Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid

Muriel Boulakia 1, 2 Erica Schwindt 3 Takéo Takahashi 4, 5
2 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
4 CORIDA - Robust control of infinite dimensional systems and applications
IECN - Institut Élie Cartan de Nancy, LMAM - Laboratoire de Mathématiques et Applications de Metz, Inria Nancy - Grand Est
Abstract : In this paper we study a three-dimensional fluid-structure interaction problem. The motion of the fluid is modeled by the Navier-Stokes equations and we consider for the elastic structure a finite dimensional approximation of the equation of linear elasticity. The time variation of the fluid domain is not known a priori, so we deal with a free boundary value problem. Our main result yields the local in time existence and uniqueness of strong solutions for this system.
Document type :
Journal articles
Complete list of metadatas

https://hal.inria.fr/hal-00765176
Contributor : Muriel Boulakia <>
Submitted on : Friday, December 14, 2012 - 11:40:57 AM
Last modification on : Tuesday, May 14, 2019 - 10:12:02 AM

Links full text

Identifiers

Citation

Muriel Boulakia, Erica Schwindt, Takéo Takahashi. Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid. Interfaces and Free Boundaries, European Mathematical Society, 2012, 14 (3), pp.273-306. ⟨10.4171/IFB/282⟩. ⟨hal-00765176⟩

Share

Metrics

Record views

454