N
N

N

HAL

open science

Verified Security of Merkle-Damgaard

Michael Backes, Gilles Barthe, Matthias Berg, Benjamin Grégoire, Cesar

Kunz, Malte Skoruppa, Santiago Zanella-Béguelin

» To cite this version:

Michael Backes, Gilles Barthe, Matthias Berg, Benjamin Grégoire, Cesar Kunz, et al.. Verified Security
of Merkle-Damgaard. 25th IEEE Computer Security Foundations Symposium, CSF 2012, Jun 2012,

Cambridge, MA, United States. pp.354-368, 10.1109/CSF.2012.14 . hal-00765883

HAL Id: hal-00765883
https://inria.hal.science/hal-00765883
Submitted on 17 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00765883
https://hal.archives-ouvertes.fr

Verifiable Security of Merkle-Damgard

Michael Backe$!, Gilles Barthé, Matthias Ber§, Benjamin Grégoire
César KunZf, Malte Skorupphand Santiago Zanella Beguefin

§Saarland University, Saarbicken, Germany IMax Planck Institute for Software Systems, Germany
Email: {backes, berg, skorupp@cs.uni-saarland.de
YUniversidad Poliecnica de Madrid, Spain TIMDEA Software Institute, Madrid, Spain
Email: {Gilles.Barthe, Cesar.Kun@imdea.org
fINRIA Sophia Antipolis-Mditerraree, France
Email: Benjamin.Gregoire@inria.fr
*Microsoft Research

Email: santiago@microsoft.com

Abstract—Cryptographic hash functions provide a basic data realization from a formal verification perspective. When
authentication mechanism and are used pervasively as buildg taking a verified security approach, proofs are mechawicall
blocks to realize many cryptographic functionalities, induding yerified and built with the aid of state-of-the-art verificat

block ciphers, message authentication codes, key exchange
protocols, and encryption and digital signature schemes.ice tools, such as SMT solvers, automated theorem provers and

weaknesses in hash functions may imply vulnerabilities intte interactive proof assistant&asyCrypt [8] is an automated
constructions that build upon them, ensuring their securiy ~ framework that aims to make verified security accessible
is essential. Unfortunately, many widely used hash functits, to cryptographers with a limited background in formal
including SHA-1 and MD5, are subject to practical attacks. The methods; it has been successfully applied to verify exact

search for a secure replacement is one of the most active tagi itv b ds of | diqital si ¢ d i
in the field of cryptography. In this paper we report on the ~ SE€CUrty bounds or several digital signature and encryptio

first machine-checked and independently-verifiable proofsof ~ Schemes.

collision-resistance and indifferentiability of Merkle-Damgérd, In this paper, we report on an extensiorkasyCrypt and

a construction that underlies many existing hash functions s application to build and verify exact security proofsioé
Our proofs are built and verified using an extension of \onje Damgard construction [23], [31], which underlies
the EasyCrypt framework, which relies on state-of-the-art
verification tools such as automated theorem provers, SMT the design of many cryptographic hash functions. In its sim-
solvers, and interactive proof assistants. plest formulation, Merkle-Damgard iterates a compreassio
function f : {0,1}* x {0,1}® — {0,1}" over the blocks

of an input message padded to a block boundary. For a

I. INTRODUCTION . C 2 .
fixed public initialization vectollV, the digest of a padded

Cryptographic hash functions provide a basic data authemrmessage with blocks, || - - - || «, is computed as
tication mechanism and are routinely used as building dock
in other cryptographic constructions. For a given input fxe, f(xo—1,... f(z1,IV)...)

a cryptographic hash functioH outputs a digest (m) of
some small fixed length. For most tasks, it is required that One way of arguing that iterated constructions like
finding distinct inputs with the same digest—a collision— Merkle-Damgard are secure is to show that they preserve
be difficult. However, recent research has demonstrated thaecurity properties of the underlying compression fumctio
widely used hash functions, including SHA-1 and MD5, areThe seminal works of Merkle [31] and Damgard [23] show
vulnerable to collision attacks [28], [36], [37]. In respen that if messages are padded in some specific way, finding
to these concerns, the U.S. National Institute of Standardisvo colliding messages for the above iterated construction
and Technology (NIST) started in November 2007 a publids at least as hard as finding two colliding inputs for the
competition to develop new cryptographic hash functions tacompression functioifi; said otherwise, that the construction
augment a set of standard functions that includes the SHA-fireserves the collision resistance of the compression-func
and SHA-2 algorithms. This competition, commonly known tion. We present a proof of a generalization of this result in
as theSHA-3 competitionmotivated a growing interest in EasyCrypt. Our proof applies when the padding function is
developing cryptographic hash functions and in rigorouslysuffix-free, i.e. the padding of a messageis not a suffix
scrutinizing their security. of the padding of any other messagg.

Verified security [8], [10] is an emerging approach to An alternative method for proving the security of a hash
security proofs of cryptographic systems. It adheres tdunction is to show that it behaves as a random oracle
the same principles as provable security, but revisits itsvhen the compression function, or some other lower-level

building block, is assumed to be ideal. The indifferentia- 2) Mechanization of the Failure Event Lemma of [11],

bility framework of Maurer et al. [30] provides a rigor- implemented inEasyCrypt as an extension to the
ous simulation-based definition that captures this irdniti mechanism that directly computes probability bounds.
and implies a strong composability result. Glossing over This was used to bound the success probability of
technical subtleties [33], a hash functiéh indifferentiable the distinguisher in the proof of indifferentiability pre-
from a random oracle can be plugged into a cryptosystem sented in Sect. V.

proven secure in the random oracle model férwithout 3) Proof engineering mechanisms to manage the size of
compromising the security of the cryptosystem. We presenta proof obligations and the theories that external solvers
proof in EasyCrypt of the indifferentiability of the Merkle- use. These mechanisms were essential for the success-

Damgard construction from a random oracle. Our proof, ful verification of the proofs presented in this paper.

which follows the proof of Coron et al. [22], applies when

the padding function is prefix-free, i.e. the padding of a”- Input Language

messagem is not a prefix of the padding of any other Probabilistic experiments are defined as programs in

messagen’. pPWHILE, a strongly-typed imperative probabilistic program-
Organization of the Paper:Section Il overviews the ming language. The grammar @WHILE commands is

foundations and verification mechanisms implemented in oudefined as follows:

extension toEasyCrypt; Section Ill describes the Merkle- C = skip nop

Damgard construction and its security properties; Sadtio Y- deterministic assignment

describes a machine-checked proof that Merkle-Damgard | V&DE probabilistic assignment

preserves collision resistance when used with a suffix-free | if £ then C else C conditional

padding, while Section V describes a machine-checked proof | while £ do C

|

|

loo
of its indifferentiability from a random oracle when the Ve PE &) prol?:edure call
padding is prefix-free; Section VI discusses the applidgbil c:C Y sequence

of our results to generalizations of the Merkle-Damgard
construction and the finalists of NIST SHA-3 competition. The only non-standard feature of the language are proba-

We conclude in Section VII. bilistic assignments; an assignment«<- d evaluates the
expressionl in the current state to a distributignon values,
Il. A PRIMER ON EASYCRYPT samples a value according toand assigns it to variable.

- : . . The key to the flexibility ofEasyCrypt is that the base

Building a cryptographic proof ikasyCrypt is a process . o .

that can be decomposed in the following steps: language of expressions and_ distribution expressions ean b
extended by the user to suit the needs of the verification

« Defining a formal context, including types, constantsiask. The rich base language includes expressions over
and operators, and giving it meaning by declaringgooleans, integers, fixed-length bitstrings, lists, fimitaps,
axioms and stating derived lemmas. and option, product and sum types. User-defined operators

» Defining a number of games, each of them composed o¢an, pe axiomatized or defined in terms of other operators. In
a collection of procedures (written in the probabilistic tpe following, we let{0, 1}¢ denote the uniform distribution
imperative language described below) and adversariegp, bitstrings of lengttv.
declared as abstract procedures with access to oracles. o program (equivalently, a game) EasyCrypt is repre-

« Proving logical judg_ments that establish equivak_encessemed as a set of global variables together with a collectio
between games. This may be done fully automaticallyof procedures. Some of these procedures are concrete and
with the help of hints from the user in the form of given a definition as a command € C, while some
relational invariants, or_interactively using basic testi giphers may be abstract and left undefined. Quantification
and automated strategies. over adversaries in cryptographic proofs is achieved by

« Deriving inequalities between probabilities of eventsygpresenting them as abstract procedures parametrized by
in games, either by using previously proven logical 3 set of oracles; these oracles must be instantiated as other
judgments or by direct computation. procedures in the program.

In the remainder of this section, we briefly overview some Commands operate on program memories, which map
key aspects of the process of building BasyCrypt proof. local and global variables to values; we &1 denote the
Note that the work reported in this article benefited fromset of memories. The semantics of a command C is
several extensions of the tool with respect to [8]; thesea function[c] : M — D(M) from program memories to
extensions include: sub-distributions on program memories. Note that programs

1) Support for reasoning about programs with loops.that do not terminate with probability generate sub-
Loops were used to represent iteration in the Merkle-distributions with total probability less than We refer the
Damgard construction. reader to [9] for a detailed description of the semantics

of pWHILE as it has been formalized in th@oq proof of x as a sub-probability measure—ifis discrete, this is
assistant. In what follows, we denote B [c,m : A] the just the set of pairs with positive probability.
probability of eventA w.r.t. to the distribution]c] m and Figure 1 shows some selected rules that can be used to
often omit the initial memoryn when it is not relevant. derive valid pRHL judgments. There are two kinds of rules:
Although EasyCrypt is not tied to any particular cryp- two-sided rules, which require that the related programs
tographic model, it provides good support to reason aboutave the same syntactic form, and one-sided rules, which do
proofs developed in the random oracle model. A randomot impose this requirement. One-sided rules are symmetric
oracle O : X — Y is modelled inEasyCrypt as a in nature and admit deft and aright variant. We briefly
stateful procedure that maps values¥ninto uniformly and comment on some rules. The two-sided ryRnd for
independently distributed values i The state of arandom random assignments requires the distributions from where
oracle can be represented as a global finite mhafhat is values are sampled be uniform on some Xetto apply
initially empty. Queries are answered consistently so thathe rule one must exhibit a functiof: X — X that may
identical queries are given the same answer: depend on the state and is 1-1 if the precondition holds.
The one-sided rulfRand1)] for random assignments simply
Oracle O(z) : i hat the post-condition is established for alkfiae
if 2 ¢ dom(L) then L[z] & Y requires tha e pastoone ; !
return Llz] outcomes; in effect, this rule treats random assignment as a
non-deterministic assignment.
Similarly to Hoare logic, the rules for while loops require
) _ o) to exhibit an appropriate relational invariaft The two-
The foun.datlon oEasyCrypt_|s a probabilistic Relational gjqeqd ruleWhile] applies when the loops execute in lockstep
Hoare Logic (pRHL), whose judgments are quadruples ohng thus requires proving that the guards are equivalent.
the form: The one-sided ruléwhile(1)] further requires exhibiting a
Fea~ve: V=9 decreasing variant and a lower boundn. The premises

formulae. Relational formulae are defined by the grammarcrucial for the soundness of the rule. .
The relational Hoare logic also allows capturing the well-

UV, @u=e|[-®|UAQ|PVEO|VU=&|Vz. ®|3z. & Known cryptographic argumedit: is uniformly distributed
wheree stands for a Boolean expression over logical vari-2nd independent of the adversary’s viewrhich is certainly
ables and program variables tagged with eittieror (2) ~ ©On€ of the most difficult to formalize. We formalize this
to denote their interpretation in the left or right-handesid argument inEasyCrypt by proving that re-samplings
program; the only restriction is that logical variables mus Preserves the semantics of the program. Suppose we want
not occur free. The special keywords denotes the return (O Prove that in a prograne, a variablex used in an
value of a procedure and can be used in the place of gracle O is uniformly distributed and independent of the
program variable. We write:(i) for the expressiore in ~ View of an adversary®. Let O’ be the same a® except
which all program variables are tagged wiih. A relational that it re-samples: when needed._We |dent|fy_a cond|_t|on
formula is interpreted as a relation on program memoriesised that holds wheneverd obtained some information
For example, the formula(1) + 1 < y(2) is interpreted as about z (and thus, re-sampling would not preserve the

B. Probabilistic Relational Hoare Logic

the relation semantics). We then prove that the conditional statement
! & if —used then 2 ¢ X can swap with calls to O
R = {(m1,mz2) | mi(z) + 1 < ma(y)} and O, i.e.
The validity of a pRHL judgment is defined in terms of F iy O@) ~y « O (@)id : &= &
a lifting operatorL : P(A x B) — P(D(A) x D(B)). o _ _
Concretely, where @ implies equality over all global variables. From

" this, we can conclude that can also swap with calls to
Fa~e: U= = A® and A?’, and hence that the semantics of the program
vma,ma. mi ¥ mg = ([e1] ma) L(P) ([e2] m2) c is preserved wher® is replaced by®’. The advantage
Formally, lety; be a probability distribution on a set and of using such kind of reasoning is that it is generally much
1o a probability distribution on a sé8. We define the lifting easier to reason about a game wherés sampledlazily,
w1 L(R) uo of arelationR C A x B to u; and ue by the since its distribution is locally known.
clause: We conclude with some observations on the mechaniza-
) - - tion of reasoning in pRHL. We implement iBasyCrypt
Fu: DAXB). mi(p) = g Ama(p) = pa Asupp(u) C R (o ool variants of two-sided and one-sided rules of pRHL
wherem (1) (resp.m2 (1)) denotes the projection @f on its in the form of tactics that can be applied in a goal-oriented
first (resp. second) component aagbp(u) is the support fashion to prove the validity of judgments. For instance,

Fepme:d=d +cj~dch:d ="
e ~egich s @ = 9"

[Sed

Fx<en~skip: ®{e(l)/z(l)} = @ [Asn(1)] Fskip ~x < e: ®{e(2)/x(2)} = ® [Asn(2)]

v = bilective(f) ¥ = v € X. @ {v, f(u)/a(1).y(2)} U = Vo € supp(d). @ {v/z(1)}
Fre Xmye X 0 — 0 [Rnd Fr e dskp: U — &

[Rnd(1)]

Feirme:UAe(l) =P Fd~c:TA-e(l)—7
Fif e then ¢y else ¢ ~ o : ¥ = P

[Cond(1)]

FClNCQZ(I)/\b1<1>:>(I) (I):>b1<1>:b2<2>
F while b; do ¢; ~ while by do ¢y : & = & A =y (1)

[While]

Fep~skip: @A (i Av=n)(1) = PAv(l) <n D Av(l) <m = —b(1)
F while by do ¢; ~ skip: & = & A —b1(1)

[While(1)]

U=U Fer~eg: V= @ @’éq)[sud Feir~ve it DAY =& Fep~ep: VAT =
Fei~ve:V—97 Fep~ve:V—®

[Casé

Figure 1. Selected pRHL rules

instead of implementing ruléRnd(1)], we combine it with derive probability claims from pRHL judgments. This can
the [Sed rule to obtain the following more easily applicable be done mechanically by applying rules in the style of

rule: M Ums Fei~en W= & &= A(1)= B(2)
Fep~eo: U= Yv e supp(d). ®{v/x(1)} Prlci,my : A] < Pree,mo: B
ez &dre:¥V— o Game-based proofs often argue that two prograjrend

The application of a tactic may generate additional verifica 2 behave identically unless a failure evefitis triggered.
tion subgoals, and logical side conditions that are checkedhis is used to conclude that the difference in probability
using SMT solvers, automated theorem provers and, as & any event between the two programs is bounded by
last recourse, interactive proof assistants. Dependirtgein the probability of £ in one of them. Although a syntactic
nature, application of the tactics can be fully automated ofharacterization of this lemma is often used (in which failu
require user input. For instance, applying the tactics thatS represented by a Boolean flag), it can be conveniently
mechanize the rules for while loops, requires the user t&XPressed and implementedtasyCrypt in a more general

provide an adequate invariant. In the case of the two-sidefPrm using pRHL.

rule, a new subgoal is generated to prove the correctne$emma 1 (Fundamental Lemma)Let ¢; and c» be two

of the user-provided invariant, whereas the equivalence oferminating commands and, B, I events such that

the loop guards is checked automatically as a logical side-

condition. Feimver U= F(1)& F2)A(-F(1)= A(1) < B(2))
In additio_n to tactics that mechanize basic rules of pRHL’Then, if the initial memories of both games satigfy

EasyCrypt implements automated strategies that combine

the application of a weakest precondition transformer |Prici : A] = Prlea: B]| < Prfcy: F] = Prlca: F]

with heuristics to apply basic tactics. Tiwp transformer op- L ,

erates on deterministic loop-free programs. These stesteg N Most applications of the above lemma, the failure

can often be used to deal automatically with large fragment§Vent £° can only be triggered in oracle queries made

of proofs, letting the user focus in the parts that requird®y an adversary. When the adversary can only make a
ingenuity. known bounded number of queries, the following lemma,

which we implemented ifcasyCrypt, provides a means to
C. Reasoning about Probabilities bound the probability of failure. (We describe its hypotges

))) » informally, but note that most of them can be captured by
Since cryptographic results are stated as inequalities OPRHL judgments.)

probabilities rather than pRHL judgments, it is importamt t

Lemma 2 (Failure event lemma)Consider a program distinct messagesm,m’/, there is no zs such that
c1;¢2, an integer expression, an eventF, andu € R. pad(m’) = pad(m) || zs (resp.pad(m’) = zs || pad(m)).
Assume the following:
« Free variables inF" and i are only modified by:; or
oracles in some sab;
« After executing:;, F' does not hold and < i;
« OraclesO € O do not decrease and strictly increase
1 whenF is triggered;
« For every oracleOQ in O, -F = Pr[O: F| <u
Then,Prlci;ee: FAI <q] <q-u.

Security properties of hash functions are stated as claims
about the difficulty of an attacker in achieving certain goal
Collision resistance states that it is hard to find distingt
such thatH(a) = H(b). Pre-image resistance states that
given a digesth, it is hard to finda such thatH (a) = h.
Second preimage resistance states that giveit is hard
to find b # a such thatH (a) = H(b). Finally, resistance
to length-extension attacks states that it is hard to coenput

Finally, EasyCrypt implements a simple mechanism to H(a || b) from H(a). The precise formulation of these
directly compute bounds for the probability of an eventnotions and their relationship is addressed in detail ir].[34
in a program. This mechanism can establish, for instance, An established method for proving the security of domain
that the probability that a value uniformly chosen from aextenders, likeMD above, is to show that they are property-
set X equals an expression that does not depend on it ipreserving: for instance, the seminal works of Merkle [31]
exactlyl/|X|, or that the probability that the same uniformly and Damgard [23] show that if the compression functfon
sampled value belongs to a list ef values that does not is collision resistant, then the hash functibiD with some
depend on it is at most/| X]|. specific padding function is also collision resistant. fmyp
0 preservation also applies for other notions; a represeatat

Il. THE MERKLE-DAMGARD CONSTRUCTION panorama of property preservation for collision resistanc

Merkle-Damgard is a method for building a variable preimage and second preimage resistance appears in [4].
input-length (VIL) hash function from a fixed input-length |n Section IV we useEasyCrypt to reduce the collision
(FIL) compression function. In its simplest form, the diges resjstance of suffix-freéD to the collision resistance of
of a message is computed by first padding it to a blockhe underlying compression function.
boundary and then iterating a compression functfoover An alternative method for proving the security of domain
the resulting blocks starting from an initial chaining v@lu extenders is to show that they preserve ideal functioealiti
IV. A compression functiory maps a pair of bitstrings of je. that when applied to ideal functionalities they yield
lengthk andn (equivalently, a bitstring of length + n) to an ideal functionality. The notion of indifferentiabilitgf
a bitstring of lengthn: Maurer et al. [30] provides an appropriate framework.

f:{0,1}* x {0,1}" — {0, 1}" Definition 5 (Indifferentiability). A procedure’ with oracle
access to an ideal primitivg is (t¢s, g, €)-indifferentiable
from F if there exists a simulatoS with oracle access
to F and executing within timegs, such that for any
pad : {0,1}* — ({0,1}%)* distinguisherD that makes at most oracle queries, the
following inequality holds

A padding functiorpad converts an arbitrary length message
into a list of bitstrings of block sizek(is the block-size):

Definition 3 (Merkle-Damgard) Let f be a compression
function andpad a padding function as above, and l&t ¢ [Pr[b+D9():b] —Pr[b+ D75() :b]| <e
{0,1}™ be a public value, known as the initialization vector.

The hash functioD is defined as follows: Intuitively, the distinguisher is either given accessCto

and g, or it is given access tF and S” (see Figure 2).

MD : {0,1}* —» {0,1}" The probability that it succeeds in distinguishing the two
MD(m) £ f*(pad(m),IV) scenarios must be small.
where f* : ({0,1}%)* x {0,1}* — {0,1}" is recursively c G F S
defined by the equations - - - S
* (L e * e * N A /7 7
frily) £y [H(xeas,y) £ f* (s, f(z,y)) S. o \\ // ////
\\ \ / //

The security properties of the compression function pre-
served by the Merkle-Damgard construction greatly depend D
on an adequate choice of padding to thwart certain types of
attacks. In the remainder, we consider prefix- and suffig-fre
padding functions.

Figure 2. Indifferentiability ofC from an ideal functionality7

Definition 4 (Prefix- and suffix-free padding)A padding In the application considered in this papérrepresents
function pad is prefix-free (resp.suffix-freg iff for any the Merkle-Damgard constructiofi,represents the compres-

sion function andF represents an idealized hash function.
Thus, the role ofS is to simulate the behavior of the
compression function, i.e. it should behave towarddike

G behaves towards the Merkle-Damgard construction. I
Section V, we usdasyCrypt to define a simulato§ that
proves indifferentiability ofMD from a VIL random oracle
when the compression functiof is modeled as a FIL
random oracle—random oracles [13] are functions that ma
values in the input domain into uniformly and independently,
distributed values in the output domain; see Section Il for g
precise definition.

We conclude this section with two observations aboulf
proofs of indifferentiability and property preservatidirst,
indifferentiability from a random oracle provides weaker
guarantees than initially anticipated—see [20] and [33]

(Game CR/ :
(Iylvzy2) A B():
return coll(zy,, zy,)
Adversary B() :
(m1,mz2) < A();
xzs1 « pad(mi); y1 + 1V,
xs2 < pad(mza); y2 « IV;
while |zs1| > |zs2| do

D y1 + f(hd(zs1),y1); zs1 = tl(zs1);
while |zs1| < |zs2| do

Y2 < f(hd(ws2),y2); 752 + tl(zs2);
while =coll((hd(zs1),y1), (hd(zs2),y2)) A zs1 # nil do
y1 = f(hd(ws1),91); @51 + tl(zs1);
yo < f(hd(zsz2),y2); @s2 < tl(zs2);
_return ((hd(zs1),y1), (hd(zs2), y2))

Figure 3. A collision-finder3 for the compression functioif

respectively for discussions on the random oracle model

and on the notion of indifferentiability—but nevertheless

remains a useful heuristics in the design of hash functions:
Second, the two methods are complementary. On the one

hand, indifferentiability from a VIL random oracle entails

ame probability ast finds collisions forMD in CRMP | i.e.

Pr [CRMD : res} <Pr [CR-f : res] (1)

resistance against collision, preimage, second preimagéRecall thatres is a keyword that stands for the value
and length-extension attacks. Thus, preservation of idedeturned by the main procedure of the games.) Algorithm

functionalities apparently yields stronger guaranteesnth

B obtains from.A a pair of messages:;, m2, pads them,

property preservation. On the other hand, however, prgpertand iterates the compression function over the first blo¢ks o

preservation is typically established under weaker hypoth
ses and exact security bounds derived from indiffereriigbi

the longer padded message until the remaining suffix is the
same length as the other padded message. It then performs

proofs generally deliver looser bounds than direct proof¢he remaining iterations needed to compM®(m,) and

based on property preservation.

IV. COLLISION RESISTANCE

We show that finding collisions faviD with a suffix-free
padding is at least as hard as finding collisions forA
collision for the compression functiofi is a pair of inputs
xy,, Ty, Satisfying the predicate

coll(zyy, 1ys) # zys A f(zy,) = f(2y5)

Theorem 6. Let MD be a Merkle-Damgrd hash function
with compression functiorf and a suffix-free paddingad.
For any algorithm A finding collisions forMD of at most
length p, there exists an algorithn8 that finds collisions
for f with the same probability and with an overhead of
O(p - ty), wheret; is a bound on the time needed for one
evaluation off.

def

Consider the experime@RMP below, in which an adver-
sary A performs a collision attack againstD:

Game CRMP : Oracle F(m) :
(m1,m2) < A(); xs < pad(m); y < IV;
hi < F(m1); while zs # nil do
ha < F(m2); y < f(hd(zs),y);
return (m1 # ma A h1 = h2) zs < tl(zs);

return y

We prove inEasyCrypt that the algorithns shown in Fig. 3
finds collisions forf in the experimen€R’ with at least the

MD(m3) in parallel. If m;,my forms a collision forMD,
a collision for f must occur during one of these iterations.
Algorithm B stops as soon as it detects one such collision,
returning the colliding inputs as a result.

In order to show (1) it suffices to prove the relational

judgment:

- CRMP ~ CR : true = res(1) = res(2)

)

Proving this judgment involves non-trivial relational sea-

ing because equivalent computations in the related games
are not performed in lockstep. We begin by inlining the call
to B in CR/ and showing that the relational post-condition

(m1, m2)(1) = (m1,m2)(2) A

holds after the call tod in both programs and the two calls
to F in CRMP. To show this, we prove that oracfe cor-
rectly implements functioMD using the one-sided rule for
loops—the needed invariant is simpfy (zs,y) = MD(m).
At this point, note that ifm; = ms, judgment (2) holds
trivially (we only have to check thaf3 terminates). We
are left with the casen; # ms. Assume w.l.0.g. that
|[pad(mz)| < |pad(my)|, in which caseB never enters its
second loop and the following invariant holds for the first:

f*(zs1,y1) = MD(mq) A f*(252,y2) = MD(m2) A
my 7 ma A |zse| < |zsi| A zsg = pad(ma) A
Jzs’. xs’ || xs1 = pad(my)

®3)

We prove that if the messages,, m, output by A collide, query (x,y) to oracle f,, the simulator looks among all
the last loop necessarily exits because a collision is foundprevious queries for a sequence that could be the chain
This can be shown by means of the following loop invariant:of inputs to the compression function used to compute the
. . hash of some message, for which z is the last block of
I (@s1,11) = MD(ma) A f*(w52,y2) = MD(mz2) A pad(m). We call such ga)@sequenca:amplete chaipand we
|zs2] = [zs1] A define it formally below. When such a sequence is found
(w51 = w82 = Y1 # Yo) . y . ' q !
the simulator querie$’ for the hash ofn and forwards the
Note that (3) and the negation of the guard of the first loopanswer to the distinguisher. Otherwise, the simulator answ
imply that the above invariant holds initially. In partiam] with a uniformly distributed random value. Figure 5 shows
the last implication holds becauserf; andzs, were equal, how this simulator would react to a sequence of queries
there would exist a prefixs’ such thatzs’ || pad(ms2) =))
pad(my), contradicting the fact thapad |Hs sugfix—f)ree. Y2 = Jo@1, V)i ys = folw2,92); ya < fol(ws,ys)
Finally, observe that the last loop can exit either becaus#herez; || 2 || z3 = pad(m). The first two queries will be
a collision for f is found or becauses; = nil. In this answered with random values, while the third completes a

latter case, it must be the case thas = nil and therefore chain and is answered by forwardipgd " (21 || a2 || z3)

y1 = MD(m1) = MD(my) = y,. However, from the last t0 F} this maintains the consistency with the real scenario.
implication in the invariant we also hawg # ., which
leads to a contradiction that renders this case trivial. | (z1,1V) | | (72, y2) | | (z3,y3) |

V. INDIFFERENTIABILITY T’ Vieys T'lw2,y2lys T’lw3,ys] v

- _) incomplete chain incomplete chain complete chain
We prove the indifferentiability of théVID construction

from a random oracle in{0,1}* — {0,1}™ when its y2 & {0,1}" ys & {0,1}" ya < F(m)
compression functiorf is modeled as a random oracle in
{0,1}* x {0,1}* — {0,1}" and its padding function is
prefix-free. Our proof is based on [22].

Figure 5. An example illustrating how the simulator works

Definition 8 (Complete chain) A complete chain in a
Theorem 7 (Indifferentiability of MD). The Merkle- map T {0,1}* x {0,1}» — {0,1}" is a sequence
Damgard constructionMD with an ideal compression func- (z1,91) ... (x, ;) such thaty; = IV and
tion f, prefix-free paddingad, and initialization vectodV 1 Vi=1...i—1. (z,y;) € dom(T)AT[z},y;] = yj+1
is (ts,qp, €)-indifferentiable from a variable input-length 2) | ... | «; is in the domain opad ™!
random oracleF : {0,1}* — {0,1}", where

_ 3 qp

The function findseq((z,y),T”) used by the simula-
€ ts =0 ¢3) tor searches inT’ for a complete chain of the form
o TR (z1,91) - - - (zi,yi)(x,y) and returnse, || ... ||z, or L if no
and/ is an upper bound on the block-lengthefd(m) for ~ Such chain is found.

any messagen appearing in a query of the distinguisher. To heIp_S_MT sol_v_ers z_;md automated provers check Iogi_cal
side-conditions arising in our proofs, we needed to derive

In what we call the real scenario, a distinguisfiehas ac- several auxiliary lemmas: e.g., if a finite mapis injective
cess to an oraCIFq implementing the functioMD and to a and does not map any entry to the valve every Comp|ete
random oraclef, : {0,1}* x {0,1}" — {0,1}" thatmodels chain is determined by its last element—that is, for any
the compression function. In contrast, in the ideal scenari given (z,y), the value offindseq((z,y),T’) is uniquely
D has access to a random orale: {0,1}* — {0,1}" and determined. All of these lemmas have been mechanically
fq is simulated. See Fig. 4 for a formulation of these twoyerified based solely on the axiomatization and definitions
scenarios as games. To prevéntfrom making more than of elementary operations. In many casgasyCrypt is able
q oracle queries, we enforce a bougd= ¢ ¢p on the to verify the validity of these lemmas automatically. The
counterqy, that counts the number of evaluations of themore involved lemmas have been manually verified in the
compression function in ganm@.... Note that this is more Coq proof assistant.
permissive than the proof of Coron et al. [22], since it aBow The proof proceeds by stepwise transforming the game
the distinguisher to trade queries ¢, for queries tof,. Greal iNto the gameGiqea1, Upper-bounding the probability
Indeed, ifD makesn; queries tof, andnr queries toFy, that the outcome of consecutive games differ. By summing
we require up over these probabilities, we obtain a concrete bound for
the advantage of the distinguisher in telling apart theahit
and final games. Specifically, we prove:

We show that the simulatgf, in Giq.a1 behaves consistently 3¢>
with a random oracle. Whenever the distinguisher makes a IPr[Greal : 8] = Pr [Gigear = b]] < o7 (4)

qf <ny+Lnp <l (nf+nr)<Llgp=gq

P
Game Gpea :

g

Oracle F;(m) :

Oracle f(z,y) :

Oracle fq(z,y) :

qs < 0; zs < pad(m); y « IV; if (z,y) ¢ dom(T') then if g +1 < g then
T « 0; if qr + |zs| < ¢ then z & {0,1}"; qr < qr+1
b DFua(); a; — ay + fasl; Tlo,y) = 2 f(z,y)
return b while zs # nil do return T'[z, y] else z + IV
y <+ f(hd(zs),y); return z
xs < tl(zs)
return y

(Game Gideal :

Oracle Fy(m) :

Oracle F(m) :

Oracle fq(z,y) :

qs < 0; zs < pad(m); y + IV; if m ¢ dom(R) then if gr +1 < g then
R, T + 0 if qf + |zs| < g then z & {0,137 if (z,y) ¢ dom(T’) then
b« DFafa(), ar < qy + |zs|; Rim] + z s + findseq((z,y), T)
return b 2+ F(m) return R[m] if s # 1 then
else z < IV T'[w,y] < F(pad~" (s)]|[2]))
return z else
T'[z,y] & {0,1}"
2 Tz, gl ap < ap +1
else z + IV
L return z
Figure 4. The game§,c.; and Giqeal
(Game G,car : Oracle Fy(m) : Oracle f(z,y) : Oracle fq(z,y) :
qs < 0; zs < pad(m); y + IV; if (z,y) ¢ dom(T) then if gr +1 < g then
T, T + 0 if qf + |zs| < g then z & {0,137 if (z,y) ¢ dom(T’) then
Y <« nil; a5 < qr + |zs|; Z < z:Z; Y < yY, zs < findseq((z,v), T")
Z <+ IV:nil; while |zs| > 1 do Tz,y] + 2 if zs # L then
bad; <+ false; Y < foaa(hd(zs),y); return T'[z, y] T'[z,y] < foaa(z,y)
bad; « false; zs < tl(zs) Oracle foaa(w,y) : else
bads « false; Y < foaa(hd(zs),y) - bad (T, Y) - if set_bad3(y,T’,T) then
= if (z,y) ¢ dom(T') then
b« DFafa 0; return y 28 {0, 1) bads « true;
return b bad; <—7 ba;il VzeZ; eIsZ,[L yl < flz,y)
Z < z:Z; Y +yY; ,
bads < bads V z € Y; T'[z,y] < foaa(2,y)
2 T'[z,y]; qf < aqr+1
Tx,y] + = | v
return T'[z, y] else z <=
_ return z

Figure 6. The gam&,...1/

case, in gamésiq., the simulator should call oraclg' to
maintain consistency with the random oracle; otherwise the
simulator could just sample a fresh random value. In this
game, oraclef, returns the same answer in both cases, but
answered queries, the difference is thfgha may trigger setsbady; , 3; accordingly. Lastly, we also unroll the last
eventsbad; andbad,. We also introduce the list¥” and iteration of the loop inf7y,.

Z that allow us to appropriately detect when these events Note that instrumenting the game with the additional map
occur. In addition, we modify the simulatgf, to maintain 7 and the failure eventbady, » 3, does not change the

a mapT” of queries known to the distinguisher. Observeobservable behavior. Therefore,

that T/ C T, because queries tB, result in entries being
added only toI', whereas queries t@, result in the same
entries being added to both and T'. Additionally, the
simulator f, behaves in two different ways depending on
whetherfindseq((z,y),T') # L. If this condition holds,
there is a complete chain in m&y ending in(z, y). In this

We begin by considering the garte..;r defined in Fig. 6.
We introduce eventbad;, bads, and bads that will be
needed later. First, we introduce a copy of oraglevhich
we call fpaq. Both use the same map to store previously

Pr[Greal :] = Pr[Grear : 0]

In gameG,..1r0, defined in Fig. 7, we introduce a random
oracle RO : {0,1}* — {0,1}" and replace every call
foad(z,y) in game G,y Where (z,y) ends a complete
chain in T" with a call to RO(m,y) where m is the

unpadded message of the chain. l.e., in orgglave call |($1,|V | (z2,92) |($3,|V)| (z4,94) | (z5,Y5)
RO if findseq is successful and in oraclg, we call RO |(a:3,IV)| T4,Ys) | T5,Ys) |
instead of the last call tg,.q. We also introduce the map
I:N - {0,1}"xB which enumerates all sampled chaining [(21, IV) | (z2,2) | (23,95) |\
. . | L4, Ya |(I5,y5)|
values and includes tainted flag to keep track of values |(x'1, V) | (2, %) |(x37)|
known to the distinguisher. We introduce an indirection in
map T and T” through the use of mag. This allows us Figure 8. Two examples illustrating the necessity of evsatl;

to keep track of the order in which queries were made
and to know which answers we could re-sample without

introducing inconsistencies in the view of the distingeish findseq((z,y), T') in f, succeeds in both games, we need

The failure events that were introduced in the last ste
capture certain dependencies on previous queries that t
distinguisher may exploit to tell apart gamés.,r and
Grealro- We prove that game&,q.r and G,..;ro behave
the same provided these failure events do not occur.

1)

2)

3)

o0 show that the callfpada(z,y) In Grar and the call
ﬁ%O(my) in Geairo behave similarly. For this we show
that the following invariant is preserved in both games: for
all complete chains: in the mapT of game G,.,r with
last(c) € dom(T'), it holds thatc's associated message is in
dom(R) of gameG,..ro and, vice versa, every message
bad, is triggered whenever oracl¢p,aa samples a in dom(R) of gameG,..iro has a corresponding complete
random value that is eitheiV or has already been chainc in the mapI’ of gameG, .. with last(c) € dom(T).
sampled for a distinct query before. The role of this This invariant allowsEasyCrypt to prove this case by
event is twofold: on the one hand, IV is sampled inferring that(z,) € dom(T') in gameG,.,y if and only if
as a random value, then there could exist a completg, ¢ dom(R) in gameG,caro-
chain in T that is a suffix of another complete chain Proving that the aforementioned invariant is preserved in
in T as illustrated in the first example of Figure 8 the games requires several other invariants. Most of them
(hereT'[z2,y2] = 1V). The problem is that oraclé;, merely relate the representation of maps in both games; we
in the gameG,..; will generate the same values for omit these technical details. The essential invariant & th
the two messages corresponding to those two chainshe distinguisher querie, for points in a chain only if it
while F, in the gameGiqear most likely will not. On has already queried the preceding part of the chain. This is
the other hand, if a sampled value has been samplegnportant as it implies that each chain will be completed by
for another query before, then there could exist twoa query for its last element, in which caféedseq will detect
complete chains if” that collide at some point and are this query and the corresponding message will be added
identical from that point on as illustrated in the secondto R. In gameG,..r, the predicateet_bad3 enforces this
example of Figure 8. Again the two correspondingordering by triggering everibads. The probability of this
messages would yield the same answerGia. but event is negligible, because it means thatas never output
most likely not inGiqca1 ON queries ta,. By requiring by f, or F, and hence is not known to the distinguisher. In
that eventbad; does not occur, we guarantee that in gameG,..ir0, We use the mag to iterate over all chaining
gameG,.. the mapT is injective and does not map values in order to check for the ordering mentioned above.
any value tolV. In oracle F, of game G,eairo, the computation of the
bad; is triggered whenever oraclé,.a samples a Merkle-Damgard construction is split into three stages du
random value that has already been used as a chaining the different usage of the mafi¥, T!, andT. The first
value in a previous query. This means that this queryioop computes the construction for values that were already
may be part of a chain of which the distinguisher hasqueried by the distinguisher and are thereforelom(T”).
already queried later points in the chain, which shouldThe restriction that the distinguisher may only query chain
not be possible. The event also captures that no fixedn order implies that such values occur only in the prefix of
points (i.e. entries of the forrT'[x,y] = y) should be a chain. The second loop handles values that were already
sampled. used before by oracléy, and the third loop samples fresh
bad; is triggered whenever a chaining valygein a chaining values. Relating the final call tf,aq in game
query has already been sampled as a random value am}..,, and the final call toRO in gameG,euro is similar

is in the range ofl" for some previous querfz’,y'), to this case in oraclg,. We prove that the advantage in
but (+’,y) does not appear in the domain @ and differentiating between gameS,car and Greairo iS UppEr

(¢',y") is not the last element of a complete chain inbounded by the probability of any dbad;, bad,, bads
T. Intuitively, this means thay was never returned by occurring in gameG,cairo.

fq or F, and hence the distinguisher managed to guess
a random value. |Pr [Grear : 0] — Pr [Grealro @ 0]| <

In order to relate game§, ..y and G,..ro in case that Pr[Gicairo : bad; V bad; V bads]

/Game GealRO : Oracle F,(m) : Oracle RO(m,y) : Oracle fq(z,y) : N\
qs < 0; zs < pad(m); y « IV; if m ¢ dom(R) then if gf +1 < ¢ then
q; + L; i+ 0; z & {0,1}"; if (z,y) ¢ dom(T”’) then
T, T T, R, I+ 0;|| if af + |zs| < g then bad; <~ bad; V z € Z; zs + findseq((z,y), T")
I[0] + (IV,false); s < qf + |zs|; Z <+ 2:Z; Y < y:Y; if zs # L then
Y « nil; while |zs| > 1A bad: <+ badz; Vz €Y m < pad~!(zs)) || [z]);
Z IV:nil; (hd(zs),y) € dom(T”) do | R[m] + (z,qy) (2,4) = RO(m, y);
bad; < false; i T [hd(as), y]; Ilq;] « (=, false) T'[z,y] + 2z T{[z,y] + j;
bad, false; y + T'[hd(zs),y); qf —q;+1 else
bads « false; xs + tl(zs); return R{m] found, found_bad3 < false;
b < DFafa(), while |zs| > 1A g, k' 0;
return b (hd(zs),i) € dom(T) do while k' < q} do
i < T'[hd(zs),]; if snd(I[k']) then
y « fst(I[i]); found_bad3 « (fst(I[k']) = v);
zs + tl(zs); else if ~found A fst(I[k']) = yA
while |zs| > 1 do (x, k') € dom(T)A
z & {0,1}™ snd(I[T[z,k']]) then
bad; - bad; V z € Z; found < true; j < T[xz,k'];
Z < z2Z; Y «—yY; E—k+1;
bads + bada VzeY; if found then
Tlhd(zs),] < qy; z + fst(I[j]); I[j] + (2, false);
I[qf] + (z,true); T [z,y] < 2z; Ti[z,y] « J;
(A Q}Q else
Yz if found_bad3 then
qf —qp +1; bads < true;
xs + tl(zs) z ¢ {0,1}™;
y < fst(RO(m,y)) Ilqf] + (2, false);
return y T,[:E7y] — z
T; [, y] + af;
q; < ap + 1
else
z & {0,1}";
bad1 < bad1 Vze Z;
Z 2272 Y «yY;
bads; <+ bad2 Vz €Y}
I[q}] < (z, false);
T'[z,y] « z;
T} [x,y] < qf;
qf +—qp+1
2 Tz, y); ar < ar +1
else z < IV
\ return z j
Figure 7. The gam&,c.1r0O
To finish the proof, we have to relal [G,cairo :] With uw = ¢ 27" andi = |Z] (resp.|Y]). We get
Pr[Gigeas : b] and bound the probability of the failure events 9 9
in gameG,..iro. We first focus on the probability dfad; Pr [Gieairo : bady] < g—n Pr [Grealro : bads] < ;I—n

and bad,. Eventbad; (resp.bads) is set when a freshly 3
sampled value is in the listZ (resp.Y); since the size of ~ We are left to bound the probability dfad; and relate
both lists is bounded by, this occurs with probability at the gamePr [Gieairo : b] With Pr[Gigeal : b]. Note that in

mostq 2™, for each of the possible queries. gameG;cairo chaining values are sampled eagerly, i.e. for
a querym, oracle F,, samples chaining values that are

independent of the distinguisher’s view (their associdisgl
is set totrue). These values might later on become known
Note that oracles”,, RO, and f, in gameG,caro Use to the distinguisher if it recomputes the Merkle-Damgard
the same code to detect the failure evamigl; andbad, construction form using oraclef, (we identify this case
when sampling a fresh value We can wrap this code in a setting found = true). We want to transform the game so
new oracle that meets the conditions of Lemma 2: we takéhat chaining values are sampled lazily (as in gaing.,)).

((Game GidealEager ;‘ Oracle F,(m) : Qracle RO(m) : Qracle falz,y) - h
zs < pad(m); y « IV; if m ¢ dom(R) then if qr +1 < g then
' Game Gigeattazy : ! || £ < 0; z & {0,137 if (0<qfA
T L[if (0 < gfA R[m] « (z,q}) (z,y) ¢ dom(T")) then
aj < 0; qs + |zs| < q) then Iqy] + (z,false) zs + findseq((z,y), T')
qr <13 ar + ay + |zs|; qf < q; + 1; if s # L then
T, T, T, R, I < 0; while |zs| > 1A return R[m] m + pad™'(zs || [#]);
I10] < (IV, false); (hd(zs),y) € dom(T”) do (2,§) + RO(m);
Y « nil; i « T![hd(zs), y]; T [z,y] + z; Tz, y] < J;
bad, « false; y < T'[hd(zs), y); else
[+ 0; zs < tl(xs); found « false; j, k' + 0;
while I < g} do while [zs| > 1A while (k' < g} A =found) do
if snd(I[i]) then (hd(zs),i) € dom(T') do if (ITk'] = (y, false)A
z & {0,1}" i = Tlhd(as),; (z,k') € dom(T)A
I[l] < (z, true); s < tl(zs); snd(I[T[z, k')A
I« [+1; while |zs| > 1 do K < Tz, KA
P z & {0, 1}_n§ , Tz, k'] < dj) then
b« D la(); T[hd(zs),i] + qf; found «+ true; j + T[x,K'];
leo;, \ I[‘l}] & (2, true); else
' while I < qf do | Lean KK+
' if snd(I[l]) then ! @ < 3@51 if found then
I z& {01}) 1. UL & {0 1\
: I[E]—i (z,}true);: y < fst(RO(m)); 2 G| 2 e {017
Dol 41 || returny bads <—bads Vz €Y
______________ s I[j] + (z,false);
return b T'z,y] + z; T{[z,y] + J;
else
z & {0,1}™;
Iq] + (z,false);
T’ [2,y] + 2
T; [z, y] < qj;
q; — q; +1;
Y «— y:Y;
2Tz gl ap < ar + 15
else
z + IV,
_ return z)
Figure 9. The gamegidcalEagcr and GidcalLazy
The same kind of argument can be useddad;. This event In gameGigeairazy (S€€ Figure 9), the loop we introduced

is set whenever the distinguisher makes a qyery) to f, in the last game is swapped with the call to the distinguisher
with y coinciding with a value uniformly and independently and oraclef, samples the chaining values lazily (the branch
distributed w.r.t. its view. found re-samples the value of). In order to prove the

We modify gameG,..ro in order to prepare for the equivalence with the previous game, we need to show that
transition from eager to lazily sampled chaining values: th the loop that resamples the values unknown to the adversary
body of gameGiqecaizager (S€€ Figure 9) contains a loop swapswith calls to oracled’, and f; in gamesGigcalEager
which re-samples all chaining values that are unknown to thand Gigeair.azy. WWe obtain
adversary, i.e., the values for which the second component
in mapI is set totrue. Furthermore, gam@igecaigager drops Pr [GidealBager : 0] = Pr[GidealLazy : 0]
the failure eventsbad , 54, but introduces a new failure P [GidealEager : bads V I5] = Pr[Gidealvazy : bady V I5]
eventbad,. We show that ifbads is triggered in game
GrealrO, then in Gigealgager bady is set totrue or there
exists ani such thatI[i| = (v,true) andv € Y. We get

It is easy to see that gameSigcaiLazy aNd Gigear are
equivalent w.r.tb; the global variableg; and the mapsk
andT" are equivalent in both games. The other variables in
Pr [GrearO : b = Pr [GidealEager :] gameGigealrazy and its loops do not influence the behavior

Pr [Greairo : bads] < Pr[Gigealgager : bady V 15 of its oracles. We show that

wherels =3i. 0 < < q}- A snd (I[Z]) N fSt(I[Z]) €Y. Pr [GidcalLazy : b] =Pr [Gidcal : b] .

We still have to bound the probability dfad, Vv 15 in The security of all SHA-3 finalists, and of many second
game GigealLazy- 10 do this, we simply modify the while round candidates, has been thoroughly scrutinized. Two
loop in the code of the game by replacing the instructionsurvey articles summarize known results [2], [3]. While
z ¢ {0,1}™ with the algorithmic descriptions of the finalists and their éxac
security bounds fit in one page (see [3]), the corresponding

24 {0,1}" bads +-bads Vz €Y security proofs are technically involved and need to be

This leads t0 @ gam6igcaiLazy, for which we show cautiously adapted to account for the specificities of each
‘ function. As a consequence, it is difficult to assess the
Pr [GidealLazy : bady V I5] < Pr[GidealLazy’ : bady] validity of security claims for individual candidates and

machine checking their proofs is an appealing perspective.
In the remainder of this section we discuss the applicgbilit
of the proofs presented in Sections IV and V to SHA-3
¢ finalists.
Pr[GidealLazy : bady] < on The five SHA-3 finalists are based on the iterated hash
éunction design that underlies the Merkle-Damgard con-
struction, but incorporate some variations such as round-
dependent tweaks, counters, final transformations, anpg-cho
VI. SECURITY PROOFS OFGENERALIZED ping. We observe that, in a more or less contrived way, all
MERKLE-DAMGARD the finalists can be considered as variants of the Genedalize
Merkle-Damgard (Definition 9). The compression functions
of the finalists are either block-cipher baseBLAKE,

We finally use the same technique aslferd; to bound the
probability of bads in gameGigeairazy’, @and obtain

Putting the (in-)equalities proved above together we prov
(4), which completes the proof of Theorem 7.

To avoid inheriting structural weaknesses in the original

Merkl_e-Damgard const_ructlon, _eX|st|ng hash funct|ons_ em Skein) or permutation-basedsfastl, JH, Keccak). More-
ploy instead slight variants of it. One well-known variant A) ! .
over, all finalists use suffix-free padding rules, while the

is the wide-pipe design, which uses an internal state larger_ " .) - -
than the final output [22], [27]. Many variants are subsume rzgd['g]g rules oBLAKE and Skein are additionally prefix

by the following Generalized Merkle-Damgard construatio o . .
Our formalization models compression functions as func-

Definition 9 (Generalized Merkle-Damgard)let IV ¢ tions of two arguments: a message block and a chaining
{0,1}™ be a public initialization vector andf,g be two value. This represents a deviation with respect to the com-

compression functions of type pression functions oBLAKE and Skein. The compression
. N N function of BLAKE additionally takes a counter and a
f,9:{0,137 < {0, 1}" — {0,1} random salt value, whereas the compression function of

Consider a functiorpad : {0,1}* — ({0,1}%)* x {0,1}* Skein builds on atweakableblock cipher and takes as

that converts an arbitrary length message into a non-emptdditional input a round-specific tweak. The additional ar-
list of blocks of lengthk, singling out the last block. The guments of the compression functionsBIfAKE andSkein

hash functionGMD is defined as follows: could be formalized as an integral part of the padding rule;
the padding function can compute the appropriate round-
GMD ;{013 — {0,1}" specific values and append them to the message blocks.

GMD(m) £ let (z,y) = pad(m) in [g(y, f*(z,IV))]* This alternative description would have the advantage of
where f* is defined as in Def. 3 an] chops off they — ¢ matching the model that we use in our results about the

o . . : . MD hash function. However, all finalists exceBtLAKE
least significant bits from;, i.e. discards all but the leading
? bits. use chopping or a final transformation, which are formalized

neither in our proof of collision resistance nor in our prodf

The NIST SHA-3 competition started in November 2007 indifferentiability. This rules out a direct applicatiori our
with the objective of selecting new cryptographic hashresults, with the exception &LAKE, for which Theorem 6
functions to augment the set specified by the U.S. Federaloes apply. We leave it for future work to formalize this
Information Processing Standard (FIPS) 180-3, which in4nstantiation inEasyCrypt.
cludes the SHA-1 and SHA-2 algorithms. After receiving NIST requirements for the SHA-3 competition include
64 entries, NIST selected 51 candidates for the first round;ollision resistance, preimage resistance and seconthprei
further narrowed down the list to just 14 candidates forage resistance. All the candidates selected as finaliss$ysat
the second round, and announced 5 finalists in Decembéhese properties and (in most cases) even achieve optimal
2010:BLAKE [6], Grastl [25], JH [38], Keccak [14], and bounds for them when the underlying block-ciphers or
Skein [24]. A public comment period has started after this permutations used to build their compression functions are
announcement and the winner is expected to be selectexbsumed to be ideal [3]. Although the original NIST require-
before the end of 2012. ments did not include the property of indifferentiabilitpm

a random oracle, this notion has also been considered in the VII. CONCLUSION

literature and is achieved by all five finalists [1], [S], [12] Despite their widespread use, the formal verification of
[15], [16], [21]. These indifferentiability proofs hold iBn pash functions has received little attention. To our best
idealized model for some of the building blocks of the haShknowIedge, Toma and Borrione [35] were the first to use
funct?on: the ideal_—cipher model for block-cipher basedkha theorem provers to formally verify properties of SHA-1, but
functions, or the ideal-permutation model for permutation their focus is on functional properties, rather than seguri
based hash functions. Indifferentiability seems to be aryygperties. The first machine-checked proof of security for
excellent target for security proofs because it ensures thg, pash design appears in [7], where the authors use the
the high-level design of the hash function has no structuragertiCrypt framework to verify that the construction from
weaknesses, but also because it implies bounds for all Qfrjer et al. [19] yields a hash function indifferentiable
the classical properties enumerated above. Unfortunatelyyom a random oracle into ordinary elliptic curves. More
the assumption that some underlying primitive is ideal isrecently, Daubignard et al?] develop a method to permute
at best unrealistic and at worst plainly wrong. Proofs ofgependencies between oracles in a game, and apply their
indifferentiability should be taken only as an indicati@T f method to prove indifferentiability of hash functions from
the security and as a palliative for the lack of security 500 random oracles. Their method is not implemented, although
in the standard model. the underlying framework has been machine-checkid [
Compared to our result of Theorem 7, which assumes The prevailing method for building hash functions is to
that the compression function is ideal, the indifferertigb jterate a compression function on a pre-processed input
of all the finalists has been proved in an ideal model formessage. In this paper, we have considered the Merkle-
lower building blocks. We point out that assuming ideality Damgérd construction, which pioneered this design, and
of a lower building block is weaker than assuming ideality proved that the resulting hash function preserves catlisio
of the entire compression function and thus these resultgsistance and is indifferentiable from a random oracle. Ou
are stronger. Indeed, assuming ideality of the compressiofesults demonstrate that state-of-the-art verificatiofstoan
function seems to be inappropriate for all the finalists: be used for proving the security of hash designs, and not only

« The compression functions afH and Keccak are for cryptanalysis [32]. We will further this line of researby
trivially non-random, as collisions and preimages can€Xploring the formalization of more general security psoof
tion [3], [18]; finalists of the SHA-3 competition.

. Finding fixgd—points for the compression function of ACKNOWLEDGEMENTS
Gragstl is trivial [25];

« The compression function &LAKE has been recently
shown to exhibit non-random behavior [1], [21];

« Non-randomness has been shown for reduced-round REFERENCES
VeI’S.IOI’lS of Threefish, the underlying block-cipher of [