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Abstract: This report has two objectives. First, we present an original method of proof of soundness
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Calcul de plus faible précondition, revisité en Why3

Résumé : Ce rapport a deux objectifs. D’une part, nous présentons une méthode originale de preuve de correction
d’un calcul de plus faible précondition, fondée sur la notion de sémantique bloquante. La méthode imite, au
niveau des spécifications logiques, la méthode classique de preuve de type soundness. D’autre part, cette preuve
est réalisée formellement dans I’environnement de vérification déductive Why3, et nous illustrons, au fur et a
mesure du développement de cette étude de cas, les fonctionnalités avancées de Why3 que nous avons utilisées. Le
résultat constitue une présentation revisitée du calcul de plus faible précondition, et qui, bien qu’elle soit réalisée
formellement, est facile a suivre, grace en particulier au haut degré d’automatisation des preuves qui permet de se
focaliser sur les points clés.

Mots-clés : Vérification déductive, calcul de plus faible pré-condition, sémantique bloquante, prouveurs automa-
tiques, assistant de preuve Coq
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[Syntax (Section 2.1 )]
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-

[Operational Semantics (Section 2.2)] [Typing (Section 2.3)]
[Substitution (Section 3)] [Typing Results (Section 2.4)]

[Hoare Logic (Section 4)] [Weakest Precondition Calculus (Section 5)]

Figure 1: Structure of the development

1 Introduction

The Why3 system [7] is an environment for deductive program verification. It allows the user to write programs
annotated with logical specifications, and then generate proof obligations that guarantee the functional correctness.
Why3 can submit these obligations to a large collection of provers: automatic ones such as SMT solvers (Alt-
Ergo [5], CVC3 [3], Z3 [9], etc.) or interactive proof assistants like Coq [4] or PVS [11].

In the spectrum of deductive verification tools, Why3 positions itself in the middle of interactive environments,
that offer highly expressive languages but a low level of automation (Coq, PVS, Isabelle/HOL, etc.), and more
automated systems but equipped with poorer languages (Spec#, VCC, Frama-C, KeY, etc.). A natural objective is
to catch the best possible between these extremes: a sufficiently expressive language that still permits significantly
automated proofs.

A first objective of this report is to illustrate the capabilities of Why3 on some case study, that involves complex
objects like recursive algebraic data types and inductive predicate definitions, so as to illustrate how proofs can
be automatized in such a context. A class of examples involving such kind of objects is given by the symbolic
computation methods, in particular the tools for analyzing programs: compilers, static analyzers, etc. We chose to
formalize a calculus of weakest precondition, partially following a recent approach due to Herms et al. [10] for the
certification of a verification condition generator, using Coqg. This new approach is based on a notion of big-step
blocking semantics, defined co-inductively. The second objective of this work is to present an original approach of
the weakest precondition calculus. The originality resides in the use of a small-steps blocking semantics, which is
moreover formalized using the Why3 language, significantly restricted with respect to those of Coq.

Apart from the algebraic data types and the inductive predicates, the advances features of Why3 that we are
going to use concern the tools available to build proofs. First, we use a transformation of Why3 to make structural
inductions. Second, when the goals to prove get too complex to be proved fully automatically, we call the Coq
back-end, and within Coq we use the « why3 » factic that can finish the proof of a sub-goal by calling automated
provers through Why3. These features allow us to make in Coq only the subtle parts of the proofs.

Our case study is structured into components, named theories in Why3, and this report follows the same struc-
ture, represented on Figure 1. In Section 2 we define the language under study: its syntax (Section 2.1), its oper-
ational semantics (Section 2.2) and its typing rules (Section 2.3). In Section 2.4 we formulate and prove classical
results of preservation of typing by reduction. Section 3 is devoted to the notion of substitution and to the important
problems related to fresh variables. Although not needed for the remaining, Section 4 presents the classical Hoare
logic rules and prove their soundness. The main results are then presented in Section 5: definition of the weakest
precondition calculus, and soundness results based on the small-steps blocking semantics.

2 Formalization of Toy Imperative Language

This section formalize our language which contains assignment, sequence, a conditional statement and a while loop.
For each of the theories we will present, we are going to tell how the proof of the lemmas are obtained, by
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giving the table that is automatically generated by Why3 from the proof sessions [6].
In most cases, provers are launched with a time limit of 5 seconds and a memory limit of 1 gigabyte. The cases
where either one of these limits is reach are indicated in the tables below by results between parentheses.

2.1 Syntax

The first theory defines our language syntax. Traditionally, one defines language syntax with grammars. Here, we
directly give Why3 definitions under the form of algebraic data type declarations. We can not present the Why3
syntax in detail in this report, you may refer to the manual [6] or J.-C.Fillidtre lecture given at JFLA 2012'. The
syntax is similar to the OCaml one, we hope it is intuitive enough for the reader.

Our language has three base types which correspond to three sets of values.

type datatype = TYunit | TYint | TYbool (** basic types unit, int and bool x*)
type value = Vvoid | Vint int | Vbool bool  (** corresponding sets of values *)

We introduce abstract types for identifiers, by making a distinction between identifiers for mutable variables,
and identifiers for logic variables.

type mident (**x identifiers for mutable variables x*)
type ident (#+ identifiers for logic variables x*)

The terms of the logic language contain values, logic variables, dereferencing of mutable variables, and binary
operations +, —, x and < (other operators could be added without additional difficulties).

type operator = Oplus | Ominus | Omult | Ole (x* operators +, -, *, < x)

type term = (xx Terms x)
| Tvalue value (xx values x)
| Tvar ident (*x logic variables x)
| Tderef mident (*x access to mutable variables x*)
| Tbin term operator term (**x binary operations x)

Formulas of the logic language include terms (if Boolean), classical connectors for conjunction, negation and
implication, and universal quantification. These are the only needed connectors, but others could be added. We also
add local binding with let that allows us to write more elegant rules in the weakest precondition calculus. Note that
we do not use any advanced technique such as De Bruijn indexes for local bindings. Difficulties related to variable
naming will be handled in Section 3.

type fmla = (x*x Formulas x)
| Fterm term (xx terms: atomic formulas *)
| Fand fmla fmla (*x conjunction x*)
| Fnot fmla (** negation x)
| Fimplies fmla fmla (xx Implication x*)
| Flet ident term fmla (xx local binding: let id = term in fmla x)
I

Fforall ident datatype fmla (x* universal quantification: forall id : ty, fmla *)

Finally, the syntax of statements of our imperative language follows.

type stmt = (xx Statements x)
| Sskip (** no-op statement x*)
| Sassign mident term (*x assignment id := term x)
| Sseq stmt stmt (** sequence x)
| Sif term stmt stmt (xx conditional statement x)
| Sassert fmla (xx assertion statement x)
|

Swhile term fmla stmt (*x while loop with condition, invariant and body x)

"http://why3.1lri.fr/jfla-2012/
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We consider assignment of a mutable variable by a term, sequences (skip constant representing an empty
sequence), standard conditional statement and a while loop.

Unconventionally, we add logic annotations directly in the syntax: explicit invariants for loops, as well as assert
statements.

This first theory contains only definitions and no lemmas. Therefore, there is nothing to prove.

2.2 Operational semantics

The aim of the second theory is to define the operational semantics of our language. We choose a small step version.
In a first step, we define evaluation environments: for mutable variable, on one hand, and for logic variables on
the other.
Type env denotes environments for mutable variables. It is a map that associates a value to any mident. For
this we use the Why3 standard library generic type map.

use export Syntax

use map.Map as IdMap

type env = IdMap.map mident value (x+x map global mutable variables to their value x)
function get_env (i:mident) (sigma:env) : value = IdMap.get sigma i

get_env function provides a shortcut for accessing to the elements of an environment.
Type stack denotes environments for logic variables: a stack of pairs (ident, value). We use the generic type
list of Why3 standard library.

use export list.List
type stack = list (ident, value) (xx map local immutable variables to their value x)
function get stack (i:ident) (pi:stack) : value =

match pi with

| Nil — Vvoid

| Cons (x,v) r — if x=i then v else get_stack i r

end

get_stack function provides a shortcut to access to an element; it is defined by induction on the list. Note that this
function returns void if we try to access to a variable absent from the list. This case never happen on well-typed
programs as defined in the next section. Finally, we pose lemmas showing a similar behavior to maps, that are
automatically proved.

lemma get_stack eq: forall x:ident, v:value, pi:stack.
get_stack x (Cons (x,v) pi) = v

lemma get_stack_neq: forall x i:ident, v:value, pi:stack.
X # 1 — get_stack i (Cons (x,v) pi) = get_stack i pi

Next, we define an auxiliary function for evaluating binary operations. This definition is made by pattern-

matching on the values and the operator. Since in Why3 functions must be total, we complete our definition by

returning void in ill-typed cases. .

function eval_bin (x:value) (op:operator) (y:value) : value =
match x,y with
| Vint x,Vint y —
match op with
| Oplus — Vint (x+y)

| Ominus — Vint (x-y)

| Omult — Vint (xxy)

| Ole — Vbool (if x < y then True else False)
end

| -, — Vvoid
end

Note that True and False are the constructors of Boolean type of Why3.
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We can now define evaluation of terms as a total recursive function that returns a value, and evaluation of
formulas by a total recursive predicate. These two functions take a current state of a program, given by two
environments X and II, as arguments.

function eval_term (sigma:env) (pi:stack) (t:term) : value =
match t with

| Tvalue v — Vv
| Tvar id — get_stack id pi
| Tderef id — get_env id sigma

| Tbin t1 op t2 — eval_bin (eval_term sigma pi t1l) op (eval_term sigma pi t2)
end

predicate eval_fmla (sigma:env) (pi:stack) (f:fmla) =
match f with
Fterm t
Fand f1 f2
Fnot f

| — eval_term sigma pi t = Vbool True

| — eval_fmla sigma pi fl A eval_fmla sigma pi f2

| — not (eval_fmla sigma pi f)

| Fimplies fl f2 — eval_fmla sigma pi fl — eval_fmla sigma pi f2

| Flet x t f — eval_fmla sigma (Cons (x,eval_term sigma pi t) pi) f

| Fforall x TYint f — forall n:int. eval_fmla sigma (Cons (x,Vint n) pi) f

| Fforall x TYbool f — forall b:bool. eval_fmla sigma (Cons (x,Vbool b) pi) f
| Fforall x TYunit f — eval_fmla sigma (Cons (x,Vvoid) pi) f

end

Note that in the case of binders Flet and Fforall, the linked variable x is added to the stack. In the following, we
will note these functions in the form [t]x i and [f]s .
Finally, we define the notion of valid formula, in the sense that it is true in any state.

predicate valid_fmla (p:fmla) = forall sigma:env, pi:stack. eval_fmla sigma pi p

Execution of a statement in a given state is classically defined by a one step reduction relation noted
Y I, s~ X0, 8

Since there are statements that do not reduce, we cannot formalize this relation by a Why3 function®. Instead,
we use an inductive predicate of Why3*. Our definition is a formalization close to the usual representation using
inference rules. It is shown on Figure 2. Thus, the one_step_while_true case correspond to the rule

[inv]s o [cond]s.n = True

>, II,while cond invariant inv do body -~ 3,11, body;while cond invariant inv do body

We use a blocking semantic in the way proposed by Herms ez al. [10]: The execution blocks whenever an invalid
assertion is met or if a loop invariant is broken when the loop condition is checked (as shown in the rule above).
Conversely, assuming that the program is well-typed, the only reason why a statement would not execute is that one
of its annotations is not respected.

The advantage of such a definition is that we define the fact that a program respect its specifications by the fact
that it executes without blocking [10], and this applies in particular for a program does not terminate.

Another inductive predicate defines the execution in n steps of a program, by a reflexive-transitive closure,
shown on Figure 3. Remark that we make explicit the number n of steps of execution in this definition, to do proofs
by induction on n. Notice that the built-in int type in Why3 is the type of integers (signed), there is no built-in type
for natural numbers only. Thus, to make well-founded inductions, we pose the following elementary, but essential,
lemma.

lemma steps_non_neg: forall sigmal sigma2:env, pil pi2:stack, sl s2:stmt, n:int.
many_steps sigmal pil sl sigma2 pi2 s2 n —- n > 0

3We remind that Why3 functions are always total.
“The notion of inductive predicate in Why3 is similar to Coq or PVS ones: It is the smallest relation verifying the given clauses. Why3
verifies the usual monotonicity conditions for such definitions.
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inductive one_step env stack stmt env stack stmt =

| one_step_assign : forall sigma sigma’:env, pi:stack, x:mident, t:term.
sigma’ = IdMap.set sigma x (eval_term sigma pi t) —
one_step sigma pi (Sassign x t) sigma’ pi Sskip

| one_step_seq_noskip: forall sigma sigma’:env, pi pi’:stack, sl sl’ s2:stmt.
one_step sigma pi sl sigma’ pi’ sl’ —
one_step sigma pi (Sseq sl s2) sigma’ pi’ (Sseq sl’ s2)

one_step_seq_skip: forall sigma:env, pi:stack, s:stmt.
one_step sigma pi (Sseq Sskip s) sigma pi s

| one_step_if_true: forall sigma:env, pi:stack, t:term, sl s2:stmt.
eval_term sigma pi t = Vbool True —
one_step sigma pi (Sif t sl s2) sigma pi sl

| one_step_if_false: forall sigma:env, pi:stack, t:term, sl s2:stmt.
eval_term sigma pi t = Vbool False —
one_step sigma pi (Sif t sl s2) sigma pi s2

| one_step_assert: forall sigma:env, pi:stack, f:fmla.
eval_fmla sigma pi f — (»x blocking semantics *)
one_step sigma pi (Sassert f) sigma pi Sskip

| one_step_while_true: forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
eval_fmla sigma pi inv — (*x blocking semantics *)
eval_term sigma pi cond = Vbool True —
one_step sigma pi (Swhile cond inv body) sigma pi (Sseq body (Swhile cond inv body))

| one_step_while_false: forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
eval_fmla sigma pi inv — (*x blocking semantics x*)
eval_term sigma pi cond = Vbool False —
one_step sigma pi (Swhile cond inv body) sigma pi Sskip

Figure 2: One-step reduction

inductive many_steps env stack stmt env stack stmt int =

| many_steps_refl: forall sigma:env, pi:stack, s:stmt.
many_steps sigma pi s sigma pi s 0O

| many_steps_trans: forall sigmal sigma2 sigma3:env, pil pi2 pi3:stack,
sl s2 s3:stmt, n:int.
one_step sigmal pil sl sigma2 pi2 s2 — many_steps sigma2 pi2 s2 sigma3 pi3 s3 n —
many_steps sigmal pil sl sigma3 pi3 s3 (n+l)

Figure 3: Many steps of reduction
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Proof obligations < < @} < < N N
lemma get_stack_eq 0.01 | 0.01 | 0.03 | 0.02 (5s) | (5s)
lemma get_stack_neq | 0.02 | 0.01 | 0.03 | 0.02 (5s) | (5s)
lemma steps_non_neg 0.53

Figure 4: Proof results for theory Operational Semantics

To end this theory, we define the notion of reducibility of a program in a given state.

predicate reducible (sigma:env) (pi:stack) (s:stmt) =
exists sigma’:env, pi’:stack, s’:stmt. one_step sigma pi s sigma’ pi’ s’

So, for the case of our theory modeling the operational semantics, there are 3 lemmas to prove. Results are
shown on Figure 4. As expected, the lemma steps_non_neg cannot be proved by automated provers, as it requires
an induction on the many_steps predicate. We do the proof in Coq, and this proof is easy (one line):

induction 1; auto with zarith.

2.3 Typing

This theory introduces typing of programs. At first, we define a total function that returns a type of some value.

function type_value (v:value) : datatype =
match v with
| Vvoid — TYunit
| vint = — TYint
| Vbool _ — TYbool
end

Type of the binary operators of our language is given by a simple inductive predicate.

inductive type_operator (op:operator) (tyl ty2 ty: datatype) =
| Type_plus : type_operator Oplus TYint TYint TYint
| Type_minus : type_operator Ominus TYint TYint TYint
| Type_mult : type_operator Omult TYint TYint TYint
| Type_le : type_operator Ole TYint TYint TYbool

We define typing environments similarly to evaluation ones.

type type_stack = list (ident, datatype)
(xx map local immutable variables to their type x*)
function get_vartype (i:ident) (pi:type_stack) : datatype =
match pi with
| Nil — TYunit
| Cons (x,ty) r — if x=1 then ty else get_vartype i r
end
type type_env = IdMap.map mident datatype
(*x map global mutable variables to their type *)
function get_reftype (i:mident) (e:type_env) : datatype = IdMap.get e i

Typing judgments for terms, formulas and statements are, then, naturally defined by new inductive predicates,
given on Figures 5, 6 and 7
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inductive type_term type_env type_stack term datatype =

| Type_value : forall sigma: type_env, pi:type_stack, v:value.
type_term sigma pi (Tvalue v) (type_value v)

| Type_var : forall sigma: type_env, pi:type_stack, v: ident, ty:datatype.
(get_vartype v pi = ty) — type_term sigma pi (Tvar v) ty

| Type_deref : forall sigma: type_env, pi:type_stack, v: mident, ty:datatype.
(get_reftype v sigma = ty) — type_term sigma pi (Tderef v) ty

| Type_bin : forall sigma: type_env, pi:type_stack, tl t2 : term, op:operator,
tyl ty2 ty:datatype.
type_term sigma pi tl tyl — type_term sigma pi t2 ty2 —
type_operator op tyl ty2 ty — type_term sigma pi (Tbin t1l op t2) ty

Figure 5: Typing rules for terms

inductive type_fmla type_env type_stack fmla =

| Type_term : forall sigma: type_env, pi:type_stack, t:term.
type_term sigma pi t TYbool — type_fmla sigma pi (Fterm t)

| Type_conj : forall sigma: type_env, pi:type_stack, fl f2:fmla.
type_fmla sigma pi fl — type_fmla sigma pi f2 — type_fmla sigma pi (Fand f1l f2)

| Type_neg : forall sigma: type_env, pi:type_stack, f:fmla.
type_fmla sigma pi f — type_fmla sigma pi (Fnot f)

| Type_implies : forall sigma: type_env, pi:type_stack, fl f2:fmla.
type_fmla sigma pi fl1 — type_fmla sigma pi f2 —
type_fmla sigma pi (Fimplies f1l f2)

| Type_let : forall sigma: type_env, pi:type_stack, x:ident, t:term, f:fmla, ty:datatype|.
type_term sigma pi t ty — type_fmla sigma (Cons (x,ty) pi) f —
type_fmla sigma pi (Flet x t f)

| Type_forall : forall sigma: type_env, pi:type_stack, x:ident, f:fmla, ty:datatype.
type_fmla sigma (Cons (x,ty) pi) f — type_fmla sigma pi (Fforall x ty f)

Figure 6: Typing rules for formulas

RR n° 8185




Weakest Precondition Calculus, Revisited using Why3 12

inductive type_stmt type_env type_stack stmt =
| Type_skip : forall sigma: type_env, pi:type_stack. type_stmt sigma pi Sskip

| Type_seq : forall sigma: type_env, pi:type_stack, sl s2:stmt.
type_stmt sigma pi sl — type_stmt sigma pi s2 —
type_stmt sigma pi (Sseq sl s2)

| Type_assigns : forall sigma: type_env, pi:type_stack, x:mident, t:term, ty:datatype.
(get_reftype x sigma = ty) — type_term sigma pi t ty —
type_stmt sigma pi (Sassign x t)

| Type_if : forall sigma: type_env, pi:type_stack, t:term, sl s2:stmt.
type_term sigma pi t TYbool — type_stmt sigma pi sl — type_stmt sigma pi s2 —
type_stmt sigma pi (Sif t sl s2)

| Type_assert : forall sigma: type_env, pi:type_stack, p:fmla.
type_fmla sigma pi p — type_stmt sigma pi (Sassert p)

| Type_while : forall sigma: type_env, pi:type_stack, cond:term, body:stmt, inv:fmla.
type_fmla sigma pi inv — type_term sigma pi cond TYbool —
type_stmt sigma pi body — type_stmt sigma pi (Swhile cond inv body)

Figure 7: Typing rules for statements

2.4 Relations between typing and operational semantic

This theory contains our first results linking typing and execution. At first, it defines a predicate for compatibility
between typing and evaluation environments, that is, to each identifier of type ¢ is associated a value of type ¢.

predicate compatible_env (sigma:env) (sigmat:type_env) (pi:stack) (pit: type_stack) =
(forall id: mident. type_value (get_env id sigma) = get_reftype id sigmat) A
(forall id: ident. type_value (get_stack id pi) = get_vartype id pit)

Then we pose an inversion lemma, that allows us to know which is the constructor of a value, from its type.

lemma type_inversion : forall v:value.
match (type_value v) with
| TYbool — exists b: bool. v = Vbool b
| TYint — exists n: int. v = Vint n
| TYunit — v = Vvoid
end

The results of proofs of all the lemmas in this theory are given on Figure 8. For this particular lemma, an obvious
case-based reasoning allows to prove such lemma. Nevertheless, theorem provers are not able to prove this goal.
We could do this proof with Coq, but we can also use Why3 features: goals transformations. In Why, there
exists such a transformation to make structural induction. Here, the type value is not recursive, so it amounts to a
case-based reasoning. The three generated sub-goals are automatically discharged.

We also made a Coq proof of type_inversion lemma. It can be done easily thanks to another feature of
Why3: the why3 factic of Coq. It is a tactic loaded as Coq plug-in by

Require Import Why3.
Ltac ae := why3 "alt-ergo" timelimit 5

SIndeed, we realized later in the development that CVC3 2.2 proves that lemma
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Proof obligations < < © © & N N
lemma type_inversion 0.03 | 0.02 | 0.04 | (5s) | 1.02 | (5s) | (5s)

transformation induction_ty_lex
subgoal 1 0.08 | 0.05 | 0.04 | (5s) | | 0.07 | 0.07
lemma eval_type_term
transformation induction_ty_lex
transformation split_goal_wp

subgoal 1 0.50 | 0.13 | 0.18 | 0.23 (5s) | (5s)

subgoal 2 0.62 | 0.14 | 0.27 | 0.31 (5s) | (5s)

subgoal 3 0.66 | 0.22 | 0.06 | 0.07 5s) | (5s)

subgoal 4 (5s) | (5s) | (5s) | (5s) | 4.14 | (5s) | (59)
lemma type_preservation 7.04

Figure 8: Proof Results for theory TypingAndSemantics

‘ Alt-Ergo Driver }—»[Alt—Ergo Goal]—»
Proof Tasks |«

why3 Tactic

Coq Goal

y
Transformations |

Figure 9: Architecture of Why3 and why3 tactic of Coq.

The tactic ae is therefore a shortcut to call Alt-Ergo from Coq, with a timeout fixed to 5 seconds. The tactic allows,
then, to call (through Why3) theorem provers, according to the architecture of Figure 9.
The proof of type_inversion lemma is then

destruct v; ae.

It should be noted that this tactic does not produce any proof term, so we must trust both the way it reconstructs
a Why3 task from the current Coq goal, and theorem provers called after, the same way we trust these theorem
provers when called directly from Why3.

The first significant result states that a well-typed term of type ¢, is evaluated to a value of type t, too.

lemma eval_type_term:
forall t:term, sigma:env, pi:stack, sigmat:type_env, pit:type_stack, ty:datatype.
compatible_env sigma sigmat pi pit —
type_term sigmat pit t ty — type_value (eval_term sigma pi t) = ty

This lemma has to be proved by structural induction on ¢. Once again, instead of making proof entirely in Coq,
we first apply Why3 transformation for structural induction, which produces 4 new sub-goals, corresponding to a
standard induction schema. Among these sub-goals, 3 are automatically proved (See Figure 8), the only one that
we have to prove with Coq concerns binary operations which is done in 7 lines:
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destruct t; auto.

simpl; intros.

inversion H2; subst; clear H2.

destruct H9 as (hl & h2 & h3).

generalize (type_inversion (eval_term sigma pi tl1)).
generalize (type_inversion (eval_term sigma pi t2)).
destruct h3; ae.

The second result is preservation of well-typing by reduction.

lemma type_preservation : forall sl s2:stmt, sigmal sigma2:env, pil pi2:stack,
sigmat:type_env, pit:type_stack.
type_stmt sigmat pit sl A compatible_env sigmal sigmat pil pit A
one_step sigmal pil sl sigma2 pi2 s2 —
type_stmt sigmat pit s2 A compatible_env sigma2 sigmat pi2 pit

This lemma is proved in Coq, by induction on one_step hypothesis. We obtain 8 sub-cases, 7 of them are auto-
matically discharged by why3 tactic. The last sub-goal, the sequence, requires the hypothesis of well-typedness of
the sequence before calling why3 tactic.

intros sl s2 sigmal sigma2 pil pi2 sigmat pit (hl, (h2,h3)).
induction h3; try ae.
inversion hl; subst; clear hl; ae.

In total, this proof of preservation of typing by reduction is only three lines long in Coq!
Notice that 5 of the 7 seconds (see Figure 8) are lost when waiting for Alt-Ergo failing on the 8th sub-goal.

3 Substitutions, fresh variables

For defining our weakest precondition calculus, we will need to substitute variables. We dedicate a specific theory
to the operation of substitution and its properties, that are particularly expressed under hypothesis of freshness of
variables. Naming and freshness problems are classically difficult points to handle when we formalize languages
with binders, as shown by the famous POPLmark challenge [1]. We propose here a basic approach, that we believe
is easy to deal with, and sufficient for our study.

First, we define the substitution operation, where we do not care about the problem of variable capture. The
only one operation that we are interested in is to substitute a mutable program variable by a logical variable.

(*x substitution of a mutable variable [x] by a logic variable [v]
warning: proper behavior only guaranteed if [v] is fresh x)
function msubst_term (t:term) (x:mident) (v:ident) : term =
match t with

| Tvalue _ | Tvar - — t

| Tderef y — if x = y then Tvar v else t

| Tbin t1 op t2 — Tbin (msubst_term t1 x v) op (msubst_term t2 x v)
end

function msubst (f:fmla) (x:mident) (v:ident) : fmla =
match f with

| Fterm e — Fterm (msubst_term e x v)

| Fand f1 f2 — Fand (msubst fl x v) (msubst f2 x v)

| Fnot f — Fnot (msubst f x v)

| Fimplies fl1 f2 — Fimplies (msubst fl x v) (msubst f2 x v)
| Flety t f — Flet y (msubst_term t x v) (msubst f x v)
| Fforall y ty f — Fforall y ty (msubst f x v)

end
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Then, we define the notion of fresh variable, that is, does not appear in a term or a formula. These are natural
recursive definitions.

(xx [fresh_in_term id t] is true when [id] does not occur in [t] x)
predicate fresh_in_term (id:ident) (t:term) =
match t with

| Tvalue _ | Tderef _ — true

| Tvar i — id # 1

| Tbin t1 _ t2 — fresh_in_term id t1 A fresh_in_term id t2
end

predicate fresh_in_fmla (id:ident) (f:fmla) =
match f with

| Fterm e — fresh_in_term id e

| Fand f1 f2 | Fimplies fl1 f2 — fresh_in_fmla id f1 A fresh_in_fmla id f2

| Fnot f — fresh_in_fmla id f

| Flety t f — id # y A fresh_in_term id t A fresh_in_fmla id f
| Fforall y ty f — id # y A fresh_in_fmla id f

end

For reasoning about substitutions in the remaining of our formalization, we need some general lemmas we
present now. Unsurprisingly, these lemmas have freshness hypothesis on concerned variables.

The two first lemmas relate the evaluation of a term (resp. a formula) on which we apply a substitution, with
the evaluation of this term (resp. formula) in a modified state. In other words we have the identity

[tlz < v]]lsn = [tlsmern),n

lemma eval_msubst_term: forall e:term, sigma:env, pi:stack, x:mident, v:ident.
fresh_in_term v e —
eval_term sigma pi (msubst_term e x v) =
eval_term (IdMap.set sigma x (get_stack v pi)) pi e

lemma eval_msubst: forall f:fmla, sigma:env, pi:stack, x:mident, v:ident.
fresh_in_fmla v f —
(eval_fmla sigma pi (msubst f x v) ¢
eval_fmla (IdMap.set sigma x (get_stack v pi)) pi f)

These lemmas are proved by structural induction on the term (resp. formula), thanks to the Why3 transformation.
All sub-goals are automatically discharged (see Figure 10), except two which must be proved in Coq (case Flet
and Fforall). These proofs are simple:

destruct f; auto.
simpl; ae.

The next lemmas allow us, when evaluating a term or a formula, to swap two consecutive identifiers in the stack

(if they are different), that is [t]s; 11, . (idy 01 (ida,ve) - Tls = (L1511, - (ida,v2)- (idy 01 )-TIo- The first of these lemmas, for
terms, is written as ©

lemma eval_swap_term: forall t:term, sigma:env, pi l:stack, idl id2:ident, v1 v2:value.
idl # id2 —

eval_term sigma (l++(Cons (idl,vl1l) (Cons (id2,v2) pi))) t

)

eval_term sigma (l++(Cons (id2,v2) (Cons (idl,vl) pi))) t

and is, again, proved by structural induction (See Figure 11). There is only one sub-goal which is not automati-
cally discharged, the one corresponding to the case Tvar. This case is actually subtle, because it requires another
induction, on the list 1. In Coq, we use induction 1 tactic, and we finish the 2 sub-goals with why3 tactic.

6Symbol ++ denotes concatenation of lists.
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lemma eval_msubst_term
transformation induction_ty_lex
transformation split_goal_wp
subgoal 1 0.04 | 0.03 | 0.04 | 0.04 | (5s) | (59)
subgoal 2 0.04 | 0.02 | 0.04 | 0.04 | (5s) | (59)
subgoal 3 0.05 | 0.03 | 0.04 | 0.04 | (5s) | (55)
subgoal 4 0.12 | 0.03 | (5s) | (5s) | (5s) | (5s)
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Proof obligations < < ® @) o N N
lemma eval_msubst
transformation induction_ty_lex
transformation split_goal_wp
subgoal 1 0.05 | 0.02 | (30s) | (30s) (30s) (30s)
subgoal 2 0.04 | 0.02 | (30s) | (30s) (30s) (30s)
subgoal 3 0.20 | 0.05 | (30s) | (30s) (30s) | (1000M)
subgoal 4 0.06 | 0.04 | (30s) | (30s) (30s) (30s)
subgoal 5 0.04 | 0.03 | (30s) | (30s) (30s) (30s)
subgoal 6 0.04 | 0.03 | (30s) | (30s) (30s) (30s)
subgoal 7 0.07 | 0.03 | (30s) | (30s) (30s) | (1000M)
subgoal 8 0.03 | 0.04 | (30s) | (30s) (30s) (30s)
subgoal 9 (5s) | 4.15 | (30s) | (30s) | 0.78 | (30s) | (1000M)
subgoal 10 0.33 | 0.11 | (30s) | (30s) (30s) (30s)
subgoal 11 (5s) | (30s) | (30s) | (30s) | 1.99 | (30s) (30s)
subgoal 12 2.55 | 0.80 | (30s) | (30s) (30s) | (1000M)

Figure 10: Substitution lemmas

destruct t;auto.

intros; simpl.

induction 1.

(x 1 =Nil %)

ae.

(¥ Cons x*)

simpl.

destruct a.

destruct (ident_decide i0 i); ae.
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lemma eval_swap_term
transformation induction_ty_lex
transformation split_goal_wp
subgoal 1 0.04 | 0.03 | 0.04 | 0.08 (1000M) | (1000M)
subgoal 2 (5s) | (30s) | (30s) | (30s) | 1.26 | (1000M) | (1000M)
subgoal 3 0.05 | 0.03 | 0.06 | 0.05 (1000M) | (1000M)
subgoal 4 0.18 | 0.07 | 19.46 | 24.35 (1000M) | (1000M)
Figure 11: Swap lemma for terms
-
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lemma eval_swap_gen
transformation induction_ty_lex
transformation split_goal_wp
subgoal 1 0.16 | 0.07 | 041 | 0.46 (30s) | (30s)
subgoal 2 0.15 | 0.06 | 0.44 | 047 (30s) | (30s)
subgoal 3 0.38 | 0.13 | 8.86 | 8.79 (30s) | (30s)
subgoal 4 0.38 | 0.14 | 420 | 9.18 (30s) | (30s)
subgoal 5 0.17 | 0.07 | 4.68 | 4.82 (30s) | (30s)
subgoal 6 0.16 | 0.07 | 5.05 | 5.21 (30s) | (30s)
subgoal 7 0.04 | 0.04 | 419 | 9.03 (30s) | (30s)
subgoal 8 0.04 | 0.04 | 851 | 8.96 (30s) | (30s)
subgoal 9 1.14 | 0.39 | (30s) | (30s) (30s) | (30s)
subgoal 10 1.07 | 0.41 | (30s) | (30s) (30s) | (30s)
subgoal 11 8.81 | (30s) | (30s) | (30s) | 1.93 | (30s) | (30s)
subgoal 12 8.88 | (30s) | (30s) | (30s) | 1.86 | (30s) | (30s)

Figure 12: Generic swap lemma for formulas

Next, we pose a similar lemma for formulas as follows

lemma eval_swap_gen:
forall f:fmla, sigma:env, pi l:stack, idl id2:ident, v1 v2:value.
idl # id2 —
(eval_fmla sigma (l++(Cons (idl,v1l) (Cons (id2,v2) pi))) f <
eval_fmla sigma (l++(Cons (id2,v2) (Cons (idl,vl1l) pi))) f)

It is again proved by structural induction (See Figure 12). Sub-goals are proved automatically. The last two cases,
corresponding to the Fforall (2 cases because equivalence < is split in two), are proved only by Alt-Ergo 0.93.1,
using almost 10 seconds. We also made these proofs in Coq, that are identical, and execute more quickly:
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lemma eval_swap | (5s) | (5s) | (5s) | (5s) | 0.52 | (5s) | (59)

Figure 13: Specialized swap property for formulas

destruct f; auto.
simpl; intros.
destruct d; intros; rewrite Cons_append; ae.

We also pose the following instance of eval_swap_gen for the case 1=Nil.

lemma eval_swap:
forall f:fmla, sigma:env, pi:stack, idl id2:ident, vl v2:value.
idl # id2 —
(eval_fmla sigma (Cons (idl,v1l) (Cons (id2,v2) pi)) f «
eval_fmla sigma (Cons (id2,v2) (Cons (idl,v1) pi)) f)

While it is sufficient to instantiate the preceding lemma, this lemma is not proved by any theorem prover (see
Figure 13). It has to be done in Coq

intros f sigma pi idl id2 v1 v2 hl.
apply eval_swap_gen with (1:=Nil); auto.

Finally, two last lemmas allow to pop from the stack an identifier that does not appear in the evaluated term
(resp. formula), that is [t]s (iq,v).m1 = [t]x,m if id is fresh.

lemma eval_term_change_free : forall t:term, sigma:env, pi:stack, id:ident, v:value.
fresh_in_term id t — eval_term sigma (Cons (id,v) pi) t = eval_term sigma pi t

lemma eval_change_free : forall f:fmla, sigma:env, pi:stack, id:ident, v:value.
fresh_in_fmla id f — (eval_fmla sigma (Cons (id,v) pi) f < eval_fmla sigma pi f)

Once again, the proof is done by structural induction (See Figure 14). The only sub-case which is not automatically
proved is the case of Fforall in the direct way of implication, that is proved with:

destruct f; auto.
simpl; intros H sigma pi id v (hl & h2).
destruct d; intros; rewrite <- (H _ _ id v); ae.

4 Hoare Logic

This section is in fact not needed for the remaining of the case study. We just illustrate how one can formalize the
standard Hoare logic rules. The notion of partial correctness of a Hoare triple, usually denoted {p}s{q}, is defined
as follows.

predicate valid_triple (p:fmla) (s:stmt) (q:fmla) =
forall sigma:env, pi:stack. eval_fmla sigma pi p —
forall sigma’:env, pi’:stack, n:int.
many_steps sigma pi s sigma’ pi’ Sskip n —
eval_fmla sigma’ pi’ q
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lemma eval_term_change_free
transformation induction_ty_lex
transformation split_goal_wp
subgoal 1 0.04 | 0.03 | 0.04 | 0.05 (20s) (20s)
subgoal 2 0.04 | 0.03 | 0.11 | 0.21 (20s) (20s)
subgoal 3 0.04 | 0.03 | 0.03 | 0.04 | (1000M) | (30s)
subgoal 4 0.07 | 0.03 | 3.31 | 3.76 | (1000M) | (30s)
= |
2 = ~
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Proof obligations < < < @ o N N
lemma eval_change_free
transformation induction_ty_lex
transformation split_goal_wp
subgoal 1 0.05 | 0.04 | 0.20 | 0.25 (1000M) | (30s)
subgoal 2 0.06 | 0.04 | 0.18 | 0.15 (1000M) | (30s)
subgoal 3 0.08 | 0.04 | 2.01 | 2.05 (1000M) | (30s)
subgoal 4 0.12 | 0.05 | 249 | 2.77 (1000M) | (30s)
subgoal 5 0.05 | 0.03 | 1.07 | 1.09 (20s) (20s)
subgoal 6 0.06 | 0.04 | 1.33 1.46 (30s) (30s)
subgoal 7 0.07 | 0.04 | 2.12 | 2.28 (1000M) | (30s)
subgoal 8 0.04 | 0.03 | 2.71 | 2.62 (1000M) | (30s)
subgoal 9 0.63 | 0.18 (30s) | 0.55 (20s) (20s)
subgoal 10 0.23 | 0.08 | (30s) | (30s) | 0.54 (20s) (20s)
subgoal 11 (30s) | (30s) | (30s) | (30s) | 1.63 (30s) (30s)
subgoal 12 3.02 | 037 | (30s) | (30s) | I.11 (30s) (30s)

Figure 14: Substitution and freshness

First, the consequence rule below can be proved automatically.

lemma consequence_rule:
forall p p’ q q':fmla, s:stmt.
valid_fmla (Fimplies p’' p) —
valid_triple p s q —
valid_fmla (Fimplies q q') —
valid_triple p’' s q'
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The rule for sequence is also proved automatically, but only after posing the standard “sequence lemma”:

lemma many_steps_seq:
forall sigmal sigma3:env, pil pi3:stack, sl s2:stmt, n:int.
many_steps sigmal pil (Sseq sl s2) sigma3 pi3 Sskip n —
exists sigma2:env, pi2:stack, nl n2:int.
many_steps sigmal pil sl sigma2 pi2 Sskip nl A
many_steps sigma2 pi2 s2 sigma3 pi3 Sskip n2 A
n=1+nl+n2

lemma seq_rule:
forall p q r:fmla, sl s2:stmt.
valid_triple p sl r A valid_triple r s2 q —
valid_triple p (Sseq sl s2) q

The proof of that lemma, even on paper, is not completely trivial and deserves a few lines, with an induction on
the number n of steps. The proof is thus done in Coq, and is not surprising:

intros sigmal sigma3 pil pi3 sl s2 n Hred.
generalize Hred.
generalize (steps_non_neg _ _ _ _ _ _ _ Hred) .
clear Hred.
intros H.
generalize sigmal pil sl; clear sigmal pil sl.
pattern n; apply Z lt_induction; auto.
intros.
inversion Hred; subst; clear Hred.
inversion H1l; subst; clear H1.
(*x case sl #* Sskip x)
assert (h:(0 < n@® < nB+1)%Z).

generalize (steps_non_neg _ _ _ _ _ _ _ H2); omega.
generalize (HO n® h _ _ _ H2).
intros (s4 & p4 & n4 & n5 & hl & h2 & h3).
exists s4. exists p4. exists (n4+1)%Z. exists n5.
ae.

(x case sl = Sskip *)
exists sigma2. exists pi2. exists 0%Z. exists n0.
ae.

The other rules are

lemma skip_rule:
forall q:fmla. valid_triple q Sskip q

lemma assign_rule:
forall p:fmla, x:mident, id:ident, t:term.
fresh_in_fmla id p —
valid_triple (Flet id t (msubst p x id)) (Sassign x t) p

lemma if_rule:
forall t:term, p g:fmla, sl s2:stmt.
valid_triple (Fand p (Fterm t)) sl q A
valid_triple (Fand p (Fnot (Fterm t))) s2 q —
valid_triple p (Sif t sl s2) q
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lemma assert_rule:
forall f p:fmla. valid_fmla (Fimplies p f) —
valid_triple p (Sassert f) p

lemma while_rule:
forall e:term, inv:fmla, i:stmt.
valid_triple (Fand (Fterm e) inv) i inv —
valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

In all these five cases, Coq must be used, and are done quite smoothly by inversion of predicates many_steps and
one_step, and finishing the sub-goals with the Why3 tactic.

Theorem skip_rule : forall (q:fmla), (valid_triple q Sskip q).
intros gq sigma pi.

intros H sigma’ pi’ n HL.

inversion H1l; subst; clear Hl; auto.

inversion HO.

Qed.

Theorem assign_rule : forall (p:fmla) (x:mident) (id:ident) (t:term),
(fresh_in_fmla id p) — (valid_triple (Flet id t (msubst p x id))
(Sassign x t) p).

intros p x id t hl.

red; intros.

inversion HO; subst; clear HO.

inversion H1l; subst; clear H1.

inversion H2; subst; clear H2.

ae.

ae.

Qed.

Theorem if_rule : forall (t:term) (p:fmla) (q:fmla) (sl:stmt) (s2:stmt),
((valid_triple (Fand p (Fterm t)) sl q) A (valid_triple (Fand p
(Fnot (Fterm t))) s2 q)) — (valid_triple p (Sif t sl s2) q).

unfold valid_triple.

intros t p q sl s2 (hl,h2).

intros.

inversion HO; subst; clear HO.

inversion H1l; subst; clear Hl.

eapply hl; eauto.

ae.

eapply h2; eauto.

ae.

Qed.

RR n° 8185




Weakest Precondition Calculus, Revisited using Why3

22

Theorem assert_rule : forall (f:fmla) (p:fmla), (valid_fmla (Fimplies p
f)) — (valid_triple p (Sassert f) p).

unfold valid_triple.

intros f p hl.

intros.

inversion HO; subst; clear HO.

inversion H1l; subst; clear H1.

inversion H2; subst; clear H2; auto.

inversion HO.

Qed.

Theorem while_rule : forall (e:term) (inv:fmla) (i:stmt),
(valid_triple (Fand (Fterm e) inv) i inv) — (valid_triple inv (Swhile e
inv i) (Fand (Fnot (Fterm e)) inv)).

unfold valid_triple.

intros e inv i Hinv_preserved.

intros s p Hinv_init s’ p’' n Hred.

generalize (steps_non_neg _ _ _ _ _ _ _ Hred); intro Hn_pos.

generalize Hred; clear Hred.

generalize s p Hinv_init; clear s p Hinv_init.

apply Z_1lt_induction

with (P := fun n =>
forall s p,
eval_fmla s p inv —
many_steps s p (Swhile e inv i) s’ p’ Sskip n —
eval_fmla s’ p’ (Fand (Fnot (Fterm e)) inv)

); auto.

intros.

inversion H1l; subst; clear H1.

inversion H2; subst; clear H2.

destruct H11l as (H4 & H5).

(* case cond true x*)

generalize (many_steps_seq - _ _ _ _ _ _ H3).

intros (s3 & p3 & n1 & n2 & hl & h2 & h3).

apply H with (3:=h2); auto.

generalize (steps_non_neg _ _ _ _ _ _ _ hl).

generalize (steps_non_neg _ _ _ _ _ _ _ h2).

now (auto with zarith).

apply Hinv_preserved with (2:=hl); simpl; auto.

(x case cond false x)

inversion H3; subst.

destruct H11l as (H4 & H5).

simpl; rewrite H5; intuition.

discriminate.

now inversion H1.

Qed.

’

The summary of all proofs done in this theory is shown on Figure 15
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lemma many_steps_seq 1.16
lemma consequence_rule 0.27 | 0.26
lemma skip_rule 0.66
lemma assign_rule 1.70
lemma seq_rule 0.24 | 0.24
lemma if_rule 1.11
lemma assert_rule 0.86
lemma assert_rule_ext 0.76
lemma while_rule 0.84

Figure 15: Proof results for theory Hoare

5 Weakest Precondition Calculus

5.1 Definition of the calculus

The Weakest Precondition Calculus is a function that, given a statement s and a formula (), returns another formula
denoted WP (s, Q). Itis defined recursively on the structure of s. The usual property expected is that the Hoare triple
{WP(s,Q)}s{Q} is valid, in other words if one executes s in a state satisfying WP(s, ), and if this execution
terminates, then () is valid in the resulting state. In fact, we are going to state and prove a stronger property in
Section 5.3, that also states something in case of non-termination.

function wp (s:stmt) (qg:fmla) : fmla =
match s with

| Sskip —q

| Sassert f — Fand f (Fimplies f q) (xx asymmetric and x)

| Sseq sl s2 — wp sl (wp s2 q)

| Sassign x t — let id = fresh_from q in Flet id t (msubst g x id)
|

Sif t sl s2 — (x (t = WP(s1,Q)) N (not t — WP(s2,Q)) *)
Fand (Fimplies (Fterm t) (wp sl q)) (Fimplies (Fnot (Fterm t)) (wp s2 q))
| Swhile cond inv body —
(x inv A forall effects, (cond A inv — WP(body,inv)) AN (not cond A inv — Q) *)
Fand inv (abstract_effects body
(Fand (Fimplies (Fand (Fterm cond) inv) (wp body inv))
(Fimplies (Fand (Fnot (Fterm cond)) inv) q)))
end

Our definition above follows the classical schema for such a calculus. For the case of Sassert f, weuse fA(f —
Q) instead of f A Q as it is done in practice’. For an assignment Sassign x t, we substitute the mutable variable
x by a fresh logic variable id, computed thanks to a auxiliary function fresh_from, then we bind id to the value
assigned t. The case of the loop classically introduces a quantification on the side effects of the body of that loop.
This quantification is realized by calling another auxiliary function abstract_effects.

In order to deal with difficulties separately, we do not detail implementations of those auxiliary functions, we
only axiomatize them. The first function is axiomatized by:

function fresh_from (f:fmla) : ident
axiom fresh_from_fmla: forall f:fmla. fresh_in_fmla (fresh_from f) f

"It forces f to appear as hypothesis in the other proof obligations.
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In other words, for any formula f, fresh_from f returns an arbitrary identifier that is fresh in f ; we don’t care
about how it is computed.
The function that abstract the side effects has type

function abstract_effects (s:stmt) (f:fmla) : fmla

and its expected behavior is, for given statement s and formula P, to return the formula Vw, f where w =
wy, ..., wy is the set of assigned variables in s. Our axiomatization of this behavior is made of four hypothe-
ses detailed below.

The first hypothesis formalizes the specialization property: if ¥, II = Vw, f then X, 11 |= f.

axiom abstract_effects_specialize : forall sigma:env, pi:stack, s:stmt, f:fmla.
eval_fmla sigma pi (abstract_effects s f) — eval_fmla sigma pi f

The second hypothesis formalizes the distributivity of quantification over conjunction : if ¥, IT = (Vw, P)A(Vw, Q)
then 3, IT = Vw, P A Q.

axiom abstract_effects_distrib_conj : forall s:stmt, p q:fmla, sigma:env, pi:stack.
eval_fmla sigma pi (abstract_effects s p) A
eval_fmla sigma pi (abstract_effects s q) —
eval_fmla sigma pi (abstract_effects s (Fand p q))

The third hypothesis is a bit more subtle: it expresses a property of the quantification on the two parts of an
implication.

axiom abstract_effects_monotonic : forall s:stmt, p q:fmla.
valid_fmla (Fimplies p q) — forall sigma:env, pi:stack.
eval_fmla sigma pi (abstract_effects s p) — eval_fmla sigma pi (abstract_effects s q)

In other words, if = P — @ then = (Yw, P) — (Yw, Q). This property can be seen as a consequence of two
other properties: first, if = f then = Vw, f ; second, if Yw, (P — @) then (Vw, P) — (Yw, Q). It is important
to notice that this hypothesis talks about validity in all states, because for fixed ¥ and II, ¥, II = P — @ does
not imply ¥, 1T = (Vw, P) — (Yw, Q). A counter-example is as follows: assuming 3 such that X(z) = 42, then
true — x = 42 is valid, but not (Vx, true) — (Va,x = 42).

Until now, the hypotheses on abstract_effects express abstractly that it behaves as an universal quantifica-
tion, without saying precisely on what. The fourth and last hypothesis we pose now expresses on what variables we
quantify: if w = wi, ..., wy is the set of variables assigned by s, then Vw, P is a formula that is invariant by the
WP calculus through s.

axiom abstract_effects_writes : forall sigma:env, pi:stack, s:stmt, q:fmla.
eval_fmla sigma pi (abstract_effects s q) —
eval_fmla sigma pi (wp s (abstract_effects s q))

In fact, this abstract way of specifying the behavior abstract_effects is precisely the important property that one
tries to obtain when introducing the universal quantification into the weakest precondition of a loop: the formula
cond N inv — WP (body, inv) must be quantified, so that it becomes true (because it is invariant) at each iteration
of the loop.

5.2 Basic Properties of the Calculus

In the literature, there exist advanced theoretical studies on the family of predicate transformers in general, that
includes the weakest precondition calculus [2]. Several properties are stated, often without showing why they are
useful. In our case study, we are going to state and prove two properties that are needed for the main proof of
soundness.

The first of these two properties is classically named monotonicity of the calculus. It is stated mathematically
under the form: for any statement s and any formulas P and @, if = P — @ then = WP(s, P) — WP(s,Q). In
Why3 it becomes:
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lemma monotonicity
transformation induction_ty_lex
transformation split_goal_wp
subgoal 1 0.04 | 0.04 | 0.06 | 0.08 0.09 | 0.10
subgoal 2 (5s) | (Bs) | (5s) | (5s) | 1.05 | (58) | (59)
subgoal 3 0.06 | 0.05 | 0.11 | 0.14 (5s) | (5s)
subgoal 4 5s) | (5s) | (5s) | (5s) | 0.97 | (5s) | (5s)
subgoal 5 (Ss) | (5s) | (5s) | (5s) 1.40 | 1.91
subgoal 6 5s) | (5s) | (5s) | (5s) | 0.75 | (5s) | (59)

Figure 16: Monotonicity of Weakest Preconditions

lemma monotonicity: forall s:stmt, p q:fmla.
valid_fmla (Fimplies p q) — valid_fmla (Fimplies (wp s p) (wp s q))

Notice that, as before, quantification on all states is essential: ¥, 1T = P — @ does not necessarily imply X, IT =
WP(s, P) — WP(s, Q). There is a similar counter-example: if 3(x) = 42 then (true — x = 42) but WP (z :=
7, true) = true does not imply WP(z := 7,2 = 42) = (7 = 42).

The proof of the monotonicity property is done by induction on the structure of s. In Why3, after application of
the transformation for structural induction, it gives 6 sub-goals, as shown on Figure 16.

Only the cases of the assignment, the conditional and the loop are not proved automatically. The proofs for the
case of Sassigns and Sif can both be done using the 2 same lines:

destruct s; auto.
unfold valid_fmla; simpl; ae.

it should be noted that that last call to the why3 tactic makes use of lemmas for the substitution and fresh variables.
The case of Swhile est slightly more involved, one needs to apply the hypothesis (3):

destruct s; auto.

unfold valid_fmla; simpl.

intros H1 p q H2; intuition.

apply abstract_effects_monotonic with (2:=H3).
unfold valid_fmla; simpl.

intuition.

The second property that we need is the distributivity over the conjunction: if ¥, 11 = WP(s, P) and X, 11 =
WP(s, Q) then X, II = WP(s, P A Q).

lemma distrib_conj: forall s:stmt, sigma:env, pi:stack, p q:fmla.
eval_fmla sigma pi (wp s p) A eval_fmla sigma pi (wp s q) —
eval_fmla sigma pi (wp s (Fand p q))

The reciprocal is also true, but not needed. The proof proceeds again by structural induction on s, as shown on
Figure 17. The cases of assignment, sequence, and loop are not proved automatically, the proofs are terminated in
Coq.

The proof for the case of assignment is again easy:

destruct s; auto.
unfold valid_fmla; simpl; ae.
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lemma distrib_conj
transformation induction_ty_lex
transformation split_goal_wp
subgoal 1 0.06 | 0.04 | 0.06 | 0.07 0.14 | 0.12
subgoal 2 (5s) | (Bs) | (5s) | (5s) | 1.38 | (58) | (59)
subgoal 3 5s) | (5s) | (5s) | (5s) | 1.05 | (5s) | (59)
subgoal 4 233 | 0.16 | (5s) | (5s) (5s) | (5s)
subgoal 5 0.53 | 0.08 | (5s) | (59) (5s) | (5s)
subgoal 6 5s) | (5s) | (5s) | (5s) | 0.70 | (5s) | (59)

Figure 17: Distributivity over Conjunction

The proof in the case of the sequence is more complex. We need to use the preceding property of mono-
tonicity. It indeed corresponds to an “intelligent” part of the proof, where we state as an intermediate lemma that
E WP(s1, WP(s2, P) AWP(s2,Q)) — WP(s1, WP(s2, P A Q)).

destruct s; auto.
simpl; intros H1 H2 sigma pi p q (H3 & H4).
assert (H: valid_fmla
(Fimplies (Fand (wp s2 p) (wp s2 q)) (wp s2 (Fand p q)))).
unfold valid_fmla ; simpl; ae.
generalize (monotonicity sl _ _ H).
unfold valid_fmla; simpl; ae.

In the case of the loop, we use hypotheses (3) and (4).

destruct s; auto.

simpl.
intros H sigma pi p q ((hl & h2) & (h3 & h4)).
split; auto.

apply abstract_effects_monotonic with (p:=

(Fand (Fand (Fimplies (Fand (Fterm t) f) (wp s f))
(Fimplies (Fand (Fnot (Fterm t)) f) p))

(Fand (Fimplies (Fand (Fterm t) f) (wp s f))

(Fimplies (Fand (Fnot (Fterm t)) f) q)))).

unfold valid_fmla; simpl.

intuition.

apply abstract_effects_distrib_conj; auto.

5.3 Soundness of the Weakest Precondition Calculus

We follow the classical approach for proving type soundness. It amounts to state two lemmas: on the one hand, the
preservation of WP by reduction ; on the other hand a progress property, that is the validity of WP (s, Q) entails the
reductibility of s (if s # Sskip).

lemma wp_preserved_by_reduction: forall sigma sigma’:env, pi pi’:stack, s s':stmt.
one_step sigma pi s sigma’ pi’' s’ —
forall gq:fmla. eval_fmla sigma pi (wp s q) — eval_fmla sigma’ pi’ (wp s’ q)
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lemma progress
transformation induction_ty_lex
transformation split_goal_wp
subgoal 1 0.04 | 0.03 | 0.05 | 0.06 0.00 | 0.00
subgoal 2 5s) | (5s) | (5s) | (5s) | 0.56 | (5s) | (59)
subgoal 3 5s) | (5s) | (5s) | (5s) | 1.12 | (5s) | (59)
subgoal 4 (Ss) | (5s) | (5s) | (5s) | 0.73 | (5s) | (59)
subgoal 5 5s) | (Bs) | (5s) | (5s) | 0.70 | (5s) | (59)
subgoal 6 (5s) | (B5s) | (5s) | (5s) | 0.75 | (5s) | (59)

Figure 19: Progress lemma

This first lemma is proved by induction on hypothesis (one_step sigma pi s sigma’ pi’ s'). This must be
done in Coq (Figure 18). After using the induction tactic in Coq, there are 8 sub-goals, among which 6 can be
proved simply by the simpl tactic followed by the why3 tactic. The two remaining cases are for the reduction of
loops. To prove them, we start by using the hypothesis (1) to make explicit the fact that the formula (cond A inv —
WP (body, inv)) A (mcond A inv — Q) is true in the current state, then we conclude using the why3 tactic. One
should notice that these calls to why3 tactic use the hypothesis (4) and the property distrib_conj.

intros sigma sigma’ pi pi’ s s’ hl.

induction hl; try (simpl; intro; ae).

(x case while true do ... x)

simpl; intros q (_ & h).

(*x need to keep a copy of h x)

generalize h; intro h'.

apply abstract_effects_specialize in h’; simpl in h'; ae.
(x case while false do ... %)

simpl; intros q (_ & h).

apply abstract_effects_specialize in h; simpl in h; ae.

The progress lemma is stated as follows.

lemma progress: forall s:stmt, sigma:env, pi:stack,
sigmat: type_env, pit: type_stack, q:fmla.
compatible_env sigma sigmat pi pit A type_stmt sigmat pit s A
eval_fmla sigma pi (wp s q) A s # Sskip — reducible sigma pi s

It may seem strange that the lemma above depends on an arbitrary formula (), that does not play any role in the con-
clusion. Thus, it may seem enough to state this lemma for () = ¢rue. But then it would not be general enough to be
proved by induction. For example, to prove the progress of a sequence s1; so knowing that WP (s1; so, true) holds,
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we need to prove the progress of s knowing that WP (s, WP(sg, true)) holds, and the formula WP (so, true) is a
priori arbitrary.

The progress lemma is proved by structural induction on s. Only the case of Sskip is then proved automatically
(Figure 19), the reason being that the conclusion reducible is existentially quantified. In each case we terminate
the proof in Coq, in a few lines, with the exists tactic. For the case of the loop, we use once more the property
distrib_conj.

destruct s; auto.
intros.
do 3 eexists; econstructor; eauto.

destruct s; auto.

intros.

destruct (decide_is_skip sl).

(*x case sl = Sskip *)

subst sl.

do 3 eexists.

apply one_step_seq_skip.

(*x case s1 #* Sskip x)

inversion H2; subst; auto.

destruct HO with (1l:=H1) (q:= (wp s2 q)) as (sigma2 & pi2 & s3 & h3); auto.
exists sigma2. exists pi2. exists (Sseq s3 s2). ae.

destruct s; auto.
intros.
inversion H2; subst; clear H2.
unfold reductible.
apply eval_type_term with (sigma := sigma) (pi := pi) in H10 ; auto.
assert (eval_term sigma pi t = Vbool true V
eval_term sigma pi t = Vbool false).
generalize (type_inversion (eval_term sigma pi t)).
destruct (eval_term sigma pi t); simpl; try discriminate.
destruct b; auto.
destruct H2.
do 3 eexists.
apply one_step_if_true; auto.
do 3 eexists.
apply one_step_if_false; auto.

destruct s; auto.

simpl.

intros sigma pi sigmat pit g H H1 (H2 & H3) H4.
do 3 eexists.

apply one_step_assert; auto.
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Figure 20: Proof of main result

destruct s; auto.
simpl.
intros H sigma pi sigmat pit g H1 H2 (H3 & H4) H5.
inversion H2; subst; clear H2.
unfold reductible.
apply eval_type_term with (sigma := sigma) (pi := pi) in H11l ; auto.
assert (eval_term sigma pi t = Vbool true V
eval_term sigma pi t = Vbool false).
generalize (type_inversion (eval_term sigma pi t)).
destruct (eval_term sigma pi t); simpl; try discriminate.
destruct b; auto.
destruct HO.
do 3 eexists.
apply one_step_while_true; auto.
do 3 eexists.
apply one_step_while_false; auto.

Our main result is now: for any program s, any state 3, IT and any formula @, if ¥, IT = WP(s, @) then either
s executes infinitely, or it reduces to Sskip, and in the second case (@ is true in the final state. Since it is not handy
to formulate that an execution is infinite, we state that slightly differently: if s executes into some finite number of
steps into s’ such that s’ does not reduce anymore, then s’ = Sskip. All this must be stated only for well-typed
programs, thus the Why3 formulation of our main result is:

lemma wp_soundness: forall n :int, sigma sigma’:env, pi pi’':stack, s s’':stmt,
sigmat: type_env, pit: type_stack, q:fmla.
compatible_env sigma sigmat pi pit A type_stmt sigmat pit s A
many_steps sigma pi s sigma’ pi’ s’ n A not (reducible sigma’ pi’ s’) A
eval_fmla sigma pi (wp s q) — s’ = Sskip A eval_fmla sigma’ pi’ q

This is proved by induction on n, what we do calling Coq (Figure 20). For n = 0, the progress lemma ensures
that s’ can only be Sskip. For the case n > 0, we know that s reduces in one step into some sg, the lemma of
preservation of WP by reduction allows us to apply the induction hypothesis on s.
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intros n sigma sigma’ pi pi’ s s’ sigmat pit q.

intros Hcomp Htype (hl, (h2,h3)).

generalize (steps_non_neg _ _ _ _ _ _ _ hl).

intros Hnpos.

generalize sigma sigma’ pi pi’ s s’ sigmat pit q Hcomp Htype hl h2 h3.
clear sigma sigma’ pi pi’ s s’ sigmat pit q Hcomp Htype hl h2 h3.
generalize Hnpos.

pattern n; apply Z_lt_induction; auto.

intros x Hind Hxpos.

intros.

inversion hl; subst; clear hl.

(x cas zero etapes *)

destruct (decide_is_skip s’).

subst s’.

split; auto.

contradiction h2; clear h2.

apply progress with (q:=q) (1l:=Hcomp); auto.

(*x cas au moins une etape %)

generalize (steps_non_neg _ _ _ _ _ _ _ HO) .

intro.

generalize (type_preservation s s2 sigma sigma2 pi pi2 sigmat pit).

intros h.

apply Hind with (y:=n0) (sigmat:=sigmat) (pit:=pit) (5:=H0);
intuition.

apply wp_preserved_by_reduction with (1:=H); auto.

6 General remarks on proofs

Let’s put aside the section on Hoare logic which was presented for illustration but not needed for the main results.
Opverall, the proofs that we needed to do in Coq amount to 142 lines of tactics. This number should be compared
with the number of lines of specification that we wrote: 390, that is more than twice the number of lines of proofs.
This is a really good level of automation, that invalidates the usual belief that a proof of complex behavior of a
program requires significantly more lines of proofs than lines of code.

The source of this case study, together with the Why3 proof session and the Coq proofs are available on the
web page http://toccata.lri.fr/gallery/WP_revisited.en.html. A ZIP archive is provided, that contains
everything needed to replay the proofs using Why3 0.80 [6].

7 Conclusions

We have presented a technique for proving the soundness of a weakest preconditions calculus, that imitates the clas-
sical technique of proof of type soundness of a programming language, by showing both that the WP is preserved
by reduction and that the validity of the WP entails the reducibility. Since the conformance of the annotations of a
program is by definition the absence of blocking (blocking semantics), we obtain a verification method, guaranteed
correct, even on non-terminating programs. The definition via blocking semantics is proposed by Herms et al. [10]
in the case of a great-step semantics, soundness being proved by co-induction. We use a small-step blocking se-
mantics : our approach is thus original as far as we know. Indeed, a similar approach was used by Conchon and
Fillidtre [8] in a different context: proof of soundness of a decision procedure for the safety of use of semi-persistent
data structures.

The proof obtained by our approach is not difficult, in fact we pretend this is a natural approach, simple to
understand and moreover is done with highly automated proof. We plan to use this method for teaching the basics
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of deductive program verification®.

Along this case study, we identified several interesting features of the Why3 environment: structuring in the-
ories, algebraic data types, inductive predicate, direct calls to automated provers, transformation for proving by
structural induction, call to Coq to terminate difficult proofs, use of the why3 tactic to terminate the Coq proofs. At
the end, the number of lines of manual proof is small: 142 lines of Coq proofs for 390 lines of program code, that
is a very satisfactory degree of automation. Nevertheless, one should be aware that during the development of this
study, we had to do, temporarily, more Coq proofs, in order to identify the appropriate lemmas needed to finally
get good automation. The why3 tactic is by the way very useful during such a phase of development of proofs.

We also identified a few weaknesses of Why3 that could make interesting motivations for extensions. The
automated provers appear to be weak as soon as a hypothesis involves an inductive predicate: a transformation to
make an inversion of such a hypothesis, so as to reason on it by induction, could be very handy and useful. For
example, the lemma steps_non_neg could be proved without the need of Coq. Similarly, a transformation for
proving a lemma by induction on integers would be useful.

We noticed a general weakness of SMT provers: often they can’t prove a goal that can be proved in a few lines
of Cog. For example, these provers are not able to do a simple thing like eexists; eauto of Coq. We also tested
some provers specialized for first-order reasoning (of the kind « TPTP » : Vampire [12], Spass [14], Eprover [13])
without success. We also noticed that the automated provers do not handle well the goals that can be proved very
easily with the simp1 tactic of Coq followed by a call to the why3 tactic. This emphasizes a weakness in the support
for computations within proofs by such provers.

Another kind of missing feature is the ability to pose statements about the functions of the Why3 programming
language. In fact, in this case study we only defined pure functions. If a function like wp was written using the
programming language (that allow side-effects), then it would not be possible to state properties of its behavior
like we did, but only by giving a post-condition, and in particular it would not be possible to state a property like
wp_soundness.

The case study itself deserves to be extended. First, the functions fresh_from and abstract_effects should
be realized. A significant extension would to handle a language with several sub-programs, like it was done by
Herms et al. [10] and was indeed a reason to use the blocking semantics approach.

In a longer term, one could seriously think about using this approach to develop code correct by construction. In
fact, an extension of Why3 currently in progress is the ability to extract OCaml code. With respect to an approach
fully in Coq, we would gain a lot of automation.

Acknowledgments The authors thank Jean-Christophe Fillidtre and Paolo Herms for the concept of blocking
semantics to define the validity of annotated code, Levs Gondelmans who implemented the transformation of struc-
tural induction of Why3, Jean-Christophe Fillidtre and Andrei Paskevich who implemented the why3 tactic, and
also the other authors of Why3, Guillaume Melquiond and Francois Bobot, without whom this work would not
have been achieved.
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