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Abstract 

The molecular mechanism of transmembrane signal transduction is still a pertinent question 

in cellular biology. Generally, a receptor can transfer an external signal via its cytoplasmic 

surface as found for GPCRs like rhodopsin or via the membrane domain like it is utilized by 

sensory rhodopsin II (SRII) in complex with its transducer HtrII. In the absence of HtrII SRII 

functions as a proton pump. Here, we report on the crystal structure of the active state of SRII 

from Natronomonas pharaonis (NpSRII). The problem of a dramatic loss of the diffraction 

quality upon loading of the active state was overcome by growing better crystals and 

reducing the occupancy of the state. The determined conformational changes at the region 

comprising helices F and G are similar to those observed for the NpSRII-transducer complex 

but they are much more pronounced. Meaning of these differences for proton pumping ability 

and understanding of the signal transduction by NpSRII is discussed. 
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Introduction 

Microbial rhodopsins, a family of at least 1000 members
1
, have been in the focus of recent 

research because of their functional diversity which encompasses ion-pumps, channels, and 

photosensors and because of potential applications in energy conversion, in computer 

memory and chip development, or in optogenetics
2,3

. Common features of all pigments are a 

seven transmembrane helix scaffold, a retinal bound to the C-terminal helix G via a 

protonated Schiff base to a lysine residue, and a light activated photocycle. Three 

archetypical microbial rhodopsins can be distinguished
2
. Bacteriorhodopsin (BR), a proton 

pump, has been investigated exhaustively in great detail and is therefore a reference point for 

all other microbial rhodopsins. Channelrhodopsin, only recently discovered in algae, 

functions as a light-activated ion channel. The third system, sensory rhodopsin II (SRII) 

together with sensory rhodopsin I (SRI) enable archaeabacteria to seek optimal light 

conditions for their energy needs, while avoiding photooxidative damage. Both 

photoreceptors trigger a signal transduction chain which is closely related to that of the 

eubacterial two-component system. One essential not yet completely understood problem 

concerns the molecular mechanism of signal transfer from receptors to cytoplasmic signaling 

components. To advance the understanding of signal transduction, the crystal structure of the 

active state of uncomplexed sensory rhodopsin II from Natronomonas pharaonis (NpSRII) 

was determined.  

NpSRII was chosen for these experiments because it has been characterized in quite a detail 

(for reviews see Klare et al.
2
 and Sudo & Spudich

4
). In the cellular membrane NpSRII is 

bound to its cognate transducer NpHtrII in a 2:2 complex
5,6

 to form the signaling module. 

The chain of events is triggered by light thereby initiating a trans-cis isomerisation of the 

retinylidene chromophore of NpSRII. As a consequence the protein passes through several 

intermediates until it reaches back to the original state in about 1 second. The functionally 



important conformational step occurs during the M1→M2 transition which leads to the 

signaling state
7,8

. During this transition the signal is transferred through the interface 

comprising helices F and G to NpHtrII, which results in a rotary motion of transmembrane 

helix TM2
6,9

. This activation occurs at the level of the membrane. How this signal is then 

transmitted to signal domain thereby modulating the activity of the histidine kinase CheA and 

triggering the cytoplasmic two component signaling cascade is not known yet 
2,5,9,10

.  

Published X-ray and NMR structures of NpSRII
11-14

 coincide within experimental errors and 

strongly resemble those obtained for bacteriorhodopsin
15

. The conformation of the backbone 

and that of conserved side-chains in the retinal-binding pocket are more or less identical. 

Moreover, the structure of the receptor
11-14

 is almost the same as compared to the 

NpSRII/NpHtrII complex
5
. These observations pose an interesting question. How does nature 

fine-tune common scaffolds to engender two completely different functions: sensor and ion 

pump? From previous work it is evident that NpSRII as well as SRI is capable of pumping 

protons, albeit with poor efficiency
16-19

. Similarly, bacteriorhodopsin can be converted into a 

sensor by just three mutations
20

. On the other hand, despite great efforts it has not been 

possible to change NpSRII into an efficient proton pump
21

. Apparently, the requirements for 

an effective ion pump are much more demanding than those for a functional sensor. 

A second observation relates to the inhibition of the proton pump on transducer binding 

NpHtrII to its cognate receptor NpSRII
22,23

. It has been discussed that in the 2:2 complex the 

cytoplasmic channel cannot open sufficiently, thereby altering the proton uptake kinetics such 

that the reprotonation of the Schiff base is faster from the extracellular side. This kinetic 

correlation would result in a futile proton cycle (reviewed in Sasaki and Spudich
24

). 

Certainly, this proposal can only be verified by a comparison of NpSRII active states with 

and without bound transducer NpHtrII.  



Crystal structures are available for NpSRII ground state
11-13

 and for its K-intermediate, which 

is formed at room temperature in the nanosecond range
25

, as well as for the NpSRII/HtrII 

complex, for which data of the ground state and its K- and M-intermediate (the active state) 

are available
5,9

. Despite several attempts the structures of the late (active) states of NpSRII 

were not obtained yet.  

The reason for this failure has been related to large conformational changes upon the light-

activated M-formation, which lead to severe disturbance of the crystal packing and 

consequently a substantial decrease in resolution. A similar difficulties arise in experiments 

with the intermediate states of visual pigment rhodopsin
26,27

.  

Here, we describe an approach which allowed us to determine the structure of an intermediate 

in the cases when conformational changes of a protein upon its transition from ground to an 

intermediate state are large and may disturb crystal packing dramatically, making crystals not 

suitable for X-ray crystallography. We were able to solve the structure of the active state of 

NpSRII. The data provide information about the movement of the functionally important 

helices F and G. Furthermore, evidence is given about the water distribution in the 

cytoplasmic proton uptake channel which relates directly to the question of proton pump 

properties of NpSRII alone and in complex with its transducer NpHtrII. 



Results 

A comparative analysis of structural changes in NpSRII alone and in NpSRII/NpHtrII 

necessitated crystals, grown under conditions close to those reported for the complex (as 

described in Gordeliy et al.
5,9

 and has been discussed by Reshetnyak et al.
13

). We managed to 

obtain the crystals at similar conditions. The addition of trehalose turned out to be not only 

important for obtaining high quality crystals, but was also crucial for preservation of 

diffraction quality during the M-state trapping.  

Structure of the ground state 

Using these conditions, the structure of the NpSRII ground state was obtained. The 

diffraction data were integrated up to 1.9 Å (Table 1). The built model contains residues from 

1 to 219 with poorly ordered A-B and C-D loop regions.  

Similarity between the new and published X-ray structures is very high. RMSD of 

coordinates equals 0.31 Å for 1H68
12

, 0.43 Å for 1JGJ
11

 and 0.27 Å for the structure 

reported in the paper of Reshetnyak et al.
13

 (the position of A-B loop was omitted from 

calculation; RMSD was calculated for the backbone atoms). Differences are observed in the 

position of the C-D loop (residues 93 to 97) which in our structure is displaced by about 1.5 

Å as compared to the published structures. D193 position is closer to R72, than in 1JGJ (for 

0.8 Å) as well as in 1H68 (for 1.8 Å). We do not observe water molecules 2017 and 2026 of 

1H68, but identify three additional water molecules: near the Y174 carboxyl group, near Y73 

hydroxyl group and near D193. Also some small amount (occupancy < 35%) of water 

molecules at position 2013 of 1H68 may be replaced by chloride ions, as it is in 1H68, since 

it would better fit the electron density. The cytoplasmic loop F-G, comprising residues 175-

195, is ~0.5 Å closer to the extracellular channel in our model. Finally, in 1JGJ a number of 

residues have a different rotameric conformation, than in our or 1H68 structures. These 



differences may be ascribed either to different crystallization conditions and/or to a better 

resolution of our structure and seem not to be important for protein function. 

As for the recently published NMR structure 2KSY
14

, the differences are much larger. 

Substantially, they include displacements of up to 1 Å of residues known to be important for 

signal transduction (Y199, Y174 and T204), and changes in their hydrogen bonds. These 

differences may probably be attributed to the lack of proper restraints in NMR structure 

determination, the absence of water molecules and retinal proton in NMR model, or to the 

fact that the protein was in detergent micelles and not in the lipid bilayer. 

We also observe a strong similarity between the ground-state structures of NpSRII alone and 

in complex with NpHtrII. RMSD of coordinates are 0.53 Å for 1H2S
5
 and 0.45 Å for the 

structure in I212121 space group of Ishchenko et al., to be published. There are only slight 

differences in poorly ordered loop regions which include also the position of the C-D loop. 

An important observation concerns D193 which occupies the same position in the structure of 

the complex and the present structure, contrary to that in the structures 1H68 and 1JGJ. This 

data emphasizes the importance of identical crystallization conditions. 

Additionally, it was possible to assign 31 hydrocarbon chains (Figure 1). Two of them may  

unambiguously be identified as archaeal phytanyl chains by their electron densities. Both 

eubacterial and archaeal lipids may be present in the crystal as NpSRII was expressed in E. 

coli and subsequentely reconstituted into H. salinarum polar lipids. Additionally one 

molecule of octyl-β-D-glucopyranoside could be identified. Inclusion of the lipid molecules 

into the model turned out to be necessary for obtaining the active state structure of NpSRII, 

because it resulted in more consistent electron density maps as well as better R-factors. 

Heterogeneity of active state 



The procedure employed in this work did not allow trapping pure M state. The next 

intermediate in the photocycle, the O-intermediate could have been accumulated under these 

conditions as well. Indeed, the spectroscopic data show that the amount of the O-state reaches 

up to two thirds of that of the M-state (see Supplementary Information text and 

Supplementary Figure 1 online). Independent refinement of the M and O structures is 

impossible due to low data-to-parameter ratio, which is slightly over 1 when only one 

intermediate structure is refined. Nevertheless independent data from the literature indicate 

that the structure of the M-state closely resembles that of the O-state. First, the photophobic 

signal is relayed to the transducer in both the M and O states
28,29

. EPR experiments also show 

that reordering of helix F and TM2 occurs, believed to represent the signal, occurs 

concomitantly with O-decay
6
. FTIR studies

30-32
 have shown that differences between M- and 

O-states are much smaller than between M and the ground state. Transient-grating analysis 

also shows little volume changes upon M to O transition compared to transition from ground 

to M intermediate
33

. The main difference concerns the back isomerisation of the retinal to the 

all-trans conformation
30-32

. Global similarity of the late intermediate structures was also 

proposed for BR
34

. From these considerations, it can be assumed that structures of the M- and 

O- intermediates are quite similar at present resolution. It is therefore reasonable, to treat M- 

and O-state as one entity. This assumption is also justified by the fact that the occupancy of 

the active state obtained by crystallographic means is in good agreement with the results of 

the spectroscopy, as M- and O- state combined which amounts to about 50%. Finally, it 

should be noted, that in the case of the NpSRII/NpHtrII complex the trapped active state not 

only contained the M-intermediate but also some amounts of the O-intermediate. Nonetheless 

no large unaccounted difference electron densities were seen, when the data were treated with 

the only one model of the active state of protein. The resolution of the structure was 2.0 Å 



and thus the large structural deviation in the O state, would it be present, would have been 

detected
9
. 

Trapping the active state in crystal 

Upon trapping of the active state in crystals the diffraction worsened anisotropically. The 

largest loss in resolution of 1 Å occurs along the b-axis, which is perpendicular to the 

membrane plane. At the same time we observed large changes in the unit cell dimensions. 

The most pronounced change was again in b-axis direction, with the cell dimension 

increasing from 128 Å up to 131 Å. These effects were stronger with the higher intensity of 

the light used for trapping of the active state. Spectroscopy measurements showed, that 

illumination of the crystals (excitation wavelength 488 nm) with the laser power 0.33 W for 2 

s (the cryostream is blocked for that period) results in accumulation of approximately 35% 

M-state and 25% O-state. Further increase in the laser power slightly raises the amounts of 

the accumulated active states, to the maximum of ~45% M-state and 30% O-state. These data 

indicate, that the more active state is present in the crystal, the larger are the diffraction 

resolution losses. Therefore, optimum conditions had to be established, at which both the 

active state occupancy and the resolution would be reasonable. We found that at the laser 

power 0.33 W the resolution loss along the b-axis does not exceed 1 Å, meanwhile the 

trapped amount of the active state allows for the structure determination. Using such an 

approach, a number of diffraction datasets were obtained with different NpSRII crystals. 

Resolution limits for the best crystal were 2.5/2.9/2.6 Å for a, b and c-axes correspondingly. 

For that crystal, amount of the active state determined crystallographically was found to be 

approximately 45% (see Supplementary Information text and Supplementary Figure 2 

online).  

Conformational changes in the NpSRII active state 



As it could be predicted from the loss of diffraction quality during the trapping, we observe 

large conformational changes in the NpSRII active state (Figure 2A). The structural changes 

reported below are reproducible for 3 different illuminated crystals displaying the highest 

resolution, for which refinement of the active state was possible. The changes are in 

accordance with difference Fourier electron density maps between the active and the ground 

states. Thereafter we discuss the changes as they are observed in the structure of highest 

resolution. Alignment of structures for the comparison was done by the non-hydrogen atoms 

for the whole protein. 

Large conformational changes are observed at the transducer-binding interface comprising 

helices F and G. Helix F moves towards the cytoplasm by about 0.3 Å, whereas helix G 

moves in opposite directions towards extracellular side by 0.7 Å. Helix A moves together 

with helix G, though with a twice as lower amplitude. The extracellular F-G loop moves out 

of the membrane plane. These movements are similar to those observed for the NpSRII-

NpHtrII complex, but display larger amplitudes (Figure 2).  

Movement of the G helix, with Y199, which forms a crystal contact in case of NpSRII, seems 

to be the main cause for the increase of crystal b-dimension, as the increase, 3 Å, corresponds 

well to 4 times by 0.7 Å, which follows from packing geometry.  

On the cytoplasmic surface, the E-F loop changes its conformation and becomes more 

compressed. The movement of the C-D loop is questionable, since this loop is poorly 

ordered, and its position differs as exemplified above in the known ground-state structures. 

The alterations on the surface are paralleled by changes in the interior of light activated 

NpSRII. The difference density maps clearly show that 13-cis retinal is present in the crystals 

which amounts to about 35% of the M-intermediate as determined spectroscopically (see 

above). Interestingly, the position of T204 relative to Y174 and helix F does not change 



(figure 3). Unfortunately, the structure resolution does not allow for the analysis of the 

changes in position of water molecule, bonding to W171 and T204 backbone. W171, forming 

a steric conflict with the retinal C13-methyl group, is pushed away from retinal by ~0.6 Å. 

W76 is displaced towards helix F in the membrane plane.  

Electron densities are observed only for few highly-ordered water molecules in the 

extracellular channel. Nevertheless, the absence of water molecule adjacent to the Schiff base 

(analogous to W402 of BR) is clearly seen, as there are no 2Fo-Fc densities in that region 

and, in addition, inclusion of this water molecule into the model results in pronounced 

negative difference electron density maps Fo-Fc. Disappearance of this water molecule is the 

result of the Schiff base deprotonation and was observed in the NpSRII/NpHtrII complex
9
 

and in BR
35

 as well. 



Table 1. Crystallographics data collection and refinement statistics (molecular replacement) 

 NpSRII G-state NpSRII active state 

Data collection   

Space group C2221 C2221 

Cell dimensions   

    a, b, c (Å) 86.99, 128.09, 50.63 86.44, 131.09, 51.23 

 ()  90, 90, 90 90, 90, 90 

Resolution (Å) 28-1.9 (2.0-1.9)* 43-2.6 (2.74-2.6)* 

Rmerge (%)  7.0 (39.3)* 11.7 (83.7)* 

I / I 14.4 (3.8)* 6.5 (1.5)*  

Completeness (%) 96.9 (97.4)* 92.7 (86.1)* 

Redundancy 3.8 (3.8)* 3.4 (3.1)* 

   

Refinement   

Resolution (Å) 22-1.9 20 - 2.6, 2.9, 2.6** 

No. reflections 20672 (1107***) 7633 (401***) 

Rwork / Rfree (%) 15.34 / 17.31 25.12 / 27.58 

No. atoms   

    Protein 1694**** 3184 (1552*****) 

    Ligand/ion 375 726 (352*****) 

    Water 73 88 (15*****) 

B-factors   

    Protein 11.09 18.39 (18.08*****) 

    Ligand/ion 58.70 54.30 (54.27*****) 

    Water 27.28 22.66 (27.15*****) 

R.m.s. deviations   

    Bond lengths (Å) 0.013 0.012 

    Bond angles () 1.248 1.393 

*Values in parentheses are for highest-resolution shell. 

** For M-state structure anisotropic resolution limits were used 



*** Number of reflection not used for refinement (free reflections) 

**** Including double conformers 

***** Number of atoms whose position was refined (atoms of active-state model) 

Rmerge=hi|I(h,i )- I(h)|/hi|I(h,i)| ×100 %, where I(h,i) is the intensity value of the ith measurement of h 

and I(h) is the corresponding mean value of h for all I measurements of h. The summation is over all 

measurements. 

Rwork = Fo - Fc/Fo× 100 %. 

Rfree was calculated for 5% of observed reflections, omitted from the refinement and Rwork calculation, picked 

randomly within thin resolution shells. They are consistent between datasets. 



Discussion 

We discuss the results in three different contexts. First, we compare the changes in the active 

state of uncomplexed NpSRII to those in NpSRII/NpHtrII complex. Second, we analyze the 

implications of the determined structure for understanding the proton pumping by NpSRII. 

And finally, we discuss the methodological aspects of observation of large conformational 

changes of proteins in crystals. 

Functionally important conformational changes in NpSRII  

The conformational changes observed for free NpSRII and NpSRII in complex with its 

transducer are quite similar in their nature (Figure 2). Major movements are observed for 

helices F and G which have been correlated with signal propagation from the receptor to the 

transducer
6,9,36,37

. Additionally, an inward movement of the extracellular part of helix C is 

observed. Although these conformational changes are detected in both cases, in the case of 

NpSRII alone they have almost twice as large amplitudes (Figure 2). Smaller changes in the 

complexed NpSRII cannot be attributed to crystal packing, as it is looser in the crystals of 

NpSRII/NpHtrII, especially in the I212121 spacegroup (Ishchenko et al., to be published). 

Thus it means that the transducer opposes such structural rearrangements in the receptor. As 

this opposition leads to conformational changes in transducer itself, it constitutes a signal 

transfer.  

In addition to the helix movements, we observe conformational changes in the E-F loop, 

which are not present in the NpSRII/NpHtrII complex. They may result from the crystal 

packing (E-F loops of adjacent proteins form a crystal contact), or may be a genuine 

conformational change in the active state of uncomplexed NpSRII. It has been shown by 

solid state NMR spectroscopy, fluorescence and EPR spectroscopy that the E-F loop is 

interacting tightly with the transducer
38-40

. However, it is clear that the E-F loop is not crucial 



for signal transduction, as NpSRII E-F loop deletion mutants as well as BR triple mutant, 

which has a small disordered E-F loop, are all capable of signaling
20,41

. The remaining 

question is whether the E-F loop enhances the signal transduction from NpSRII to NpHtrII or 

just serves for NpSRII stabilization. 

So far we have discussed the large conformational changes between ground and active states 

of NpSRII. Unfortunately, due to the resolution of diffraction data, we are not able to observe 

neither the minute changes in the structure nor movements of the water molecules in the 

cytoplasmic channel. Nonetheless we are able to make a conclusion, that there are no changes 

in the uncomplexed NpSRII active state in the relative positions of the residues T204 and 

Y174 (Figure 3), which are proposed to be important for the signal generation in 

NpSRII/NpHtrII complex
42,43

. Probably, this reflects the spectroscopically observed absence 

of the alteration in T204-Y174 bonding in uncomplexed NpSRII
44,45

.  

Implications for NpSRII proton pumping 

Like BR, NpSRII is able to pump protons across the membrane, though less effectively. On 

formation of the NpSRII/NpHtrII complex this function is inhibited
22,23

. This inhibition may 

originate from kinetics alteration, from structural changes prohibiting the pumping, or from 

combination of these factors. Here, we analyze the implications of structural changes.  

NpSRII active state transition results in disappearance of the water molecule, which makes a 

hydrogen bond to the retinal in the ground state (Figure 3). The same is observed in BR M 

state
46

, as well as in NpSRII/NpHtrII complex M state
9
. There are also conformational 

changes of up to 1 Å in the cytoplasmic channel, probably associated with the charge 

redistribution. Slight outward tilt of the G helix, combined with E-F loop changes, may 

facilitate the formation of water chain, which is believed to be needed for the retinal 

reprotonation and thus for completing the pumping cycle. These changes are not observed in 



the M state of complexed NpSRII, and may account for the NpHtrII proton pumping 

inhibition. 

There are two ways in which NpHtrII may affect NpSRII dynamics. The first possibility is 

that NpHtrII may directly influence NpSRII conformational changes. The other possibility is 

as follows. The hydrophobic/hydrophilic boundary of NpSRII is uneven in the region of the 

helices F and G, as seen from the surface potential distribution (Figure 1). Thus, the natural 

tendency of a lipid bilayer to be flat would result in energetic penalty for the NpSRII ground 

state. In the active state the mismatch is lowered, and thus the active state is preferred from 

the bilayer curvature energy point of view. NpHtrII shields the helices F and G from the lipid 

bilayer and thus reduces its influence on the NpSRII structure. In that case the energy of the 

active state is higher than in the absence of NpHtrII, and thus the conformational changes are 

lower. 

Observation of the large conformational changes of the protein in crystal 

As it was already mentioned, observation of the large conformational changes of the protein 

in crystal is complicated by the loss of the long range crystal order and the consequent 

diffraction loss. Therefore, special measures should be undertaken to obtain the tractable 

data. The parameters of the intermediate state accumulation should be thoroughly studied. 

The ideal loading procedure will result in not less than 40-50% of intermediate. At the same 

time, multiple transitions from the ground to intermediate state and back should be avoided, 

as the repetitive changes will cause more damage to the packing. Thus, the short loading time 

is preferred. Diffraction data should be measured from several crystals, to sample for those 

that diffract better, and for the consistency check of the observed changes. To obtain the best 

resolution possible, data should be treated with all the techniques available. In our case that 

meant utilization of the anisotropic data and construction of the full model with as many 



incorporated lipid molecules as possible. Finally, the intermediate state occupancy should be 

evaluated using crystallography techniques for each crystal, because often the crystals that 

seem to have better resolution, in fact contain not many protein molecules trapped in the 

intermediate state.   



Materials and Methods 

Protein preparation and crystallization 

Protein preparation and crystallization were performed as described previously
47,48

. The 

genes of NpSRII were cloned into a pET27bmod expression vector with a C-terminal 7x-His 

tag. Protein was expressed in E. coli strain BL21 (DE3), and purified as described
47,48

. After 

removal of imidazol by DEAE-chromatography, NpSRII-His was reconstituted into purple 

membrane lipids (protein to lipid ratio 1:35). After filtration, the reconstituted protein was 

pelleted by centrifugation at 100,000 x g. For resolubilisation the samples were resuspended 

in a buffer containing 2% n-octyl-β-D-glucopyranoside (OG) and shaken for 16 h at 4°C in 

the dark. The resolubilized protein was isolated by centrifugation at 100,000 x g. 

To the lipidic phase, formed from monooleoyl (NU-CHEK PREP, Inc., USA) the solubilized 

20 mg/ml protein in crystallization buffer (150 mM, NaCl, 25 mM Na/KPi, pH 5.1). 

Precipitant was 1 M salt Na/KPi, pH 5.1 with 0.3 M of trehalose. Crystals were grown at 

22.5 °C. 

It should be noted that the addition of trehalose improved the quality of the grown NpSRII 

crystals. It cannot be excluded that the improvement is due to the „trapped“ dynamic protein 

conformations
49

. Nevertheless, two other possible sources of the influence of trehalose on the 

quality of in meso grown membrane protein crystals – the improvement of cryoprotection and 

direct influence on crystallization matrix – should be mentioned as well. The ongoing study 

will help to understand better the observed effect. 

Trapping of intermediates 

For the loading of the intermediate state the crystals were illuminated with an an argon-

krypton ion laser with wavelength 488 nm (Omnichrome). Cryostream was blocked was 



blocked for 2 s. The illumination was turned off one second after recooling started. X-ray 

data were collected in darkness. 

Spectroscopic characterization of the crystals 

Visual spectra of single crystals were measured with an IR-VIS spectrophotometer described 

elsewhere
50

. Spectra were recorded from single crystals in the nitrogen cryostream under 

conditions identical to those used for X-ray measurements. Data were fitted by skewed 

gaussians with modified parameters from Chizhov et al.
51

 

Acquisition and treatment of diffraction data 

X-ray diffraction data (wavelength 0.934 Å) for the ground and the active states were 

collected at beamlines ID14-1 and ID23-1 at of the European Synchrotron Radiation Facility 

(ESRF), Grenoble, France correspondingly. Image acquisition time was 10 s, oscillation 

range 0.9°, and a total of 105 images were collected in each dataset. Diffraction patterns were 

processed with MOSFLM/SCALA (CCP4
52

). Anisotropic correction was performed via 

anisotropy server
53

. Crystallographic parameters and refinement statistics are summarized in 

Table 1. 

Crystallographic refinement 

For ground state structure determination PDB ID 1H68 model was iteratively refined using 

REFMAC5
54

 and Coot
55

. For usage in signalling state structure determination, the resulting 

ground state structure was minimized in CNS
56

, in order to equilibrate the model with CNS 

parameter set. q-weighted difference density maps built with CNS were used for preliminary 

analysis of the structural changes
57

. Most differences were located in the retinal-binding 

pocket and along the F and G helices. Isomerisation and deviation of the retinal out of the F-



helix, as well as displacement of W171 are clearly seen for all datasets. Changes for different 

crystals were similar. 

The intermediate state refinement was conducted as follows. First, the ground state model 

was subjected to rigid body refinement. Then the part of it, corresponding to the ground state 

(occupancy 55%) was fixed, and the other part, corresponding to the intermediate (occupancy 

45%) was subjected to simulated annealing. For the annealed part of the model, a less ordered 

loop and terminal residues (1-2, 28-32 and 217-219) were removed, along with surface water 

molecules and small lipid fragments. Internal water molecules, expected to be present but not 

clearly seen at present resolution, were harmonically restrained to positions in the ground-

state structure. After simulated annealing procedure conformations of some residues were 

manually changed towards ideal geometry. 

Accession codes 

Coordinates and structure factors have been deposited to the PDB under the accession codes 

3QAP and 3QDC. 
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Figure 1. Lipid tails in the ground state model of NpSRII. Lipid tails are shown in green 

sticks representations. Surface potential was calculated using ABPS
58

. Blue color corresponds 

to potential value of +3 kT/e and higher, and red color to -3 kT/e and lower. Lipid bilayer was 

not included in the calculation. NpSRII helices are marked by corresponding letters. Tyrosine 

Y199 and the region of positive potential near the helix F correspong to the place of NpHtrII 

transducer binding in NpSRII-NpHtrII complex. 



 

Figure 2. Overall structural rearrangements in NpSRII upon transition to the active state. A) 

Structural rearrangements in uncomplexed NpSRII. B) Structural rearrangements in NpSRII 

in complex with NpHtrII
9
 (PDB ID 2F95). The ground state is shown in blue and the active 

state is in magenta. NpHtrII in B) is shown in grey for both states. Lysine 205, retinal and 

tyrosine 199 are shown as a ball-and-stick models. NpSRII helices are marked by 

corresponding letters (the larger letters correspond to the front helices, and the smaller letters 

correspond to the back helices). Arrows show movements of the corresponding helices. 

Alignment is done by the NpSRII backbone atoms. 



 

Figure 3. Comparison of the retinal environment in the NpSRII ground state (in blue) and 

active state (in magenta) structures. Note that the active state is a mix of the M and O states, 

and retinal is shown only as it would be in the M state in 13-cis conformation. Positions of 

other residues represent the averages of those in the M and O states and reflect the general 

conformational changes in this region. Hydrogen bonds are shown by dashed lines. Water 

molecule 3 disappears in the active state. 


