A. K. Sharma, J. L. Spudich, and W. Doolittle, Microbial rhodopsins: functional versatility and genetic mobility, Trends in Microbiology, vol.14, issue.11, pp.463-469, 2006.
DOI : 10.1016/j.tim.2006.09.006

J. Klare, I. Chizhov, and M. Engelhard, Microbial Rhodopsins: Scaffolds for Ion Pumps, Channels, and Sensors, Bioenergetics: Energy conservation and conversion, pp.73-122, 2008.
DOI : 10.1007/400_2007_041

URL : http://hdl.handle.net/11858/00-001M-0000-0014-05F3-3

F. Zhang, Multimodal fast optical interrogation of neural circuitry, Nature, vol.122, issue.7136, pp.633-639, 2007.
DOI : 10.1038/nature05744

V. I. Gordeliy, Molecular basis of transmembrane signalling by sensory rhodopsin II???transducer complex, Nature, vol.50, issue.6906, pp.484-487, 2002.
DOI : 10.1038/23512

A. A. Wegener, J. P. Klare, M. Engelhard, and H. J. Steinhoff, Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis, The EMBO Journal, vol.20, issue.19, pp.5312-5319, 2001.
DOI : 10.1093/emboj/20.19.5312

A. Wegener, I. Chizhov, M. Engelhard, and H. Steinhoff, Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II, Journal of Molecular Biology, vol.301, issue.4, pp.881-891, 2000.
DOI : 10.1006/jmbi.2000.4008

E. Bordignon, Analysis of Light-Induced Conformational Changes of Natronomonas pharaonis Sensory Rhodopsin II by Time Resolved Electron Paramagnetic Resonance Spectroscopy???, Photochemistry and Photobiology, vol.83, issue.2, pp.263-272, 2007.
DOI : 10.1562/2006-07-05-RA-960

R. Moukhametzianov, Development of the signal in sensory rhodopsin and its transfer to the cognate transducer, Nature, vol.54, issue.7080, pp.115-119, 2006.
DOI : 10.1038/nature04520

G. L. Hazelbauer, J. J. Falke, and J. S. Parkinson, Bacterial chemoreceptors, Current Opinion in Structural Biology, vol.2, issue.4, pp.9-19, 2008.
DOI : 10.1016/0959-440X(92)90079-M

H. Luecke, B. Schobert, J. K. Lanyi, E. N. Spudich, and J. L. Spudich, Crystal Structure of Sensory Rhodopsin II at 2.4 Angstroms: Insights into Color Tuning and Transducer Interaction, Science, vol.293, issue.5534, pp.1499-1503, 2001.
DOI : 10.1126/science.1062977

A. Royant, X-ray structure of sensory rhodopsin II at 2.1-A resolution, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.10131-10136, 2001.
DOI : 10.1073/pnas.181203898

A. B. Reshetnyak, Comparative analysis of sensory rhodopsin II structures in complex with a transducer and without it, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, pp.894-899, 2008.
DOI : 10.1134/S1027451008060128

A. Gautier, H. R. Mott, M. J. Bostock, J. P. Kirkpatrick, and D. Nietlispach, Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy, Nature Structural & Molecular Biology, vol.13, issue.6, pp.768-774, 2010.
DOI : 10.1038/nsmb.1807

H. Luecke, B. Schobert, H. T. Richter, J. P. Cartailler, and J. K. Lanyi, Structure of bacteriorhodopsin at 1.55 ?? resolution, Journal of Molecular Biology, vol.291, issue.4, pp.899-911, 1999.
DOI : 10.1006/jmbi.1999.3027

J. Sasaki and J. L. Spudich, Proton Circulation During the Photocycle of Sensory Rhodopsin II, Biophysical Journal, vol.77, issue.4, pp.2145-2152, 1999.
DOI : 10.1016/S0006-3495(99)77055-4

R. A. Bogomolni, Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I., Proceedings of the National Academy of Sciences, vol.91, issue.21, pp.10188-10192, 1994.
DOI : 10.1073/pnas.91.21.10188

M. Iwamoto, K. Shimono, M. Sumi, K. Koyama, and N. Kamo, Phoborhodopsin Detected by a Photoelectrochemical Cell, The Journal of Physical Chemistry B, vol.103, issue.46, pp.10311-10315, 1999.
DOI : 10.1021/jp992168g

G. Schmies, Sensory Rhodopsin II from the Haloalkaliphilic Natronobacterium pharaonis: Light-Activated Proton Transfer Reactions, Biophysical Journal, vol.78, issue.2, pp.967-976, 2000.
DOI : 10.1016/S0006-3495(00)76654-9

Y. Sudo and J. L. Spudich, Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor, Proceedings of the National Academy of Sciences, vol.103, issue.44, pp.16129-16134, 2006.
DOI : 10.1073/pnas.0607467103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637548

J. P. Klare, Probing the Proton Channel and the Retinal Binding Site of Natronobacterium pharaonis Sensory Rhodopsin II, Biophysical Journal, vol.82, issue.4, pp.2156-2164, 2002.
DOI : 10.1016/S0006-3495(02)75562-8

G. Schmies, M. Engelhard, P. G. Wood, G. Nagel, and E. Bamberg, Electrophysiological characterization of specific interactions between bacterial sensory rhodopsins and their transducers, Proceedings of the National Academy of Sciences, vol.98, issue.4, pp.1555-1559, 2001.
DOI : 10.1073/pnas.98.4.1555

Y. Sudo, M. Iwamoto, K. Shimono, M. Sumi, and N. Kamo, Photo-Induced Proton Transport of Pharaonis Phoborhodopsin (Sensory Rhodopsin II) Is Ceased by Association with the Transducer, Biophysical Journal, vol.80, issue.2, pp.916-922, 2001.
DOI : 10.1016/S0006-3495(01)76070-5

J. Sasaki and J. L. Spudich, Proton transport by sensory rhodopsins and its modulation by transducer-binding, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1460, issue.1, pp.230-239, 2000.
DOI : 10.1016/S0005-2728(00)00142-0

URL : http://doi.org/10.1016/s0005-2728(00)00142-0

K. Edman, Early Structural Rearrangements in the Photocycle of an Integral Membrane Sensory Receptor, Structure, vol.10, issue.4, pp.473-482, 2002.
DOI : 10.1016/S0969-2126(02)00736-0

J. J. Ruprecht, T. Mielke, R. Vogel, C. Villa, and G. Schertler, Electron crystallography reveals the structure of metarhodopsin I, The EMBO Journal, vol.197, issue.18, pp.3609-3620, 2004.
DOI : 10.1073/pnas.1531970100

H. Choe, Crystal structure of metarhodopsin II, Nature, vol.104, issue.7340, pp.651-655, 2011.
DOI : 10.1038/nature09789

Y. Taniguchi, T. Ikehara, N. Kamo, H. Yamasaki, and Y. Toyoshima, -Maltoside Micelle, Biochemistry, vol.46, issue.18, pp.5349-5357, 2007.
DOI : 10.1021/bi602482s

URL : https://hal.archives-ouvertes.fr/hal-00857865

B. Yan, T. Takahashi, R. Johnson, and J. L. Spudich, Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: the case of sensory rhodopsin II, Biochemistry, vol.30, issue.44, pp.10686-10692, 1991.
DOI : 10.1021/bi00108a012

M. Hein, A. A. Wegener, M. Engelhard, and F. Siebert, Time-Resolved FTIR Studies of Sensory Rhodopsin II (NpSRII) from Natronobacterium pharaonis: Implications for Proton Transport and Receptor Activation, Biophysical Journal, vol.84, issue.2, pp.1208-1217, 2003.
DOI : 10.1016/S0006-3495(03)74935-2

V. Bergo, E. N. Spudich, J. L. Spudich, and K. J. Rothschild, Conformational Changes Detected in a Sensory Rhodopsin II-Transducer Complex, Journal of Biological Chemistry, vol.278, issue.38, pp.36556-36562, 2003.
DOI : 10.1074/jbc.M303719200

Y. Furutani, FTIR Spectroscopy of the M Photointermediate in pharaonis Phoborhodopsin, Biophysical Journal, vol.83, issue.6, pp.5204-5212, 2004.
DOI : 10.1016/S0006-3495(02)75347-2

K. Inoue, J. Sasaki, J. L. Spudich, and M. Terazima, Laser-Induced Transient Grating Analysis of Dynamics of Interaction between Sensory Rhodopsin II D75N and the HtrII Transducer, Biophysical Journal, vol.92, issue.6, pp.2028-2040, 2007.
DOI : 10.1529/biophysj.106.097493

S. B. Subramaniam, J. O. Tittor, and J. H. Lanyi, Protein conformational changes in the bacteriorhodopsin photocycle, Journal of Molecular Biology, vol.287, issue.1, 1999.
DOI : 10.1006/jmbi.1999.2589

H. J. Sass, Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin, Nature, vol.406, pp.649-653, 2000.

V. B. Bergo, E. N. Spudich, K. J. Rothschild, and J. L. Spudich, Photoactivation Perturbs the Membrane-embedded Contacts between Sensory Rhodopsin II and Its Transducer, Journal of Biological Chemistry, vol.280, issue.31, pp.28365-28369, 2005.
DOI : 10.1074/jbc.M505555200

H. Yoshida, Y. Sudo, K. Shimono, M. Iwamoto, and N. Kamo, Transient movement of helix F revealed by photo-induced inactivation by reaction of a bulky SH-reagent to cysteine-introduced pharaonis phoborhodopsin (sensory rhodopsin II), Photochemical & Photobiological Sciences, vol.3, issue.6, pp.537-542, 2004.
DOI : 10.1039/b315454h

E. Bordignon, Structural Analysis of a HAMP Domain: THE LINKER REGION OF THE PHOTOTRANSDUCER IN COMPLEX WITH SENSORY RHODOPSIN II, Journal of Biological Chemistry, vol.280, issue.46, pp.38767-38775, 2005.
DOI : 10.1074/jbc.M509391200

M. Etzkorn, Complex Formation and Light Activation in Membrane-Embedded Sensory Rhodopsin II as Seen by Solid-State NMR Spectroscopy, Structure, vol.18, issue.3, pp.293-300, 2010.
DOI : 10.1016/j.str.2010.01.011

C. Yang, O. Sineshchekov, E. N. Spudich, and J. L. Spudich, The Cytoplasmic Membrane-proximal Domain of the HtrII Transducer Interacts with the E-F Loop of Photoactivated Natronomonas pharaonis Sensory Rhodopsin II, Journal of Biological Chemistry, vol.279, issue.41, pp.42970-42976, 2004.
DOI : 10.1074/jbc.M406504200

J. Sasaki, T. Nara, E. N. Spudich, and J. L. Spudich, Constitutive activity in chimeras and deletions localize sensory rhodopsin II/HtrII signal relay to the membrane-inserted domain, Molecular Microbiology, vol.66, issue.0, pp.1321-1330, 2007.
DOI : 10.1073/pnas.96.3.857

Y. Sudo, Y. Furutani, H. Kandori, and J. L. Spudich, of Sensory Rhodopsin II and Its Alteration during the Signaling Process, Journal of Biological Chemistry, vol.281, issue.45, p.34239, 2006.
DOI : 10.1074/jbc.M605907200

J. K. Lanyi, Proton transfers in the bacteriorhodopsin photocycle, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.8, pp.1012-1018, 2006.
DOI : 10.1016/j.bbabio.2005.11.003

L. Cordone, M. Ferrand, E. Vitrano, and G. Zaccai, Harmonic Behavior of Trehalose-Coated Carbon-Monoxy-Myoglobin at High Temperature, Biophysical Journal, vol.76, issue.2, pp.1043-1047, 1999.
DOI : 10.1016/S0006-3495(99)77269-3

I. Chizhov, The Photophobic Receptor from Natronobacterium pharaonis: Temperature and pH Dependencies of the Photocycle of Sensory Rhodopsin II, Biophysical Journal, vol.75, issue.2, pp.999-1009, 1998.
DOI : 10.1016/S0006-3495(98)77588-5

M. Strong, Toward the structural genomics of complexes: Crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis, Proceedings of the National Academy of Sciences, vol.103, issue.21, p.8060, 2006.
DOI : 10.1073/pnas.0602606103

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

A. T. Brunger, Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.905-921, 1998.
DOI : 10.1107/S0907444998003254

T. Ursby and D. Bourgeois, Improved Estimation of Structure-Factor Difference Amplitudesfrom Poorly Accurate Data, Acta Crystallographica Section A Foundations of Crystallography, vol.53, issue.5, pp.564-575, 1997.
DOI : 10.1107/S0108767397004522

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.10037-10041, 2001.
DOI : 10.1073/pnas.181342398