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Santiago Zanella Béguelin4

1 IMDEA Software Institute
{Gilles.Barthe,Cesar.Kunz,JuanManuel.Crespo}@imdea.org

2 Universidad Politécnica de Madrid
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Abstract. EasyCrypt is an automated tool that supports the machine-
checked construction and verification of security proofs of cryptographic
systems, and that has been used to verify emblematic examples of public-
key encryption schemes, digital signature schemes, hash function designs,
and block cipher modes of operation. The purpose of this paper is to
motivate the role of computer-aided proofs in the broader context of
provable security and to illustrate the workings of EasyCrypt through
simple introductory examples.

1 Introduction

The rigorous study of cryptographic systems as mathematical objects originates
with the landmark article “Communication Theory of Secrecy Systems” [?], in
which Shannon defines the notion of perfect secrecy for (symmetric) encryption
systems, and shows that it can only be achieved if the size of keys equals or
exceeds the size of messages. Shannon’s article is often viewed as marking the
beginning of modern cryptography, because it was the first to recognize the
importance of rigorous mathematical definitions and proofs in the analysis of
cryptographic systems.

In contrast to perfect secrecy, which yields unconditional, information-theo-
retic security, modern cryptography yields conditional guarantees that only hold
under computational assumptions. Modern cryptography takes inspiration from
complexity theory: rather than considering arbitrary adversaries against the se-
curity of cryptographic systems, security is established against adversaries with
bounded computational resources. Moreover, the security guarantee itself is
probabilistic and is expressed as an upper bound of the probability of an ad-
versary with bounded resources breaking the security of the system. Typically,
the computational security of a cryptographic system is proved by reduction to
one or more assumptions about the hardness of computational problems. This
reductionist approach originates from the seminal article “Probabilistic Encryp-
tion” [?], in which Goldwasser and Micali elaborate a three-step process for
proving the security of a cryptographic system:



IND-CPA :
(pk, sk)← KG(1η);
(m0,m1, σ)← A1(pk);
b $← {0, 1};
c← E(pk,mb);
b′ ← A2(c, σ)

EF-CMA :
(pk, sk)← KG(1η);
(m, s)← A(pk)

Oracle Sign(m) :
S ← s :: S;
return S(sk,m)

WCR :
k ← KG(1η);
(m1,m2)← A()

Oracle H(m) :
return H(k,m)

Adv
(KG, E,D)
IND-CPA

(A) def

= |Pr [IND-CPA : b = b′]− 1/2|

Adv
(KG,S,V)
EF-CMA

(A) def

= Pr [EF-CMA : V(pk,m, s) ∧m /∈ S]

Adv
(KG,H)
WCR

(A) def

= Pr [WCR : H(k,m1) = H(k,m2) ∧m1 6= m2]

Fig. 1. Experiments corresponding to security notions for various cryptographic con-
structions (from left to right): indistinguishability under chosen-plaintext attack for en-
cryption schemes, existential unforgeability under chosen-message attack for signature
schemes, and weak collision-resistance for keyed hash functions. In these experiments
A denotes an adversary that may have access to oracles; A has access to a signature
oracle S(sk, ·) in experiment EF-CMA and to a hash oracle H(k, ·) in experiment WCR.

1. Formalize precisely the security goal and the adversarial model. A common
manner of proceeding is to consider an experiment in which an adversary
interacts with a challenger. The challenger sets up and runs the experiment,
answers to adversary oracle queries, and determines whether the adversary
succeeds. Figure 1 describes experiments corresponding to some typical se-
curity notions. Formally, an experiment EXP can be seen as a function that
given as input a cryptographic system Π and an adversary A, returns a dis-
tribution over some set of output variables. The advantage of an adversary
A in a security experiment EXP, noted AdvΠ

EXP(A), is defined in terms of
this output distribution.

2. Formalize precisely the assumptions upon which the security of the system
relies. Such assumptions assert the practical unfeasibility of solving a com-
putational (or decision) problem believed to be hard. As security goals, they
can also be formalized by means of experiments between a challenger and an
adversary (an assumption could play the role of a security goal in a lower level
proof). Figure 2 describes some assumptions used to realize cryptographic
functionalities.

3. Define a cryptographic system Π and give a rigorous proof of its security
by exhibiting a reduction from the experiment EXP, corresponding to the
security goal, to one or more computational assumptions. Suppose for sim-
plicity that the reductionist proof involves a single assumption, modelled by
an experiment EXP′. Broadly construed, the reduction must show that for
every efficient adversary A against EXP, there exists an efficient adversary
B against EXP′ whose advantage is comparable to that of A. In most cases,
the proof is constructive and exhibits an adversary B against EXP′ that uses
A as a sub-routine.



DDH0 :
x, y $← [1, ord(G)];
b← A(gx, gy, gxy)

DDH1 :
x, y, z $← [1, ord(G)];
b← A(gx, gy, gz)

OW :
(pk, sk)← KG(1η);
x $← dom(f); y ← f(pk, x);
x′ ← A(pk, y)

Adv
(G, g)
DDH

(A) def

= |Pr [DDH0 : b]− Pr [DDH1 : b]|

Adv
(KG, f)
OW

(A) def

= Pr [OW : f(pk, x′) = y]

Fig. 2. Experiments corresponding to security assumptions used to realize crypto-
graphic goals: Decision Diffie-Hellman problem for a finite cyclic multiplicative group
G with generator g (left) and One-Wayness of a trapdoor function (KG, f) (right).

Early works on provable security take an asymptotic approach to capture
the notions of efficiency and hardness. In this setting, experiments and assump-
tions are indexed by a security parameter, typically noted η, which determines
the size of objects on which computations are performed (e.g. keys, messages,
groups). Asymptotic security equates the class of efficient computations to the
class of probabilistic polynomial-time algorithms, so that security is established
against adversaries whose memory footprint and computation time is bounded
by a polynomial on the security parameter. Moreover, in an asymptotic security
setting, a problem is considered hard when no efficient adversary can achieve a
non-negligible advantage as a function of the security parameter. (A function is
negligible on η when it is upper-bounded by 1/ηc for any c > 0.)

A more practically relevant approach to cryptographic proofs evaluates quan-
titatively the efficiency of reductions. This approach, known as practice-oriented
provable security or concrete security, originates from the work of Bellare and
Rogaway on authentication protocols [?] and the DES block cipher [?]. A typical
concrete security proof reducing the security of a construction Π w.r.t. EXP to
an assumption EXP′ about some object Π ′, begins by assuming the existence of
an adversary A against EXP that runs within time tA (and makes at most qA
oracle queries). The proof exhibits a witness for the reduction in the form of an
adversary B against EXP′ that uses A as a sub-routine, and provides concrete
bounds for its resources and its advantage in terms of those of A, e.g.:

tB ≤ tA + p(qA)

AdvΠ′

EXP
′(B) ≥ AdvΠ

EXP(A)− ǫ(qA)

A concrete security proof can be used to infer sensible values for the parame-
ters (e.g. key size) of cryptographic constructions. Based on an estimate of the
resources and advantage of the best known method to solve EXP′ (and a conser-
vative bound on qA), one can choose the parameters ofΠ such that the reduction
B would yield a better method, thus achieving a practical contradiction.

The game-based approach, as popularized by Shoup [?], and Bellare and
Rogaway [?], is a methodology to structure reductionist proofs in a way that
makes them easier to understand and check. A game-based proof is organized as
a tree of games (equivalently, experiments). The root of the tree is the experiment



that characterizes the security goal, whereas the leaves are either experiments
corresponding to security assumptions or experiments where the probability of
an event of interest can be directly bounded. Edges connecting a game G at
one level in the tree to its successors G1, . . . , Gn correspond to transitions ; a
transition relates the probability of an event in one game to the probability of
some, possibly different, event in another game. Put together, these transitions
may allow to prove, for example, an inequality of the form

Pr [G : E] ≤ a1Pr [G1 : E1] + · · ·+ anPr [Gn : En]

By composing statements derived from the transitions in the tree, one ultimately
obtains a bound on the advantage of an adversary against the experiment at
the root in terms of the advantage of one of more concrete adversaries against
assumptions at the leaves.

Whereas games can be formalized in the usual language of mathematics,
Bellare and Rogaway [?] model games as probabilistic programs, much like we
modelled experiments in Figures 1 and 2. This code-based approach allows giv-
ing games a rigorous semantics, and paves the way for applying methods from
programming language theory and formal verification to cryptographic proofs.
This view was further developed by Halevi [?], who argues that computer-aided
verification of cryptographic proofs would be of significant benefit to improve
confidence in their correctness, and outlines the design of a computer-aided
framework for code-based security proofs.

Verified security [?,?] is an emerging approach to practice-oriented provable
security: its primary goal is to increase confidence in reductionist security proofs
through their computer-aided formalization and verification, by leveraging state-
of-the-art verification tools and programming language techniques. CertiCrypt [?]
realizes verified security by providing a fully machine-checked framework built
on top of the Coq proof assistant, based on a deep embedding of an extensi-
ble probabilistic imperative language to represent games. CertiCrypt implements
several verification methods that are proved sound (in Coq) w.r.t. the seman-
tics of programs and inherits the expressive power and the strong guarantees
of Coq. Unfortunately, it also inherits a steep learning curve and as a result its
usage is time-consuming and requires a high level of expertise. EasyCrypt [?],
makes verified security more accessible to the working cryptographer by means
of a concise input language and a greater degree of automation, achieved by
using off-the-shelf SMT solvers and automated theorem provers rather than an
interactive proof assistant like Coq.

Issues with verified security. Verified security is no panacea and inherits several
of the issues of provable security and formal proofs in general. We only review
briefly some key issues, and refer the interested reader to more detailed reviews
of provable security [?,?,?], and formal proofs [?,?]. We stress that these issues
do not undermine by any means the importance of verified security.

The first issue regards the interpretation of a verified security proof. As the
proof is machine-checked, one can reasonably believe in its correctness with-
out the need to examine the details of the proof. However, a careful analysis of



the statement is fundamental to understand the guarantees it provides. In the
case of verified security, statements depend on unproven hardness assumptions,
which are meaningful only when instantiated with a sensible choice of parame-
ters. Thus, one must consider the security assumptions and convince oneself that
they are adequately modelled and instantiated; proofs relying on flawed or inap-
propriately instantiated assumptions fail to provide any meaningful guarantee. In
addition, cryptographic proofs often assume that some functionalities are ideal.
As with security assumptions, one must convince oneself that modelling primi-
tives as ideal functionalities is reasonable, and that instantiating these primitives
does not introduce subtle attack vectors. Random oracles are a common instance
of ideal functionality; in the Random Oracle Model (ROM) [?], some primitives
used in a cryptographic system, such as hash functions, are modelled as perfectly
random functions, i.e. as maps chosen uniformly from a function space. Proofs
in the ROM are considered as providing strong empirical evidence of security,
despite some controversy [?,?,?].

The second issue is the level of abstraction in security proofs. Security proofs
reason about models rather than implementations. As a result, cryptographic
systems, even though supported by a proof of security, may be subject to prac-
tical attacks outside the model. Prominent examples of practical attacks are
padding oracle attacks [?, ?], which exploit information leakage through error
handling, and side-channel attacks [?,?,?], which exploit quantitative informa-
tion such as execution time or memory consumption. There is a growing body
of work that addresses these concerns; in particular, leakage-resilient security [?]
gives the adversary access to oracles performing side-channel measurements.
However, most of the provable security literature, and certainly all of the verified
security literature, forego an analysis of side-channels.

Organization of the paper. Section 2 overviews the foundations of EasyCrypt.
Subsequent sections focus on examples: One-Time Pad encryption (Section 3),
the nested message authentication code NMAC (Section 4), and ElGamal en-
cryption (Section 5). Section 6 reviews some topics deserving more attention.

2 Foundations

This section reviews the foundations of the code-based game-based approach, as
implemented by EasyCrypt; more detailed accounts appear in [?,?].

Programming language. Games are represented as programs in the strongly-
typed, probabilistic imperative language pWhile:

C ::= skip nop
| V ← E deterministic assignment
| V $← DE probabilistic assignment
| if E then C else C conditional
| while E do C loop
| V ← P(E , . . . , E) procedure call
| C; C sequence



The language includes deterministic and probabilistic assignments, condition-
als, loops, and procedure calls. In the above grammar, V is a set of variable
identifiers, P a set of procedure names, E is a set of expressions, and DE is a
set of probabilistic expressions. The latter are expressions that evaluate to dis-
tributions from which values can be sampled. An assignment x $← d evaluates
the expression d to a distribution µ over values, samples a value according to
µ and assigns it to variable x. The base language of expressions (deterministic
and probabilistic) can be extended by the user to better suit the needs of the
verification goal. The rich base language includes expressions over Booleans, in-
tegers, fixed-length bitstrings, lists, finite maps, and option, product and sum
types. User-defined operators can be axiomatized or defined in terms of other
operators. In the following, we let {0, 1}ℓ denote the uniform distribution over
bitstrings of length ℓ, {0, 1} the uniform distribution over Booleans, and [a, b]
the uniform distribution over the integer interval [a, b].

A program in EasyCrypt is modelled as a set of global variables and a collec-
tion of procedures. The language distinguishes between defined procedures, used
to describe experiments and oracles, and abstract procedures, used to model
adversaries. Quantification over adversaries in cryptographic proofs is achieved
by representing them as abstract procedures parametrized by a set of oracles.

Denotational semantics. A pWhile program c is interpreted as a function JcK
that maps an initial memory to a sub-distribution over final memories. As
pWhile is a strongly-typed language, a memory is a mapping from variables
to values of the appropriate type. When the set of memories is finite, a sub-
distribution over memories can be intuitively seen as a mapping assigning to each
memory a probability in the unit interval [0, 1], so that the sum over all memo-
ries is upper bounded by 1. In the general case, we represent a sub-distribution
over memories using the measure monad of Audebaud and Paulin [?]. Given a
program c, a memory m, and an event E, we let Pr [c,m : E] denote the prob-
ability of E in the sub-distribution induced by JcK m; we often omit the initial
memory m when it is irrelevant.

Relational program logic. Common reasoning patterns in cryptographic proofs
are captured by means of a probabilistic Relational Hoare Logic (pRHL). Its
judgments are of the form

|= c1 ∼ c2 : Ψ ⇒ Φ

where c1 and c2 are probabilistic programs, and the pre- and post-conditions Ψ
and Φ are relations over memories. Informally, a judgment |= c1 ∼ c2 : Ψ ⇒ Φ is
valid if for every two memories m1 and m2 satisfying the pre-condition Ψ , the
sub-distributions Jc1K m1 and Jc2K m2 satisfy the post-condition Φ. As the post-
condition is a relation on memories rather than a relation on sub-distributions
over memories, the formal definition of validity relies on a lifting operator, whose
definition originates from probabilistic process algebra [?,?].

Relational formulae are represented in EasyCrypt by the grammar:

Ψ, Φ ::= e | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ =⇒ Φ | ∀x. Φ | ∃x. Φ



where e stands for a Boolean expression over logical variables and program vari-
ables tagged with either 〈1〉 or 〈2〉 to denote their interpretation in the left or
right-hand side program; the only restriction is that logical variables must not
occur free. The special keyword res denotes the return value of a procedure and
can be used in the place of a program variable. We write e〈i〉 for the expres-
sion e in which all program variables are tagged with 〈i〉. A relational formula
is interpreted as a relation on program memories. For example, the formula
x〈1〉+ 1 ≤ y〈2〉 is interpreted as the relation

Φ = {(m1,m2) | m1(x) + 1 ≤ m2(y)}

Reasoning about probabilities. Security properties are typically expressed in
terms of probability of events, and not as pRHL judgments. Pleasingly, one
can derive inequalities about probability quantities from valid judgments. In
particular, assume that Φ is of the form A〈1〉 =⇒ B〈2〉, i.e. relates pairs of
memories m′

1 and m′
2 such that when m′

1 satisfies the event A, m′
2 satisfies the

event B. Then, for any two programs c1 and c2 and pre-condition Ψ such that
|= c1 ∼ c2 : Ψ ⇒ Φ is valid, and for any two memories m1 and m2 satisfying
the pre-condition Ψ , we have Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]. Other forms of
pRHL judgments allow to derive more complex inequalities and capture other
useful forms of reasoning in cryptographic proofs, including Shoup’s Fundamen-
tal Lemma [?].

3 Perfect Secrecy of One-Time Pad

Shannon [?] defines perfect secrecy of an encryption scheme by the condition
that learning a ciphertext does not change any a priori knowledge about the
likelihood of messages. In other words, for any given distribution over messages,
the distribution over ciphertexts (determined by the random choices of the key
generation and encryption algorithms) must be independent of the distribution
over messages. Shannon shows that perfect secrecy can only be achieved if the
key space is at least as large as the message space, and that the One-Time Pad
encryption scheme (also known as Vernam’s cipher) is perfectly secret.

For any positive integer ℓ, One-Time Pad is a deterministic symmetric en-
cryption scheme composed of the following triple of algorithms:

Key Generation The key generation algorithm KG outputs a uniformly dis-
tributed key k in {0, 1}ℓ;

Encryption Given a key k and a message m ∈ {0, 1}ℓ, E(k,m) outputs the
ciphertext c = k ⊕m (⊕ denotes bitwise exclusive-or on bitstrings);

Decryption Given a key k and a ciphertext c ∈ {0, 1}ℓ, the decryption algo-
rithm outputs the message m = k ⊕ c.

We represent the a priori distribution over messages by a user-defined probabil-
isitc operator M. We prove perfect secrecy of One-Time Pad by showing that



encrypting a message m sampled according to M results in a ciphertext dis-
tributed uniformly and independently from m. We prove this by showing that
the joint distribution of c,m in experiments OTP and Uniform below is the same:

Game OTP : m $←M; k ← KG(); c← E(k,m);

Game Uniform : m $←M; c $← {0, 1}ℓ;

In a code-based setting, this is captured by the following relational judgment:

|= OTP ∼ Uniform : true⇒ (c,m)〈1〉 = (c,m)〈2〉 (1)

The OTP and Uniform experiments are formalized in EasyCrypt as follows:

game OTP = {

var m : message

var c : ciphertext

fun KG() : key = { var k:key = {0, 1}ℓ; return k; }

fun Enc(k:key, m:message) : ciphertext = { return (k ⊕ m); }

fun Main() : unit = { var k:key; m = M(); k = KG(); c = Enc(k, m); }

}.

game Uniform = {

var m : message

var c : ciphertext

fun Main() : unit = { m = M(); c = {0, 1}ℓ; }

}.

where the types key, message and ciphertext are all synonyms for the type of
bitstrings of length ℓ.

The relational judgment (1) is stated and proved in EasyCrypt as follows:

equiv Secrecy : OTP.Main ∼ Uniform.Main : true =⇒ (c,m)〈1〉 = (c,m)〈2〉.
proof.

inline KG, Enc; wp.

rnd (c ⊕ m); trivial.

save.

The proof starts by inlining the definition of the procedures KG and Enc, and
applying the wp tactic to compute the relational weakest pre-condition over the
deterministic suffix of the resulting programs. This yields the following interme-
diate goal:

pre = true

stmt1 = m = M(); k = {0, 1}ℓ;

stmt2 = m = M(); c = {0, 1}ℓ;
post = (k ⊕ m, m)〈1〉 = (c, m)〈2〉



At this point, we can apply the following pRHL rule for proving equivalence of
two uniformly random assignments over the same domain:

f is a bijection Ψ =⇒ ∀x ∈ {0, 1}ℓ. Φ {x/k〈1〉} {f(x)/c〈2〉}

|= k $← {0, 1}ℓ ∼ c $← {0, 1}ℓ : Ψ ⇒ Φ

This rule is automated in EasyCrypt by the tactic rnd. When given as argument
a single expression f as in the above proof script, rnd yields a new goal where
the post-condition is a conjunction of two formulas universally quantified:

pre = true

stmt1 = m = M();

stmt2 = m = M();

post = ∀x ∈ {0, 1}ℓ. (x⊕ m〈2〉)⊕ m〈2〉 = x ∧ (x⊕ m, m)〈1〉 = (x⊕ m, m)〈2〉

The first formula in the post-condition asserts that f , seen as a function of
c, is an involution (and thus bijective). The second formula is the outcome of
substituting x for k〈1〉 and f(x) = x⊕m〈2〉 for c〈2〉 in the original post-condition.
Combining these two formulas under a single quantification results in a more
succint goal. A similar rule could be applied to prove an equivalence between
the remaining (identical) random assignments. This would leave us with a goal
where the statements in both programs are empty and for which it suffices to
show that the pre-condition implies the post-condition; the tactic trivial does
all this automatically using an external solver (e.g. Alt-Ergo [?]) to discharge
the resulting proof obligation:

true =⇒ ∀x, y ∈ {0, 1}ℓ. (x⊕ y)⊕ y = x ∧ (x⊕ y, y) = (x ⊕ y, y)

4 The NMAC Message Authentication Code

Message Authentication Codes (MACs) are cryptographic algorithms used to
provide both authenticity and data integrity in communications between two
parties sharing a secret key. At an abstract level, a MAC algorithm M takes as
input a key k ∈ K and a message m, and returns a short bitstring M(k,m)—a
tag. Given a message m and a key k, a verification algorithm can determine
the validity of a tag; for stateless and deterministic MACs, this can be simply
done by re-computing the tag. A MAC algorithm is deemed secure if, even after
obtaining many valid tags for chosen messages, it is unfeasible to forge a tag for a
fresh message without knowing the secret key k. Formally, this can be expressed
in terms of the experiment EF-MAC in Figure 3 by requiring that the advantage
of an adversary A that makes at most q queries to a MAC oracle for a freshly
sampled key be negligible, where:

AdvM
EF-MAC(q)(A)

def

= Pr [EF-MAC : y = M(k, x) ∧ x /∈ X ∧ n ≤ q]



Game EF-MAC :
k $← K;
X ← nil;
n← 0;
(x, y)← A()

Oracle MAC(x) :
X ← x :: X;
n← n+ 1;
z ←M(k, x);
return z

Game WCR :
k $← K;
n← 0;
(x1, x2)← A()

Oracle F(x) :
n← n+ 1;
return F (k, x)

Fig. 3. Security experiments for MAC Forgery and Weak Collision Resistance

In the remainder of this section we overview the security proof of the NMAC

construction [?]. Let ℓ and b be positive integers such that ℓ ≤ b, and let
pad : {0, 1}∗ → ({0, 1}b)+ be an injective function that pads an arbitrary length
input message to a positive multiple of b. The NMAC construction transforms
a secure fixed input-length MAC f : {0, 1}ℓ × {0, 1}b → {0, 1}ℓ into a secure
variable input-length MAC:

NMAC : ({0, 1}ℓ × {0, 1}ℓ)× {0, 1}∗ → {0, 1}ℓ

NMAC((k1, k2),m) def

= F (k1, F (k2,m))

where F (k,m) = f∗(k, pad(m)) and f∗ : {0, 1}ℓ × ({0, 1}b)∗ → {0, 1}ℓ is the
function that on input k ∈ {0, 1}ℓ and x = x1 · · ·xn consisting of n b-bits blocks
returns hn, where h0 = k and hi = f(hi−1, xi) for 1 ≤ i ≤ n.

The proof of security for NMAC establishes that it is no more difficult to
forge a valid message for NMAC than forging a valid message for the underlying
function f , viewed as a MAC, or finding a collision for the keyed function F .
Formally, we define Weak Collision-Resistance for F in terms of the experiment
WCR shown in Figure 3, and define the advantage of an adversary A making at
most q queries to F as

AdvF
WCR(q)(A)

def

= Pr [WCR : F (k, x1) = F (k, x2) ∧ x1 6= x2 ∧ n ≤ q]

Given an arbitrary adversary A against the security of NMAC, we exhibit two
adversaries AF and Af such that

AdvNMAC

EF-MAC(q)(A) ≤ AdvF
WCR(q + 1)(AF ) +Adv

f

EF-MAC(q)(Af ) (2)

Figure 4 shows the tree of games used in the proof. We start from the game
encoding an attack against the security of NMAC. We then define another game
EF-MAC′ that just introduces a list Y to store the intermediate values of F (k2, x)
computed to answer to oracle queries, and simplifies the definition of NMAC using
the identity

NMAC((k1, k2),m) def

= f(k1, pad(F (k2,m)))

whose validity stems from the fact that the outer application of the function F
is on a message of ℓ ≤ b bits. We prove the following judgment:

|= EFMAC ∼ EFMAC′ : true⇒
(y = NMAC((k1, k2), x) ∧ x /∈ X ∧ n ≤ q)〈1〉 ⇐⇒
(y = f(k1, pad(F (k2, x))) ∧ x /∈ X ∧ n ≤ q)〈2〉



From which we have

AdvNMAC

EF-MACq(A) = Pr
[

EF-MAC′ : y=f(k1, pad(F (k2, x))) ∧ x /∈X ∧ n ≤ q
]

(3)

We now make a case analysis on whether, when the experiment EF-MAC′ finishes
and A succeeds, there is a value x′ ∈ X s.t. F (k2, x) = F (k2, x

′) or not. Since
we are interested only in executions where x /∈ X , to make this case analysis it
suffices to check whether the value F (k2, x) is in the list Y .

– If there exists x′ ∈ X such that F (k2, x) = F (k2, x
′), we exhibit an adversary

AF against theWCR of F that finds a collision. This is trivial: x and x′ collide
and are necessarily distinct because one belongs to X while the other does
not;

– If there is no x′ ∈ X such that F (k2, x) = F (k2, x
′), we exhibit an adversary

against the MAC-security of the function f that successfully forges a tag.
Indeed, if (x, y) is a forgery for NMAC, then (pad(F (k2, x)), y) is a forgery
for f .

We prove the following judgments:

� EF-MAC′ ∼WCRF : true⇒
(y = f(k1, pad(F (k2, x))) ∧ x /∈ X ∧ n ≤ q ∧ F (k2, x) ∈ Y )〈1〉 =⇒
(F (k, x1) = F (k, x2) ∧ x1 6= x2 ∧ n ≤ q + 1)〈2〉

� EF-MAC′ ∼ EF-MACf : true⇒
(y = f(k1, pad(F (k2, x))) ∧ x /∈ X ∧ n ≤ q ∧ F (k2, x) /∈ Y )〈1〉 =⇒
(y = f(k, x) ∧ x /∈ X ∧ n ≤ q)〈2〉

From which follows

Pr
[

EF-MAC′ : y = f(k1, pad(F (k2, x))) ∧ x /∈ X ∧ n ≤ q
]

≤
Pr [WCRF : F (k, x1) = F (k, x2) ∧ x1 6= x2 ∧ n ≤ q + 1]+
Pr [EF-MACf : y = f(k, x) ∧ x /∈ X ∧ n ≤ q]

(4)

We conclude from (3) and (4) that the bound (2) holds.
We observe that the bound in [?, Theorem 4.1] is off-by-one: the adversary

against the WCR-security of F must call the iterated hash function one more
time in order to find another value x′ that collides with x among the queries
made by the adversary against NMAC. Thus, one must assume that the function
F is secure against adversaries that make q + 1 rather than just q queries.

5 ElGamal Encryption

ElGamal is a public-key encryption scheme based on the Diffie-Hellman key
exchange. Given a cyclic groupG of order q and a generator g, its key generation,
encryption, and decryption algorithms are defined as follows:

KG() def

= x $← [1, q]; return (gx, x)
E(α,m) def

= y $← [1, q]; return (gy, αy ×m)
D(x, (β, ζ)) def

= return (ζ × β−x)



Game EF-MAC :

k1, k2 $← {0, 1}
ℓ;

X ← nil;
n← 0;
(x, y)← A()

Oracle MAC(x) :
X ← x :: X;
n← n+ 1;
z ← NMAC((k1, k2), x);
return z

Game EF-MAC′ :

k1, k2 $← {0, 1}
ℓ;

X,Y ← nil;
n← 0;
(x, y)← A()

Oracle MAC(x) :
y ← F (k2, x);
X ← x :: X;
Y ← y :: Y ;
n← n+ 1;
return f(k1, pad(y))

Game WCRF :

k $← {0, 1}
ℓ;

(x1, x2)← AF ()

Adversary AF () :
k1 ← {0, 1}

ℓ;
Y X ← nil; n← 0;
(x, y)← A();
y′ ← F(x);
return (x, Y X[y′])

Oracle MAC(x) :
y ← F(x);
Y X[y]← x;
z ← f(k1, pad(y));
return z

Oracle F(x) :
n← n+ 1;
return F (k, x)

Game EF-MACf :

k $← {0, 1}
ℓ;

X ← nil;
n← 0;
(x, y)← Af ()

Adversary Af () :

k2 ← {0, 1}
ℓ;

(x, y)← A( );
z←pad(F (k2, x), y);
return z

Oracle MAC(x) :
y ← F (k2, x);
z ← f(pad(y));
return z

Oracle f(x) :
X ← x :: X;
n← n+ 1;
return f(k, x)

Fig. 4. Tree of games in the proof of the NMAC construction

Shoup [?] uses ElGamal as a running example to review some interesting points
in game-based proofs. We outline a code-based proof of the indistinguishability
under chosen-plaintext attacks of ElGamal by reduction to the Decision Diffie-
Hellman (DDH) assumption on the underlying group G. The experiments en-
coding both the security goal and the assumption, were introduced before in
Figures 1 and 2 and are instantiated for ElGamal in Figure 5.

Indistinguishability under chosen-plaintext attacks requires that an efficient
adversary cannot distinguish, except with small probability, between two ci-
phertexts produced from messages of its choice. In the experiment IND-CPA,
the challenger samples a fresh pair of keys using the algorithm KG and gives
the public key pk to the adversary, who returns two plaintexts m0,m1 of his
choice. The challenger then tosses a fair coin b and gives the encryption of mb

under pk back to the adversary, whose goal is to guess which message has been
encrypted. We model an IND-CPA adversary A in EasyCrypt as two unspecified
procedures that share state by means of an explicit state variable σ. By keep-
ing the type of this variable abstract, we obtain a generic reduction. Using the



keyword res that denotes the return value of a procedure in EasyCrypt, we define
the IND-CPA-advantage of A as in Fig. 1:

Adv
ElGamal

IND-CPA(A)
def

=

∣

∣

∣

∣

Pr [IND-CPA : res]−
1

2

∣

∣

∣

∣

The DDH problem consists in distinguishing between triples of the form
(gx, gy, gxy) and (gx, gy, gz), where the exponents x, y, z are uniform and in-
dependently sampled from the interval [1..ord(G)]. The DDH-advantage of an
adversary B is defined as:

Adv
(G, g)
DDH

(B) def

= |Pr [DDH0 : res]− Pr [DDH1 : res]|

Figure 5 presents the overall structure of the reduction, showing a concrete
DDH distinguisher B that achieves exactly the same advantage as an arbitrary
IND-CPA adversary A, with constant resource overhead.

Game IND-CPA :
(pk, sk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
c← E(pk,mb);
b′ ← A2(c, σ);
return b = b′

Game DDH0 :
x, y $← [1, q];
d← B(gx, gy, gxy);
return d

Adversary B(α, β, γ) :
(m0,m1, σ)← A1(α);
b $← {0, 1};
b′ ← A2((β, γ ∗mb), σ);
return b = b′

Game DDH1 :
x, y, z $← [1, q];
d← B(gx, gy, gz);
return d

Game IND :
x, y $← [1, q];
(m0,m1, σ)← A1(g

x);
z $← [1, q];
b′ ← A2((g

y, gz), σ);
b $← {0, 1};
return b = b′

Fig. 5. Game-based proof of IND-CPA-security of ElGamal. Games DDH0 and DDH1,
enclosed in a dotted box, share the same definition for the concrete adversary B.

The proof requires showing the validity of two pRHL judgments. The first
judgment relates the experiment IND-CPA to the instantiation of game DDH0

with the concrete adversary B defined in Figure 5. We prove that the distribution
of the result of the comparison b = b′ in game IND-CPA coincides with the
distribution of d in game DDH0, i.e.

|= IND-CPA ∼ DDH0 : true⇒ res〈1〉 = res〈2〉

From this, we can derive the equality

Pr [IND-CPA : res] = Pr [DDH0 : res] (5)



The second judgment relates the game DDH1 instantiated with the same
adversary B to a game IND, where the guess b′ of the adversary A no longer
depends on the challenge bit b:

|= DDH1 ∼ IND : true⇒ res〈1〉 = res〈2〉

We state and prove this judgment in EasyCrypt using the following proof script:

equiv DDH1 IND : DDH1.Main ∼ IND.Main : true =⇒ res〈1〉 = res〈2〉.
proof.

inline B; swap〈1〉 3 2; swap〈1〉 [5-6] 2; swap〈2〉 6 -2.

auto.

rnd ((z + log(b ? m0 : m1)) % q), ((z - log(b ? m0 : m1)) % q); trivial.

auto.

trivial.

save.

The inline tactic expands calls to procedures by replacing them with their
definitions, performing appropriate substitutions and renaming variables if nec-
essary. The tactic swap pushes a single instruction or a block of instructions
down if its second arguments is positive, or up if it is negative. Dependencies
are checked to verify these transformations are semantics-preserving. The tactic
rnd f, f−1 applies the same rule for random assignments that we described in
Section 3; except that this time we provide a function f and its inverse f−1 by
means of justification of its bijectivity. The tactics auto and trivial implement
heuristics to combine simpler tactics. For instance, the above applications of
auto apply the wp transformer and tactics that implement rules for determin-
istic and random assignments and calls to abstract procedures. This suffices to
prove the goal without any user intervention.

It follows from the above judgment that

Pr [DDH1 : res] = Pr [IND : res] (6)

The right-hand side of this equality is exactly 1/2, i.e.

Pr [IND : res] =
1

2
(7)

This can be proven by direct computation:

claim Fact : IND.Main[res] = 1%r / 2%r by compute.

We conclude putting the above equations (5)–(7) together that

Adv
(G, g)
DDH

(B) = AdvElGamal

IND-CPA(A)



6 Conclusion

EasyCrypt is a framework for computer-aided cryptographic proofs. It improves
confidence in cryptographic systems by delivering formally verified proofs that
they achieve their purported goals. In this paper, we have illustrated how Easy-

Crypt can be used to verify elementary examples. In other works, we have applied
EasyCrypt to a range of emblematic examples, including asymmetric encryption
schemes [?], signature schemes [?], hash function designs [?,?], and modes of op-
eration for block ciphers. We conclude this article with a review of some topics
that deserve further attention. Other topics, not developed below, include the
automated synthesis of cryptographic schemes, and the development of more
expressive relational program logics for probabilistic programs.

Compositionality. Compositionality and abstraction are fundamental principles
in programming language semantics. They are supported by notions such as
modules, which are key to structure large software developments. In contrast,
it has proved extremely intricate to design general and sound abstraction and
compositionality mechanisms for cryptographic proofs. For instance, a recent
analysis [?] of the limitations of the indifferentiability framework [?] illustrates
the difficulty of instantiating generic proofs to specific constructions. We believe
that the code-based approach provides an excellent starting point for developing
sound compositional reasoning methods, and that these methods can be incor-
porated into EasyCrypt.

Automation. EasyCrypt provides automated support to prove the validity of
pRHL judgments and to derive inequalities about probability quantities. How-
ever, it does not implement any sophisticated mechanism to help users discover
or build intermediate games in a game-based proof. It would be interesting to
investigate whether one can develop built-in strategies that capture common
patterns of reasoning in cryptographic proofs, and generate proof skeletons in-
cluding the corresponding games and pRHL judgments. A more ambitious goal
would be to enhance EasyCrypt with a language for programming strategies, in
the way proof assistants such as Coq allow users to program their own tactics.

Certification and mathematical libraries. EasyCrypt was conceived as a front-end
to the CertiCrypt framework. In [?], we report on a proof-producing mechanism
that converts EasyCrypt files into Coq files that can be machine-checked in the
CertiCrypt framework. Certification remains an important objective, although
the proof-producing mechanism may fall temporarily out of sync with the devel-
opment of EasyCrypt. As cryptographic constructions and proofs rely on a wide
range of mathematical concepts, the further development of extensive libraries
of formalized mathematics is an essential stepping stone towards this goal.


