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ABSTRACT. In this work, we discuss some numerical properties of the viscous
numerical scheme introduced in [8] to solve the one-dimensional pressureless
gases system, and study in particular, from a computational viewpoint, its
asymptotic behavior when the viscosity parameter € > 0 used in the scheme
becomes smaller.

1. Introduction. In this work, we focus on the one-dimensional system describing
a pressureless gas, which writes, for any 7" > 0,

Op + Oz (pu) = 0, (1)
9rq + 0 (qu) =0, (2)

in (0,7] x R, where p(t,z) > 0 is the gas density and ¢(¢,z) € R is the momentum
at time ¢ € [0,T] and location « € R. The gas velocity u(t,z) € R must be somehow
defined as a quotient of g by p, but there is trouble when p is 0. That is why one
needs the notion of duality solutions [5], previously introduced for conservation laws
[4]. Clearly, (1) and (2) can be seen as conservation laws, for mass and momentum
respectively. System (1)—(2) is supplemented with initial conditions

p(0,-) =p"  q(0,)) =q™ (3)

This system arises from very various physical situations (cold plasmas [3], astro-

physics [17, 9], traffic models [1, 13]...) and has been mathematically studied in
numerous articles, such as [14, 10, 16, 5].

We here choose a periodic framework: we focus on [0, 1] and impose that mass

density, velocity and momentum have the same values at both z = 0 and x = 1, so
that the solutions are 1-periodic.
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When p and u are smooth, and if p remains non zero, (2) can be modified into
the standard Burgers equation thank to (1):

u2

) = 0w + udyu = 0. (4)

The mass density p then solves a basic transport equation, where u is given: it
does not depend on p because of (4). But it is common knowledge that, in finite
time, a mass concentration phenomenon can happen, for instance, when u does not
increase. Consequently, the regularity properties of u and p are lost, and u does
not solve (4) anymore.

From the numerical viewpoint, one can think about several ways to discretize
(1)—(3). Kinetic schemes [3, 6] or particle methods [12] allow to use the kinetic
framework underlying the pressureless gas dynamics. It is also natural to try nu-
merical schemes related to hyperbolic conservation laws [15] or relaxation schemes
[2].

In [8], we prove that upwind schemes were not an option, since they failed to
ensure the discrete one-sided Lipschitz (OSL) condition introduced [11] for convex
scalar conservation laws. Then, following the strategy of [7] at the continuous level,
we add an artificial viscosity. The new diffusive scheme we obtain is proven to
be L*°-stable and consistent, hence converging towards the solution of the viscous
pressureless gases system. In particular, it satisfies the discrete OSL condition.
We here investigate, at the numerical level, the asymptotic behavior of the same
numerical scheme when the artificial viscosity vanishes.

2. Diffusive numerical scheme. Let us recall the diffusive scheme we presented
in [8]. Consider At, Az > 0 such that N = T/At € N and I = 1/Az € N, and set
A = At/Az. Denote p', ¢/ and u!" the approximate values of p, ¢ and u at time
nAt € [0,T] and location (i +1/2)Az € [0,1], for 0 <n < N and 0 < i < I. Of
course, thanks to the periodicity property, pi’, ¢/* and u}' can be extended for any
i € Z. For the sake of readability, in the previous notations, we may drop the time
iteration index n and replace n + 1 by a prime symbol /7.

Note that the discrete OSL condition can be written as nA(uy,, — ui) < 1, for
any ¢ and n > 0.

Let us describe step by step the strategy for our scheme.

2.1. Periodic initial data. We choose arbitrary 1-periodic initial data p > 0,
u™ > 0. Indeed, the viscous problem in [7] deals with mass density and velocity,
and not momentum.

2.2. Regularizing initial data. We take a fixed ¢ > 0, small enough. We may
have to regularize both u™ and p™ so that u™, p™ € C'(R;R?.) satisfy the assump-
tions of Theorem 2 in [8], i.e.

pn(z) > Cel/4, u(x) < C, (™) (z) < —, vz € [0,1], (5)

Sl

in

where C' > 0 is a constant not depending on . Note that p
the continuous viscous model involves a division by p.

must lie in RY , since
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The following quantities

U = maxu™ > 0, V = minu™ > 0,
[0,1] [0,1]
A = max(0, ) > 0, R = min p™ > 0,
max(0, max(u™)) 2 o)

may depend on €. More precisely, they must satisfy properties inherited from (5),
ie.

R > Ce'/*, V<U<C, A< ¢

<7 (6)

where C' > 0 does not depend on €.

2.3. Choosing the time and space steps. The steps At and Az > 0 are then

chosen such that
2V
0 Ar < —— 7
< Az <o (7)
1 1 R
— — Az, —————Az? 8
A+ 140" 1e(1 + AT) ”3) ®)

where we set A = At/Az and o = At/Ax?.

0< At Smin(

2.4. Writing the scheme. We eventually write the discretization of the viscous
pressureless gases system as

2 .2

ué:ui—)\<uZ -3 ) +€_U(ui—1+ui 1= 2w), )
2 2 Pi "

pi = (1= Xuj)pi + Au_ypi—1. (10)

2.5. Properties of the scheme. In [8], we prove the following

Theorem 2.1. We assume that (7)—(8) hold. Then we have, for any i and n > 0,

n AAx " R R

i1 S T A pi = > >
1+ AnAt 1+ AnAt — 1+ AT

Moreover, the discrete total mass is conserved. Finally, when € > 0 is fized, scheme

(9)—(10) is first-order consistent (in both t and x) with the viscous pressureless gases
system, and is monotonic.

0.

V<ul <U, ulr —u

2

In other words, both discrete unknown functions satisfy maximum principles, and
the discrete velocity satisfies the OSL condition. Assumptions (8) on At are crucial
to ensure the stability of the scheme. They are related to the standard assumptions
to get stability for explicit schemes on transport or diffusion equations.

3. Numerical study. The viscosity parameter € > 0 is chosen in the first place.
We use several values of ¢ in the following computations: 1074, 1072, 1076, 5x 1077,
1077 and the smallest value g9 = 107%/14, which will be considered as the reference
situation. We take T' =1 s as the final time. Moreover, we focus on one case with
(almost, see the discussion below) smooth initial data. It allows to point out all
the problems arising the pressureless gases system, in particular the regularity loss
phenomenon, already explained in Section 1.
We set, for any = € [0, 1],

. 1 ) 1
P (z) =1+ 5 cos(4mz), u™(z) =22(1 —x) + 7
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We clearly have U =1, V =1/2, A =2 and R = 1/2. When ¢ belongs to the set
of values above, (6) is clearly satisfied. Nevertheless, u™ is not C'*(R;R* ). Indeed,
there is an issue at the bounds of [0,1]. Therefore, we should need to regularize
u'™. Fortunately, it is not necessary: the regularization near 0 and 1 can happen on
intervals whose length may be chosen smaller than 2Axz. We can choose it so that
(u™)’ remains in [—2,2], and consequently, A still equals 2.

Let us now choose Az = 20e. Again, if € belongs to our same set of values, (7)
obviously holds. Then At can be taken as the optimal possible value given by (8),
ie. At =emin (5,50/(1 4 2T)) = be.

We want to study the behavior of our numerical solution with respect to €. In
the following, since p has a measure meaning when € goes to zero, it is really more
convenient to focus on the cumulative mass M, defined by

M(t,z) = / " o(ty) dy.

We first draw the evolution of M and u with respect to x, at two different times,
before and after approximately ¢ = 0.5. Indeed, until ¢ = 0.5, at the continuous
level, u solves the Burgers equation, and there is no regularity loss. But, near time
t = 0.5, a regularity loss happens because of mass concentration and subsequent
vacuum appearance.

g b 4 ——1E-04
- o--LE-05
-2~ LE-06
03 e 1E n 03 o 5E-07
—1E-07

01 0z 03 04 05 06 07 08 09 1 0.19 0.195 02 0.205 021 0215
x

FIGURE 1. Behavior, at time 0.4, of M (a) on [0, 1], (b) focused
around x = 0.2

FIGURE 2. Behavior, at time 0.4, of u (a) on [0,1], (b) focused
around x = 0.2

The solutions are then displayed for various values of €. More precisely, Fig. 1-2
respectively give the behavior of M and u at time ¢ = 0.4, i.e. before the regularity
loss. Of course, the curves are sharpened with smaller values of &, but there is still
no jump at all for either p or wu.
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Fig. 3-4 then present the typical profiles of both M and w after the regularity
loss, here given at final time 7" = 1. The jump is now visible at z = 0.59 on both
figures, and u of course still decreases at the jump abscissa.
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FIGURE 3. Behavior, at final time, of M (a) on [0, 1], (b) focused
around x = 0.59
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FIGURE 4. Behavior, at final time, of u (a) on [0,1], (b) focused
around x = 0.59

Let us now study the evolution of the total momentum

1
Q) = [ plt.oyutt.oyas

with respect to time.

As the reader can see on Fig. 5, till the regularity loss, the numerical conservation
of @ is quite satisfactorily ensured. The property is not recovered after the loss.
This drawback of our scheme (9)-(10) was already pointed out in [8]: we had to
choose between the total momentum conservation (if we write a scheme for p and
q) and the OSL condition (for which we wrote a scheme for p and «). The latter is
in fact crucial to ensure that we select the right solution to the pressureless gases
system. Nevertheless, we can at least state that the order of magnitude of @ is
conserved.

Eventually, we focus on the behavior with respect to e. We focus on the following
quantities

) = mas [M(t.2) — Mot (1)
xe|0,

Eu(t) = max |u(t, z) — uo(t, )|, (12)
z€[0,1]

for the values € under study. Quantities indexed by 0 are of course the ones related
to the reference value of e, gg. Quantities on coarser grids are projected on the
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FI1GURE 5. Checking the momentum for several values of €

(fine) grid of the reference value (g corresponds to 700,000 space cells) in order to
compute the discretized versions of (11)—(12).
Fig. 67 respectively show the behavior of £y; and &, with respect to time.

mass error

Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

FIGURE 6. Behavior of £y w.r.t. t for several values of ¢

These results give us hints of what should be the asymptotic behavior of our
solutions, in particular when we loose regularity. The convergence seems very slow
in € but it was expected since the smallest power of € in the main hypotheses of the
scheme is equal to one fourth, see Eqn. 6. That partially explains that the errors are
quite large, even for quite small values of €. In fact, we were not able to understand
why £ = 1077 gives such a different behavior (in order of magnitude) compared to
not so larger values of €, whereas, from 107% to 1076, the results are close after the
regularity loss.
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velocity error

76! I I I I

Il
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time

FIGURE 7. Behavior of £, w.r.t. t for several values of ¢

4. Perspectives. As expected, the crucial point in the asymptotic behavior of our
scheme is strongly linked to the regularity loss phenomenon which occurs for the
pressureless gases. We should be able to prove reasonable convergence estimates
with respect to € as long as the solutions remain smooth. Beyond the regularity
loss, the situation remains quite unclear.
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