Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I

Abstract : Classical Schur analysis is intimately connected to the theory of orthogonal polynomials on the circle [Simon, 2005]. We investigate here the connection between multipoint Schur analysis and orthogonal rational functions. Specifically, we study the convergence of the Wall rational functions via the development of a rational analogue to the Szeg\H o theory, in the case where the interpolation points may accumulate on the unit circle. This leads us to generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields asymptotics of a novel type.
Type de document :
Article dans une revue
Journal d'analyse mathématique, Springer, 2011, 114, pp.207-253. 〈http://link.springer.com/article/10.1007/s11854-011-0016-9〉. 〈10.1007/s11854-011-0016-9〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00764820
Contributeur : Martine Olivi <>
Soumis le : lundi 18 février 2013 - 11:10:08
Dernière modification le : vendredi 12 janvier 2018 - 01:48:51

Lien texte intégral

Identifiants

Collections

Citation

Laurent Baratchart, Stanislas Kupin, V. Lunot, Martine Olivi. Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I. Journal d'analyse mathématique, Springer, 2011, 114, pp.207-253. 〈http://link.springer.com/article/10.1007/s11854-011-0016-9〉. 〈10.1007/s11854-011-0016-9〉. 〈hal-00764820〉

Partager

Métriques

Consultations de la notice

366