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Abstract

Macroscopic models for both vehicular and pedestrian traffic are based on conser-

vation laws. The mathematical description of toll gates along roads or of the escape

dynamics for crowds needs the introduction of unilateral constraints on the observable

flow. This note presents a rigorous approach to these constraints, and numerical integra-

tions of the resulting models are included to show their practical usability.

1. Introduction

The classical Lighthill–Whitham [22] and Richards [23] traffic model is
based on the following simple assumptions:

1. The total number of vehicles is conserved.
2. The speed at a point is a function of the density at that point.

Both assumptions appear perfectly suitable also for the macroscopic mod-
eling of crowds. From the analytical point of view, in 1D, these assumptions
lead to the conservation law

(1.1) ∂tρ+ ∂x

[

ρ v(ρ)
]

= 0

where the speed law v = v(ρ) plays a role analogous to that played by the
equation of state for Euler equations of gas dynamics.
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Along a highway, a toll gate acts as a unilateral constraint on the flow.
Indeed, call q the given maximal flow of vehicles that can pass through
the gate sited at, say, x = 0. Then, the resulting traffic can be reasonably
described through (1.1) supplemented with

(1.2) ρ(t, 0) v
(

ρ(t, 0)
)

≤ q .

(All BV functions, such as solutions to conservation laws, are assumed to
be continuous from the left, so that their value is well defined at any point).

Similarly, consider a crowd escaping along a corridor through an exit.
Let q denote the maximal through flow at the exit sited, say, at x = 0. Then,
again, equation (1.1) supplemented with (1.2) provides a simple though
effective description of the escape dynamics. For other related descriptions
of pedestrian dynamics, see [14,15,16,17,18,19].

Remark, however, that there is a key qualitative difference in the real
evolutions of the two preceding examples. On one hand, the efficiency of the
toll gate is not affected by the amount of vehicles lining up. On the other
hand, as is well known, the crowd heading towards the exit may cause over-
compression phenomena, possibly leading to panic, that may well reduce
the efficiency of the exit. Therefore, in the case of pedestrians, we let the
evolution of (1.1) be governed by nonclassical shocks.

The next section is devoted to the analytical results on (1.1)–(1.2).
Section 3 deals with the toll gate model while Section 4 is devoted to the
case of pedestrians.

2. Analytical Results

Following [8], we consider the Constrained Cauchy Problem (CCP)

(2.3)











∂tρ+ ∂xf(ρ) = 0
ρ(0, x) = ρo(x)
f

(

ρ(t, 0)
)

≤ q(t)

under the standard assumptions

(CCP1) f ∈ C0,1
(

[0, R]; R
)

, f(0) = f(R) = 0, there exists a ρ̄ ∈ ]0, R[
such that f ′(ρ)(ρ̄− ρ) > 0 for a.e. ρ ∈ [0, R].

(CCP2) q ∈ BV
(

R
+; [0, f(ρ̄)]

)

.

Note that in the case f(ρ) = ρ v(ρ), (2.3) reduces to the Cauchy Problem
for (1.1)–(1.2).

To state the next well posedness result, it is useful to introduce the
translation Tt through (Ttq)(τ) = q(τ + t). Below we define a map S : R

+ ×
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D 7→ D, D being a suitable subset of L1 containing the initial data of (2.3).
We then denote by S̄ the map S̄ : R

+ × D̄ 7→ D̄ defined by S̄t(ρ, q) =
(Stρ, Ttq) with D̄ = D × BV.

Following [7,8,25], we use the nonlinear mapping

Ψ(ρ) = sign(ρ− ρ̄)
(

f(ρ̄) − f(ρ)
)

.

Recall that by Riemann Problem we mean the following particular Cauchy
Problem, see also [3, Chapter 5]:

(2.4)















∂tρ+ ∂xf(ρ) = 0

ρ(0, x) =

{

ρl if x < 0
ρr if x > 0 .

Theorem 2.1. [8, Theorem 3.4] Let (CCP1) and (CCP2) hold. Then, for
every constraint q ∈ BV

(

R
+; [0, f(ρ̄)]

)

there exists a map S : R
+ ×D 7→ D

such that

(S1) D ⊇
{

ρ ∈ L1
(

R; [0, R]
)

: Ψ(ρ) ∈ BV(R; R)
}

;

(S2) S̄ is a Semigroup, i.e. S̄0 = Id and S̄t1 ◦ S̄t2 = S̄t1+t2;
(S3) S is non expansive in ρ, i.e. for all ρ1, ρ2 ∈ D

‖Stρ1 − Stρ2‖L1 ≤ ‖ρ1 − ρ2‖L1 ;

(S4) if ρo and q are piecewise constant, then for t sufficiently small, Stρo

coincides with the gluing of the solutions to standard Riemann prob-
lems centered at the points of jump of ρo and to (2.3) at x = 0;

(S5) for all ρo ∈ D, the orbit t 7→ Stρo yields a weak entropy solution
to (2.3), according to [8, definitions 3.1 and 3.2].

The proof uses the standard technique of wave front tracking, see [3, Chap-
ters 6 and 7], and is deferred to [8]. The above statements (S1)–(S4) are
clearly modeled on the definition of Standard Riemann Semigroup, see [3,
Definition 9.1] and provide an analogue to it in the present constrained
(and non autonomous) setting. The Lipschitz estimate (S3) is proved with
suitable modifications of the classical techniques in [20] or [3, Section 6.3].

It is now easy to tackle the Initial Boundary Value Problem

(2.5)











∂tρ+ ∂xf(ρ) = 0 (t, x) ∈ R
+ × R

−

ρ(0, x) = ρo(x) x ∈ R
−

f
(

ρ(t, 0)
)

≤ q(t) t ∈ R
+ .

3
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Indeed, as in the case of the Riemann Problem, a solution to (2.5) is ob-
tained restricting to x < 0 a solution to (2.3) with initial data, say, ρo(x) = 0
for x > 0. The extension to the general Initial Boundary Value Problem



















∂tρ+ ∂xf(ρ) = 0 (t, x) ∈ R
+ × [0, L]

ρ(0, x) = ρo(x) x ∈ [0, L]
f

(

ρ(t, 0)
)

= fo(t) t ∈ R
+

f
(

ρ(t, L)
)

≤ q(t) t ∈ R
+

is immediate, see [9,13] and the references therein as a general reference on
Initial Boundary Value Problems for scalar conservation laws.

In the case of pedestrians, the model presented in [10], see also [11,24], is
based on a flow like that in Figure 1. Note that this particular shape of the

Fig. 1. Left, a flow satisfying the requirements of Theorem 2.2. Superimposed are the
experimental measurements from [16]. Crowd density, ρ, is on the horizontal axis and
flow, ρ v, on the vertical one. Right, another possible flow and the notation.

fundamental diagram was first postulated in [10] and then experimentally
verified in [16]. Moreover, the evolution of the solutions to (1.1) is governed
through the introduction of nonclassical shocks. That is, a Riemann Solver
R is defined, which assigns to every pair ρl, ρr the self similar weak solution
to the Riemann Problem (2.4) computed at time, say, t = 1.

As it is usual when dealing with nonclassical scalar conservation laws,
see [21, Chapter II], we need first to introduce the auxiliary function ψ, see
Figure 2, left. Let ψ(R) = R and, for ρ 6= R, let ψ(ρ) be such that the
straight line through

(

ρ, q(ρ)
)

and
(

ψ(ρ), q ◦ ψ(ρ)
)

is tangent to the graph
of q at

(

ψ(ρ), q ◦ ψ(ρ)
)

. Besides, for ρ̄ ∈ [0, RT [ the line through
(

ρ̄, q(ρ̄)
)

and
(

ψ(ρ̄), q ◦ ψ(ρ)
)

has a further intersection with the graph of q, which
we call

(

φ(ρ̄), q ◦ φ(ρ̄)
)

. Introduce two thresholds s and ∆s such that

(2.6) s > 0 , ∆s > 0 , s < RM and R > s+ ∆s ≥ φ(s) > RT > R− ∆s .

4
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R

R

R∗

R∗

ρl

ρr

0 s

∆s
C

N

Fig. 2. Left, the function ψ: its geometrical meaning. Right, the Riemann Solver: in C,
the solution consists of classical waves only; in N , also nonclassical shocks are present.

We are now ready, following [11], to state the properties that allow to
define R, see [10] for a slightly more general presentation, though limited
to the Riemann Problem.

(R.1) If ρl, ρr ∈ [0, R], then R(ρl, ρr) selects the classical solution unless

ρl > s and ρr − ρl > ∆s .

In this case, R(ρl, ρr) consists of a nonclassical shock between ρl

and ψ(ρl), followed by the classical solution between ψ(ρl) and ρr.
(R.2) If ρr < ρl, then R(ρl, ρr) is the classical solution.
(R.3) If R ≤ ρl < ρr or ρl < R < ρr and the segment between (ρl, q(ρl))

and (ρr, q(ρr)) does not intersect q = q(ρ), then the solution is a
shock between ρl and ρr.

(R.4) If ρl < R < ρr and the segment between (ρl, q(ρl)) and (ρr, q(ρr))
intersects q = q(ρ), then R(ρl, ρr) consists of a nonclassical shock
between ρl and a panic state followed by a possibly null classical
wave. More precisely,

ρr ∈
]

R,ψ(ρl)
[

: R(ρl, ρr) consists of a nonclassical shock between

ρl and ψ(ρl), followed by a decreasing rarefaction between
ψ(ρl) and ρr;

ρr ∈
[

ψ(ρl), R∗

[

: R(ρl, ρr) consists of a single nonclassical shock.

The Riemann Solver defined above is represented in Figure 2, right. Ac-
cording to [10, Theorem 2.1], there exists a unique Riemann Solver defined
by (R.1)–(R.4) which is consistent and L1

loc continuous in C̊ and N̊ , see
Figure 2, right. Recall that consistency is a necessary condition for the L1
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stability of the Cauchy Problem for (1.1). Refer to [10, I and II] or [8, Def-
inition 2.2] for its precise statement.

In the next theorem, we refer to [11,24] for the precise statement of
the conditions on the flow function. Here, it is sufficient to recall that both
diagrams in Figure 1 do satisfy to all of them.

Theorem 2.2. [11, Theorem 3.4] Let f satisfy [10, (Q.1)–(Q.9)]. Let s,
∆s satisfy (2.6) and assume that there exists a constant W satisfying

(2.7) W > 1 and
φ(0)

ψ(0)
≤
W + 1

2W
≤

∆s

ψ(s) − s
.

Then, for any initial datum ρ̄ ∈ (L1∩BV)
(

R; [0, R∗]
)

, the Cauchy Problem
for (1.1) admits a nonclassical weak solution ρ = ρ(t, x) generated by the
nonclassical Riemann Solver R and defined for all t ∈ R

+. Moreover:

(2.8) TV
(

ρ(t)
)

≤W · TV(ρ̄) , for all t ∈ R
+ .

3. Passing through a Toll Gate

This section is devoted to some numerical integrations of (2.3). Our
aim is only to show that this model features reasonable qualitative proper-
ties, hence we choose normalized parameters, leaving to future works the
quantitative agreement with experimental data.

Let the real interval [0, 2] describe a segment of a highway with a toll
gate at its center x = 1, as in Figure 3 The evolution of traffic is described

���
���
���
���
���

���
���
���
���
���

�������������� ��������������

0 x1

Fig. 3. A toll gate sited at x = 1.

by (2.3) with, for instance, f(ρ) = ρ (1− ρ). For simplicity, we assume that
at time t = 0 vehicles are uniformly distributed between x = 0.2 and the
site of the gate x = 1.

Assume that the initial density distribution is ρo(x) = 0.3 for x ∈ [0.2, 1]
and ρo(x) = 0 for x ∈ [0, 2] \ [0.2, 1]. The threshold of the through flow at
the gate is 0.1. Then, the computed time necessary for all the vehicles to
pass the toll gate is t ≈ 2.4 and the evolution described by (2.3) is displayed
in Figure 4. As it has to be expected, the toll gate causes the rise of a queue
to the left of the gate. This queue first increases an then decreases, finally
disappearing when all vehicles passed the gate.
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Fig. 4. Numerical integrations of (2.3) using Rusanov scheme, with f(ρ) = ρ (1 − ρ);
ρo(x) = 0.3 for x ∈ [0.2, 1], ρo(x) = 0 for x ∈ R \ [0.2, 1] and q(t) = 0.1. The constraint
at x = 1 is treated as suggested in [1].

We now let the initial density ρo of vehicles and the efficiency of the
gate q vary, while keeping the other parameters fixed. The time T that is
necessary for all vehicles to pass the gate is then a function of ρo and q, that
is T = T (ρo, q). As it has to be expected, this function is monotone in both
variables, see Figure 5. Note that as q → 0, obviously, T → +∞. Hence, in

0

5

10

15

20

T

0.0
0.2

0.4
0.6

0.8
1.0

ρ00.05
0.25

q

 1.18

 1.21

 1.46  2  3

 5

 8

 12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.05

0.10

0.15

0.20

0.25

ρ0

q

Fig. 5. A density of ρo ∈ [0.1, 1] vehicles is uniformly distributed on [0.2, 1]. A toll gate
is sited at x = 1 and its through flow is q ∈ [0.05, 0.25]. T is the time necessary for all
vehicles to pass the gate. Left, 3D diagram and, right, the level curves with ρo on the
horizontal axis and q on the vertical one.

Figure 5, T is computed only for q ≥ 0.04. Note the vertical segments in the
level curves of T in Figure 5, right. They realistically correspond to the gate
being sufficiently efficient to avoid the rising of queues. On the contrary, as
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soon as the toll gate influences the traffic flow, T is well approximated by
a function of the ratio ρo/q, as also dimensional considerations suggest.

4. Pedestrian Evacuation and Braess Paradox

Consider now a corridor with space coordinate, say, x ∈ [0, L] with
an exit at x = D, with 0 < D < L. Then, the dynamics of the crowd
exiting the corridor is described by (2.3), with the standard Riemann Solver
substituted by that prescribed through (R.1)–(R.4), see [11, Section 4.1]
or [24, Section 2]. In emergency situations, it is well known that the pressure
of the people seeking to exit may dramatically reduce the door efficiency. To
prevent this, often suitable obstacles, typically columns, are posed in front
of the exit, at a suitable distance, to partially sustain the crowd pressure.

In fact, the presence of an obstacle may avoid the insurgence of panic
among the people, therefore keeping the door efficiency at a higher level.
Paradoxically, the insertion of this obstacle may reduce the evacuation time,
although most individuals may have a slightly longer path to reach the
exit. This remarkable behavior reminds of the Braess paradox [2] typical of
networks and is captured by the model presented in [10,11,24].

Assume now that an obstacle is placed in the corridor above at, say,
x = d, with b < d < D. A group of people is uniformly distributed on the

����������
����������
����������
����������

����������
����������
����������
����������

0 xd Da b

Fig. 6. A corridor with an obstacle before the exit.

segment [a, b], with 0 < a < b < d, see Figure 6. Following Section 2 above
and [11, Section 4], one is thus lead to integrate

(4.9)

{

∂tρ+ ∂xf(ρ) = 0 f
(

ρ(t, d−)
)

≤ q
(

ρ(t, d−)
)

ρ(0, x) = ρo(x) f
(

ρ(t,D−)
)

≤ Q
(

ρ(t,D−)
)

with the evolution prescribed by the Riemann Solver defined by (R.1)–
(R.4). The result is shown in Figure 7. As is well known, the efficiency of
the exit may well be dramatically reduced when the crowd is panicking.
Therefore, we assume that

(4.10)

q(ρ) =

{

q̂ if ρ ∈ [0, R]
q̌ if ρ ∈ ]R,R∗]

with q̂ > q̌,

Q(ρ) =

{

Q̂ if ρ ∈ [0, R]

Q̌ if ρ ∈ ]R,R∗]
with Q̂ > Q̌.
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Fig. 7. Numerical integrations of (4.9) using the scheme in [4]. The vertical segments
denote the positions of the obstacle and of the exit. The horizontal segments denote the
maximal non-panic density R and the overall maximal density R∗. Here: a = 0.1, b = 1.1,
d = 2.45, D = 3.1 and L = 3.6. The constraints at x = d,D are treated as in [1].

The evacuation time T is particularly relevant and can be computed
integrating (4.9)–(4.10) numerically following the procedure used in Sec-
tion 3. Having a simple initial datum, i.e. uniformly distributed on a given
segment, an analytical study is also possible. Indeed, the wave front track-
ing technique applied to (4.9)–(4.10) yields Figure 8, right. In Figure 8,
left, the same problem (4.9)–(4.10) is considered, but the obstacle is re-
moved, i.e. q > max

(

ρ v(ρ)
)

. Remarkably, in this particular situation, the
evacuation time with no obstacle is larger than the evacuation time with
the obstacle. The detailed construction of these solutions can be found
in [11, Section 4.2]. Note that the darker regions in Figure 8, left, represent
where the crowd density attains panic values, i.e. ρ ∈ ]R,R∗]. The presence
of the obstacle avoids the density to reach these high values, thus allowing
for a faster evacuation from the room. In particular, we get the diagram in
Figure 9 for the evacuation time, T , as a function of the position of the ob-
stacle, d ∈ ]b,D[. Note that when the obstacle is too near to the exit, i.e. to
the right of the point K in Figure 8, left, its presence becomes negligible.
Indeed, at K panic arises, while the efficiency of the obstacle is primarily
dependent on avoiding it.
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Fig. 8. Left, the structure of the solution to (4.9)–(4.10) with no obstacle, i.e. with
q > max

`

ρ v(ρ)
´

; the evacuation time is tH . Right, the case with the obstacle, the
evacuation time is tR.

Fig. 9. The dotted line is the evacuation time with no obstacle. The solid line is the
evacuation time, T , as a function of the position of the obstacle, d. When the obstacle is
too near to the exit, its presence becomes negligible.

5. Conclusions

We presented some analytical results on unilateral constraints in scalar
conservation laws. They can be used to model real situations, such as

10
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1. traffic flowing across a toll gate;
2. crowd evacuating a corridor.

In both cases, numerical integrations are possible, allowing a detailed de-
scription of the phenomena. Furthermore, the times necessary for vehicles
to cross the gate or for the people to exit the room can be computed.

Reasonable qualitative behaviors of the solutions are described. In par-
ticular, in the case of pedestrians exiting a room, the model presented ac-
counts for the possible decrease in the evacuation time thanks to the careful
insertion of an obstacle at a well chosen position in front of the exit. This
phenomenon, an analog of Braess paradox [2], is clearly non generic.

Acknowledgments. The second author was partially supported by
I.N.R.I.A. Sophia Antipolis - Méditerranée.
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