecture Notes in Computer Science, pages 45-58.
Springer Berlin Heidelberg, 2012.

