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Abstract: This short report describes a preliminary study of a method computing meshes of
the standard hyperbolic octagon that respects its symmetries. A prototype software was written,
using the 2D meshing package of the CGAL library [1, 10] and a software computing hyperbolic
triangulations, currently under development [4].
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Maillages de l'octogone hyperbolique

R�esum�e : Ce court rapport d�ecrit une �etude pr�eliminaire d'une m�ethod e permettant de
calculer des maillages de l'octogone hyperbolique qui respecte ses sym�etries. Un logiciel prototype
a �et�e r�ealis�e, utilisant le module de maillages 2D de la biblioth �eque CGAL [1, 10] et un logiciel
de calcul de triangulations hyperboliques en cours de d�eveloppememnt [4].

Mots-cl�es : G�eom�etrie hyperbolique, disque de Poincar�e, triangle de Schwarz, maillage
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1 Introduction

Hyperbolic octagon. The hyperbolic octagon [2] and its meshes have been used in very
various �elds, see eg., [3, 8]. They are often generated in quite a manual way, and they do not
ful�ll the symmetry properties that actually are required for the ap plication. As far as we know,
no available software allows to compute such a mesh in an automatic way.

We consider the unit octagonO in the Poincar�e disk of the hyperbolic plane H2 (see Figure 1)
[6, 5]. The octagon can be seen as the fundamental domain of the action of the �nitely presented
group

G =


a; b; c; dj ababcdcd

�

on H2, where a; b; c; dare hyperbolic translations (see Figure 2).

a

ba

0

b

c

d c

d

Figure 1: Hyperbolic octagon.

G can be thought of as the quotient of the free groupF = ha; b; c; di by the normal closure of
R = f ababcdcdg in F . O is also the Voronoi cell of the originO in the Voronoi diagram of the
set GO of its images by elements ofG. O tiles H2, ie., all images ofO by elements ofG form a
partition of H2.

Hyperbolic Delaunay triangulations. We refer the reader to [4].

2 Meshing the octagon

2.1 Basic mesh

The CGAL 2D mesh package implements a Delaunay re�nement algorithm [10] to mesh a shape
de�ned by a set of given constrained edges in the Euclidean plane. In anutshell, a quality
criterion can be given by the user, and the algorithm re�nes triangles and constrained edges as
long as they do not all satisfy the criterion. A triangles is re�ned by inserting its (Euclidean)
circumcenter in the Delaunay triangulation, while a constrained edge is re�ned by inserting its
(Euclidean) midpoint.

We propose to reuse the package, adapting it to the hyperbolic case.
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a

ba

u

au
bau

ab

abau

ab

aa

aa

0

�xed points

Figure 2: Hyperbolic translation a.

The exibility of CGAL allows us to do so by changing the so-called Traits class, which
provides the algorithm with basic geometric predicates and constructions. Instead of the default
traits class of the package, which provides Euclidean constructions,we plug a new traits class
providing constructions in the hyperbolic plane. The geometric constructions, in the hyperbolic
plane, of the bisector of a line segment (represented as a a circular arc in the Poincar�e disk), and
of the circumcenter of a triangle, are explained in [4]. The midpoint ofa line segment can be
obtained by intersecting it with its bisecting line.

In a similar way, we can modify the quality criterion that the mesh package uses to stop
the re�nement. We replace it by a criterion on the hyperbolic size of a triangle. The area of a
hyperbolic triangle is equal to � � � � , where � � denotes the sum of its angles [6, 5] (see Figure 3).
Such angles can be easily computed using the standard propery that the angle between a chord

A
B

C

O

Figure 3: The area of the hyperbolic (red) triangle ABC is the di�erence between the sum of
angles of the Euclidean (blue) triangle and its own sum of angles.

and the tangent at a vertex is the same as half the angle at the center (see Figure 4). Note
that these computations make an extensive use of the fact that the Poincar�e disk is a conformal

Inria
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A B

O

Figure 4: Property of angles.

model of the hyperbolic plane: it preserves angles.
Figure 5 shows an example of a mesh provided in this way. Visually, the mesh looks a bit

denser at the boundaries of the octagon than at its centers: all triangles have the same hyperbolic
area (up to arithmetic rounding).

Figure 5: Basic mesh.

2.2 Adding symmetries

The Schwarz triangle T(k; l; m ), for

1
k

+
1
l

+
1
m

< 1;

is the hyperbolic triangle with angles �=k , �=l and �=m . Note that in hyperbolic geometry, the
angles of a triangle uniquely de�ne it, up to isometry. The group of a Schwarz triangle T(k; l; m )
is the group of isometries generated by the reexions with respect toits edges.

Under the action of its group, the Schwarz triangleT(8; 3; 2) tiles the octagon (see Figure 6).
Hence, from the properties of the octagon mentioned in introduction, it tiles H2.

Reexions with respect to a hyperbolic line segment AB are computedin the following way. If
AB is supported by a diameter of the Poincar�e disk, then the hyperbolic reexion is a Euclidean
reexion. If AB is supported by a Euclidean circle C of center c and radius r , then the reexion

RR n ° 8179
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Figure 6: The Schwarz triangleT(8; 3; 2) and the octagon (�gure from [9]).

is the inversion de�ned by C: point M is mapped to M 0 such that kcM k � kcM 0k= r 2 and
c; M; M 0 are collinear.

Ou method consists in

ˆ Computing a mesh of the Schwarz triangle as explained in the previous section,

ˆ Applying reexions until the octagon is �lled (there are 96 such ree xions)

A result can be seen in Figure 7.
In [9, 7], a Euclidean mesh is computed in the Schwarz triangleT(8; 3; 2) using Matlab, by

considering that the central triangle is close enough to the center of the Poincar�e disk so that
the hyperbolic distance can be approximated by the Euclidean distance. This approximation is
in fact not precise enough, and the mesh is too sparse close to the boundaries of the octagon. To
try to hide this problem, more points are added close to the center, so that more points appear
after reexions close to the boundaries. See Figure 8.

Since we are perfoming the Delaunay re�nement using constructions in the hyperbolic plane,
our method does not need any manual tuning, and it automatically providesa mesh that respects
both the hyperbolic sizing criterion and the symmetries, and which can be as �ne as needed.

3 Conclusion and future work

The results obtained by this �rst study show that the approach goes in the right direction.
Still, the current prototype implementation is awn by arithmeti c issues: when computing the
midpoint of a hyperbolic line segment, this midpoint is rounded and in fact does not exactly lie on
the segment; then it is not a �xed point through the reexion with res pect to this segment. This
generates two points that are very close, but di�erent, which must be �xed. Such improvements
will allow to release the software in CGAL, maybe as a demo of the package on hyperbolic
Delaunay triangulations in preparation [4].

A higher level open question is to generalize the method and make the software generic so
that it can handle any Schwarz triangle. This would allow to compute meshes of any fundamental
polygon tiling the hyperbolic plane by the action of a Fuchsian group onH2.

Inria
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Figure 7: Mesh with symmetries.

Figure 8: Mesh obtained in [9, 7].
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