
HAL Id: hal-00766220
https://inria.hal.science/hal-00766220v1
Submitted on 17 Dec 2012 (v1), last revised 3 Sep 2015 (v8)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Approach to Symbolic Execution
Andrei Arusoaie, Dorel Lucanu, Vlad Rusu

To cite this version:
Andrei Arusoaie, Dorel Lucanu, Vlad Rusu. A Generic Approach to Symbolic Execution. [Research
Report] RR-8189, 2012, pp.21. �hal-00766220v1�

https://inria.hal.science/hal-00766220v1
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
81

89
--

FR
+E

N
G

RESEARCH
REPORT
N° 8189
December 2012

Project-Team Dart

A Generic Framework
for Symbolic Execution
Andrei Arusoaie, Dorel Lucanu, Vlad Rusu

RESEARCH CENTRE
LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bât A - Park Plaza
59650 Villeneuve d’Ascq

A Generic Framework for Symbolic Execution

Andrei Arusoaie∗, Dorel Lucanu†, Vlad Rusu‡

Project-Team Dart

Research Report n° 8189 — December 2012 — 21 pages

Abstract: We propose a generic, language-independent symbolic execution approach for lan-
guages endowed with a formal operational semantics based on term rewriting. Starting from the
definition of a language L, a new definition Lsym is automatically generated, which has the same
syntax, but whose semantics extends L’s data domains with symbolic values and adapts the seman-
tical rules of L to deal with the new domains. Then, the symbolic execution of L programs is the
concrete execution of the corresponding Lsym programs, i.e., the application of the rewrite rules
in the semantics of Lsym . We prove that the symbolic execution thus defined has the adequate
properties normally expected from it, and illustrate the approach on a simple imperative language
defined in the K framework. A prototype symbolic execution engine also written in K is presented.

Key-words: Symbolic Execution, Term Rewriting, K framework.

∗ University of Iasi, Romania
† University of Iasi, Romania
‡ Inria Lille Nord Europe

Un cadre général pour l’exécution symbolique
Résumé : Nous proposons un cadre général pour l’exécution symbolique de programmes écrits
dans des langages munis de sémantiques formelles définies par réécriture de termes. Partant
d’une définition d’un langage L, on construit automatiquement la définition d’un nouveau langage
Lsym qui a la même syntaxe que L mais qui étend les types de données de L avec des valeurs
symboliques, et dont les règles sémantiques sont adaptées pour traiter les valeurs symboliques.
L’exécution symbolique des programmes de L est alors définie comme l’exécution habituelle
des programmes de Lsym , c’est à dire, l’application des règles de la sémantique de Lsym aux
programmes de L plongés dans Lsym . Nous démontrons que l’exécution symbolique possède les
propriétés attendues, et illustrons l’approche sur un langage impératif simple défini dans la K
framework. Nous présentons également un prototype de moteur symbolique implémenté en K.

Mots-clés : Exécution symbolique, réécriture de termes, K framework.

A Generic Framework for Symbolic Execution 3

1 Introduction

Symbolic execution is a well-known program analysis technique introduced in 1976 by James C.
King [11]. Since then, it has proved its usefulness for testing, verifying, and debugging programs.
Symbolic execution consists in providing programs with symbolic inputs, instead of concrete
ones, and the execution is performed by processing expressions involving the symbolic inputs [19].
The main advantage of symbolic execution is that it allows reasoning about multiple concrete
executions of a program, and its main disadvantage is the state space explosion determined by
decision statements and loops. Recently, the technique has found renewed interest in the formal
methods community due to new algorithmic developments and progress in decision procedures.
Current applications of symbolic execution include automated test input generation [13], [27],
invariant detection [18], model checking [10], or proving program partial correctness [26], [5].

The state of a symbolic program execution typically contains the next statement to be exe-
cuted, symbolic values of program variables, and the path condition, which constrains past and
present values of those variables (i.e., constraints on the symbolic values are accumulated on the
path taken by the execution for reaching the current instruction). The states, and the transi-
tions between them, generate a symbolic execution tree. When the control flow of a program is
determined by symbolic values (e.g., the next instruction to be executed is a if-statement, whose
Boolean condition depends on symbolic values), then there is a branching in the tree. The path
condition is then used to discriminate among branches.

The most important properties expected of symbolic execution are:
Coverage: for every concrete execution there is a corresponding symbolic one;
Precision: for every symbolic execution there is a corresponding concrete one;

where two executions are said to be corresponding if they take the same path.
In this paper we propose a generic, language independent symbolic execution approach that,

under some reasonable conditions, has the above properties.

1.1 Related Work

There are many tools for performing symbolic execution for specific programming languages. Java
PathFinder [19] is a complex symbolic execution tool which uses a model checker to explore
different symbolic execution paths. The approach is applied to Java programs and it can handle
recursive input data structures, arrays, preconditions, and multithreading. Java PathFinder can
access through an interface several Satisfiability Modulo Theories (SMT) solvers, and the user
can also choose between multiple decision procedures.

One interesting approach consists is combining concrete and symbolic execution, also known
as concolic execution. First, some concrete values are given as input and these determine an
execution path. When the program encounters a decision point, the paths not taken by concrete
execution are explored symbolically. This type of analysis has been implemented by several tools
for performing dynamic test generation: DART [8, 9], CUTE [23, 24], EXE [3], PEX [7].

Symbolic execution has initially been used in automated test generation [11]. The main goal
of testing is to achieve large code coverage, meaning the exploration of as many statements and
code branches as possible. Symbolic execution is well suited for this since it is driven by the
control flow of a program. Test sequence generation is another application of symbolic execution,
consisting in generating all code sequences which explore different paths [12]. Symbolic execution
is a mainly testing methodology but it can be useful for proving program correctness in case there
is an upper bound for the number executions of each loop. Otherwise, loops must be annotated
with invariants. There are several tools (e.g. Smallfoot [2, 28]) which use symbolic execution
together with separation logic to prove Hoare triples. There are also approaches which tend

RR n° 8189

4 Arusoaie, Lucanu & Rusu

to detect automatically invariants in programs([18], [22]). Another useful symbolic execution
application is the static detection of runtime errors. The main idea to perform symbolic execution
on a program until a state is reached where an error occurs: null-pointer dereference, division
by zero, etc.

Another body of related work is symbolic execution in term-rewriting systems. The technique
called narrowing, initially used for solving equation systems in abstract datatypes, has been
extended for solving reachability problems in term-rewriting systems and have sucessfully been
applied to the analysis of security protocols [17]. Such analyses relies on powerful unification-
modulo-theories algoritms [6], which works well for security protocols since there are unification
algorithms modulo the theories involved there (exclusive-or, exponentiation, . . .). This is not
so for general programming languages, where datatypes can be arbitrary. In our approach we
replace unification by a combination of matching (with possibly altered, yet equivalent) rewrite
rules and calls to SMT solvers.

1.2 Our approach

Most of the existing tools and methodologies have been developed for specific programming
languages, and most of them are not based on formal semantics. In this paper we present a
general, language-independent approach for symbolic execution, based on a language’s formal
semantics defined using term rewriting. Most existing operational semantics styles (small-step,
big-step, reduction with evaluation contexts, . . .) have beed shown to be representable in this
way [25].

We start by identifying the main ingredients for defining programming language in an alge-
braic and term-rewriting setting: a signature, a model of that signature, including interpretations
of data, and a set of rewrite rules. We distinguish between data, which are used by, but are not
part of programming languages, and non-data (e.g., statements), which are part of a language’s
definition. If the data are specified equationally then our definitions are rewriting-logic specifi-
cations [16], but unlike rewriting logic, we do not assume anything about how data is defined;
this allows us to focus on the language definition itself and saves us a lot of technical compli-
cations. Then, starting from the definition of a language L, a new language definition Lsym is
automatically generated, with the same syntax as L, but whose semantics extends L’s datatypes
with symbolic values and adapts the semantical rules of L to handle the symbolic values.

By definition, the symbolic semantics of L is the semantics of Lsym , and symbolic execution
of programs in L is the (usual) execution of Lsym , i.e., the application of semantical rules of Lsym

to the corresponding symbolic programs.
We prove that symbolic execution has the the (coverage and precision) properties presented

above. We illustrate the approach on a simple imperative language IMP whose operational
semantics is given in the K [20] semantic framework. We implement the approach in K and
use the Z3 solver [4] for path conditions, and demonstrate the implementation on sime IMP
programs.

The rest of the paper is organised as follows: Section 2 introduces of our running example (a
simple imperative language IMP) and its definition in K. Section 3 introduces our framework for
language definitions. Sections 4 shows how the definition of a language L can be automatically
extended to that of a language Lsym by extending the data of L with symbolic values, and
the rules of L with means to handle those symbolic values. We also relate our matching-based
approach to symbolic execution with related works based on unification. Section 5 deal with
the symbolic semantics and with its relation to the concrete semantics, establishing the coverage
and precision results stated in this introduction. Section 6 describes an implementation of our
approach and its application to some IMP programs. Conclusions and future work plans are

Inria

A Generic Framework for Symbolic Execution 5

Id ::= domain of identifiers
Int ::= domain of integer numbers (including operations)
Bool ::= domain of boolean constants (including operations)
AExp ::= Int

| Id
| AExp / AExp [strict]
| AExp * AExp [strict]
| AExp + AExp [strict]
| (AExp)

BExp ::= Bool
| AExp <= AExp [strict]
| not BExp [strict]
| BExp and BExp [strict(1)]

| (BExp)

Stmt ::= skip

| Id := AExp
| if BExp then Stmt else Stmt [strict(1)]

| { Stmt }
| while BExp do Stmt
| Stmt ; Stmt

Code ::= Id | Int | Bool | AExp | BExp | Stmt | Code y Code

Figure 1: K Syntax of IMP

if (a <= b)
then if (a <= c)

then min := a
else min := b

else if (b <= c)
then min := b
else min := c;

Figure 2: An IMP program: computing
the minimum of three numbers

Cfg ::= 〈〈Code〉k〈MapId,Int〉env〉cfg

Figure 3: K Configuration of
IMP

given in Section 7.

2 A Simple Imperative Language and its Definition in K
Our running example is IMP, a simple imperative language intensively used in research papers.
The syntax of IMP is described in Figure 1 and is mostly self-explained since it uses a BNF
notation. The statements of the language are either assignments, if statements, while loops, skip
(i.e., the empty statement), or blocks of statements. The attribute strict in some production
rules means the arguments of the annotated expression/statement are evaluated before the ex-
pression/statement itself. If strict is followed by a list of natural numbers then it only concerns
the arguments whose positions are present in the list.

The example shown in Figure 2 is a simple IMP program which computes the minimum of
the values stored in the variables a, b, c. The program is intentionally incorrect when a ≤ b and
a > c; in this case, min is set to b instead of c. We show later in the paper how the erroneous
case is detected by symbolic execution.

The operational semantics of IMP is given as a set of (possibly conditional) rewrite rules. The
terms to which rules apply are called configurations. Configurations typically contain the program
to be executed, together with any additional information required for program execution. The
structure of a configuration depends of the language being defined; for IMP, it consists only of the
program code to be executed and an environment mapping variables to values. Configurations

RR n° 8189

6 Arusoaie, Lucanu & Rusu

〈〈I1 + I2 ···〉k ···〉cfg⇒⇒⇒ 〈〈I1 +Int I2 ···〉k ···〉cfg
〈〈I1 * I2 ···〉k ···〉cfg⇒⇒⇒ 〈〈I1 ∗Int I2 ···〉k ···〉cfg
〈〈I1 / I2 ···〉k ···〉cfg ∧∧∧ I2 6= 0⇒⇒⇒ 〈〈I1/IntI2 ···〉k ···〉cfg
〈〈I1 <= I2 ···〉k ···〉cfg⇒⇒⇒ 〈〈I1 ≤Int I2 ···〉k ···〉cfg
〈〈true and B ···〉k ···〉cfg⇒⇒⇒ 〈〈B ···〉k ···〉cfg
〈〈false and B ···〉k ···〉cfg⇒⇒⇒ 〈〈false ···〉k ···〉cfg
〈〈not B ···〉k ···〉cfg⇒⇒⇒ 〈〈¬B ···〉k ···〉cfg
〈〈skip ···〉k ···〉cfg⇒⇒⇒ 〈〈 ···〉k ···〉cfg
〈〈S1;S2 ···〉k ···〉cfg⇒⇒⇒ 〈〈S1 y S2 ···〉k ···〉cfg
〈〈{ S } ···〉k ···〉cfg⇒⇒⇒ 〈〈S ···〉k ···〉cfg
〈〈if true then S1 else S2 ···〉k ···〉cfg⇒⇒⇒ 〈〈S1〉k ···〉cfg
〈〈if false then S1 else S2〉k ···〉cfg⇒⇒⇒ 〈〈S2〉k ···〉cfg
〈〈while B do S ···〉k ···〉cfg⇒⇒⇒
〈〈if B then{ S ;while B do S }else skip ···〉k ···〉cfg
〈〈X ···〉k〈X 7→ I ···〉env ···〉cfg⇒⇒⇒ 〈〈I ···〉k〈X 7→ I ···〉env ···〉cfg
〈〈X := I ···〉k〈X 7→ _ ···〉env ···〉cfg⇒⇒⇒ 〈〈 ···〉k〈X 7→ I ···〉env ···〉cfg

Figure 4: K Semantics of IMP

are written in K as nested structures of cells: for IMP, a top cell cfg, having a subcell k contating
the code and a subcell env containing the environment (cf. Figure 3). The code inside the k cell
is represented as a list of computation tasks C1 y C2 y . . . to be executed in the given order.
Computation tasks are typically statements and expressions. The environment in the env cell is
a multiset of bindings of variable to values, e.g., a 7→ 3.

The semantics of IMP is shown in Figure 4. Each rewrite rule from the semantics specifies
how the configuration evolves when the first computation task from the k cell is executed. Dots
in a cell mean that the rest of the cell remains unchanged. Most syntatical constructions require
one semantical rule. The exceptions are the conjunction operation and the if statement, which
have Boolean arguments and require two rules each (one rule per Boolean value).

In addition to the rules shown in Figure 4 the semantics of IMP includes additional rules
induced by the strict attribute. We show only the case of the if statement, which is strict in
the first argument. The evaluation of this argument is achieved by executing the following rules:

〈〈if BE then S1 else S2 y C〉k ···〉cfg⇒⇒⇒ 〈〈BE yif � then S1 else S2 y C〉k ···〉cfg
〈〈B yif � then S1 else S2 y C〉k ···〉cfg⇒⇒⇒ 〈〈if B then S1 else S2 y C〉k ···〉cfg

Here, BE ranges over BExp \{false, true}, B ranges over the Booleean values {false, true}, and
� is a special variable, destined to receive the value of BE once it is computed, typically, by the
other rules in the semantics.

3 The Ingredients of a Language Definition

In this section we identify the ingredients of a formal language definition in an algebraic and
term-rewriting setting. The concepts are then explained on the K definition of IMP. We assume
the reader is familiar with the basics of algebraic specification, rewriting, and First-Order Logic

Inria

A Generic Framework for Symbolic Execution 7

(abbreviated FOL in this paper). A programming language L can be defined as a triple (Σ, T ,S),
consisting of:

1. A many-sorted algebraic signature Σ, which includes at least a sort Cfg for configurations
and a subsignature ΣBool for Booleans with their usual constants and operations. Σ may
also include other subsignatures for other data sorts, depending on the language L (e.g.,
integers, identifiers, lists, maps,. . .). Let ΣData denote the subsignature of Σ consisting of
all data sorts and their operations. We assume that the sort Cfg and the syntax of L are
not data, i.e., they are defined in Σ \ΣData. Let TΣ denote the Σ-algebra of ground terms
and TΣ,s denote the set of ground terms of sort s. Given a sort-wise infinite set of variables
Var , let TΣ(Var) denote the free Σ-algebra of terms with variables, TΣ,s(Var) denote the
set of terms of sort s with variables, and var(t) denote the set of variables occurring in the
term t.

2. A Σ-algebra T . Let Ts denote the elements of T that have the sort s; the elements of TCfg

are called configurations. T interprets the data sorts (those included in the subsignature
ΣData) according to some ΣData -algebra D1.

T interprets the non-data sorts as sets of ground terms over the signature

(Σ \ ΣData) ∪
⋃

d∈Data

Dd (1)

where Dd denotes the carrier set of the sort d in the algebra D, and the elements of Dd are
added to the signature Σ \ ΣData as constants of sort d2.

Any valuation ρ : Var → T is extended to a (homonymous) Σ-algebra morphism ρ :
TΣ(Var) → T . The interpretation of a ground term t in T is denoted by Tt. If b ∈
TΣ,Bool(Var) then we write ρ |= b iff ρ(b) = Dtrue . For simplicity, we often write in the
sequel true, false instead of Dtrue ,Dfalse .

3. A set S of rewrite rules, whose definition is given later in the section.

We explain these concepts on the IMP example. Nonterminals from the syntax (Int,Bool,AExp, . . .)
are sorts in Σ. Each production from the syntax defines an operation in Σ; for instance, the pro-
duction AExp ::= AExp + AExp defines the operation _+_ : AExp×AExp→ AExp. These oper-
ations define the constructors of the result sort. For the configuration sort Cfg , the only construc-
tor is 〈〈_〉k〈_〉env〉cfg : Code×MapId,Int → Cfg . The expression 〈〈X := I y C〉k〈X 7→ 0 Env〉env〉cfg
is a term of TCfg(Var), where X is a variable of sort Id, I is a variable of sort Int, C is a variable
of sort Code (the rest of the computation), and Env is a variable of sort MapId,Int (the rest of
the environment). The data algebra D interprets Int as the set of integers, the operations like
+Int (cf. Figure 4) as the corresponding usual operation on integers, Bool as the set of Boolean
values {false, true}, the operation like ∧ as the usual Boolean operations, the sort MapId,Int as
the multiset of maps X 7→ I, where X ranges over identifiers Id and I over the integers. The
other sorts, AExp, BExp, Stmt, and Code, are interpreted in the algebra T as ground terms over
a modification of the form (1) of the signature Σ, in which data subterms are replaced by their

1A possible definition for D is the following one. Assume the data are defined equationally, i.e., there is a
finite set of equations EData defining the data sorts and the operations on them. Then, D can be defined as the
initial algebra of the equational specification (ΣData, EData). We chose not to impose that data be defined in
any particular way, since they are not part of the programming language’s definition.

2If data were defined equationally - cf. previous footnote - then T would be defined as the initial algebra of
the equational specification (Σ, EData). Again, we did not choose this approach in order to avoid assumptions
about how the data are defined.

RR n° 8189

8 Arusoaie, Lucanu & Rusu

interpretations in D. For instance, the term if 1 >Int 0 then skip else skip is intepreted as
if true then skip else skip provided D1>Int0 = Dtrue(= true).

We now formally introduce the notions required for defining semantical rules.

Definition 1 (pattern [21]) A pattern is an expression of the form π∧∧∧b, where π ∈ TΣ,Cfg(Var)
are basic patterns, b ∈ TΣ,Bool(Var), and var(b) ⊆ var(π). If γ∈TCfg and ρ :Var→T we write
(γ, ρ) |=π∧∧∧b for γ=ρ(π) and ρ |= b.

A basic pattern π defines a set of (concrete) configurations, and the condition b gives additional
constraints these configurations must satisfy. In [21] patterns are encoded as FOL formulas,
hence the conjunction notation π ∧∧∧ b. In this paper we keep the notation but separate basic
patterns from constraining formulas. We identify basic patterns π with paterns π ∧∧∧ true.

Sample patterns are 〈〈I1 + I2 y C〉k〈Env〉env〉cfg and 〈〈I1 / I2 y C〉k〈Env〉env〉cfg ∧∧∧ I2 6= 0.

Definition 2 (semantical rule and transition system) A rule is a pair of patterns of the
form l∧∧∧ b⇒⇒⇒ r (note that r is in fact the pattern r ∧∧∧ true). Any set S of rules defines a labelled
transition system (TCfg ,⇒TS) such that γ α

=⇒TS γ′ iff α , (l ∧∧∧ b⇒⇒⇒ r) ∈ S and ρ : Var → T are
such that (γ, ρ) |= l∧∧∧ b and (γ′, ρ) |= r.

We note that if data were defined as initial models of certain equational specifications then
the transition system (TCfg ,⇒TS) could be defined as the initial model of the rewriting-logic
specification obtained by adding the rules S to those equational specifications. Not defining the
data in this way gives us some freedom and saves us some technical difficulties, as will be shown
in the next section.

4 Symbolic Semantics by Data Extension
We show in this section how, given a definition (Σ, T , S) of a language L a new definition
(Σsym , T sym ,Ssym) for a language Lsym is automatically generated. The new language Lsym has
the same syntax, and its semantics extends L’s data domains with symbolic values and adapts
the semantical rules of L to deal with the new domains. Then, the symbolic execution of L
programs is the concrete execution of the corresponding Lsym programs, i.e., the application of
the rewrite rules in the semantics of Lsym . Building the definition of Lsym amounts to:

1. extending the signature Σ to a symbolic signature Σsym ;

2. extending the Σ-algebra T to a Σsym -algebra T sym ;

3. turning the concrete rules S into symbolic rules Ssym .

We then obtain the symbolic transition system (T sym
Cfgsym ,⇒T

sym

Ssym) by using Definitions 1,2 for
Lsym , just like the transition system (TCfg ,⇒TS) was defined for L. Section 5 then deals with the
relations between the two transition systems.

4.1 Extending the Signature Σ to a Symbolic Signature Σsym

We fix a sort-wise set of symbolic values SymVal , which are fresh with respect to Σ, and let
Σ(SymVal) denote the signature Σ enriched with SymVal as constant declarations of the cor-
responding sorts. We call any (data) sort s for which there is a symbolic value of sort s a
symbolically extensible sort.

Inria

A Generic Framework for Symbolic Execution 9

SymVal Dsym

D

ιDsym

ϑs
DϑD

Figure 5: Diagram Characterising ϑsD : Dsym → D

Assumption The symbolically extensible sorts are among the data sorts. Non-data symboli-
cally extensible sorts are left for study in future work.

The symbolic signature Σsym includes the signature Σ(SymVal) enriched with a new sort
Fol for FOL formulas, together with all the required operations that allow FOL formulas to be
written as ground terms of sort Fol .

Example For the IMP example this extension amounts to declaring

Fol ::= Bool | (∀∀∀ SymVal) Fol | (∃∃∃ SymVal) Fol | Fol∧∧∧ Fol | ¬¬¬Fol

Then, we enrich the signature with a new operation symbol unsat : Fol → Bool, whose
intented meaning is to identify a set of unsatisfiable formulas. Next, we extend Σsym with a
sort Cfgsym and a constructor 〈_,_〉 : Cfg ×Fol→ Cfgsym , for building symbolic configurations
that are pairs consisting of configurations over symbolic data and a FOL formula denoting path
conditions. Finally, we extend the set of variables Var with infinitely many variables of sort Fol.

Example For the IMP example we enrich the configuration with a new cell:

Cfgsym ::= 〈〈Code〉k〈MapId,Int〉env〈Fol〉cnd〉cfg
where the new cell cnd includes a formula meant to express a path condition.

4.2 Extending the Model T to a Symbolic Model T sym

We first deal with the symbolic domain Dsym , a ΣData -algebra with the following properties: 1)
the ΣData -algebra D is a sub-algebra of Dsym , 2) there is an injection ιDsym : SymVal → Dsym ,
and 3) for any valuation ϑD : SymVal → D there is a unique algebra morphism ϑsD : Dsym → D,
such that the diagram in Figure 5 commutes. The diagram says that symbolic values are data in
Dsym via the injection ιDsym , and that any interpretation ϑD of the symbolic values as concrete
data is uniquely extended to an algebra morphism ϑsD that assigns concrete values to symbolic
values. For instance, Dsym can be the ΣData -algebra of expressions built over D, where SymVal
play the role of variables, or the quotient of this algebra modulo the congruence defined by
some set of equations Esym (which can be used in practice as simplification rules for symbolic
expressions).

We leave some freedom in choosing the symbolic domain, to allow the use of decision proce-
dures or other efficient means for handling symbolic artifacts.

We now give the interpretation for the remaining syntax that Σsym introduced with respect
to Σ. The interpretation of ground terms of sort Fol are the corresponding FOL formulas. The
operation symbol unsat is interpreted as a homonymous predicate and is assumed to be sound :
for any FOL formula φ, if unsat(φ) = true then φ is unsatisfiable. The converse property: if
φ is unsatisfiable then unsat(φ) = true, is called completeness3 and is only required for the

3Note that soundness and completeness are relative to the (usual) semantics of FOL.

RR n° 8189

10 Arusoaie, Lucanu & Rusu

(essentially, theoretical) precision result regarding symbolic execution4. The Σ-terms of sort
Cfg are interpreted in T sym like in T , and the terms of sort Cfgsym are interpreted as pairs
〈γs, φ〉, where 〈_,_〉 : T sym

Cfg × T
sym
Fol → T

sym
Cfgsym is the interpretation of the operation symbol

〈_,_〉 : Cfg × Fol→ Cfgsym .

Definition 3 (Symbolic Configuration and Satisfaction Relation) A concrete configura-
tion γ ∈ TCfg satisfies a symbolic configuration 〈γs, φ〉 ∈ T sym

Cfgsym , written γ |= 〈γs, φ〉, if there is
ϑ : SymVal → T such that γ = ϑ(γs) and ϑ |= φ.

In the above definition, the notation ϑ |= φ means that the valuation θ of SymVal satisfies
the FOL formula φ according to the usual satisfaction relation of FOL. Example The concrete
configuration

γ , 〈〈if true then skip else skip〉k〈∅〉env〉cfg
satisfies the symbolic configuration
〈γs, φ〉 , 〈〈if bs then skip else skip〉k〈∅〉env〈bs = true〉cnd〉cfg

where the valuation ϑ is bs 7→ true, and in this case it is directly computed from the formula
φ , (bs = true) included in the additional cnd cell. Here bs is a symbolic value of sort Bool.

4.3 Turning the Concrete Rules S into Symbolic Rules Ssym

We show how to automatically build the symbolic-semantics rules Ssym from the concrete
semantics-rules S, by applying the three steps described below.

We first make the following assumption: the left-hand sides of rules do not contain operations
on symbolically extensible sorts. For example, if the data sort Map is symbolically extensible,
then the last two rules from the IMP semantics (cf. Figure 4):

〈〈X ···〉k〈X 7→ I ···〉env ···〉cfg⇒⇒⇒ 〈〈I ···〉k〈X 7→ I ···〉env ···〉cfg
〈〈X := I ···〉k〈X 7→ _ ···〉env ···〉cfg⇒⇒⇒ 〈〈 ···〉k〈X 7→ I ···〉env ···〉cfg

violate the assumption, because 〈X 7→ I ···〉env is a shortcut for 〈(X 7→ I)M〉env for some map
variable M , where the juxtaposition operation is map composition.

The assumption can sometimes be made to hold by transforming the rules into equivalent
ones; for example, the two problematic rules can be rewritten

〈〈X ···〉k〈M〉env ···〉cfg ∧∧∧ (lookup(M,X) = I)⇒⇒⇒ 〈〈I ···〉k〈M〉env ···〉cfg
〈〈X := I ···〉k〈M〉env ···〉cfg⇒⇒⇒ 〈〈 ···〉k〈update(M ,X , I)〉env ···〉cfg

where _ = _ is a function symbol that returns a Boolean, assumed to exist for all data sorts,
and interpreted as returning true iff its arguments are equal, and lookup(), update() are the
usual lookup and updating functions for maps, which have then to be defined in a subsignature
ΣMap of ΣData. If Map is not symbolically extensible then the original semantics satisfies our
assumption.

4This is is where defining data as initial algebras of equational specifications would be too restrictive: since
unsat returns a Boolean it needs to be fully defined, as required by initial algebras. Thus, a sound and complete
interpretation of unsat in T sym is impossible if T sym was an initial algebra, since satisfiability in FOL is unde-
cidable. We did not impose the definition of data in this way, and are free to interpret unsat as a decision oracle
for FOL when needed later in the paper for theoretical reasons.

Inria

A Generic Framework for Symbolic Execution 11

4.3.1 1. Linearising Rules

A rule is (left) linear if any variable occurs at most once in its left-hand side. A nonlinear rule can
always be turned into an equivalent linear one, by renaming some variables and adding equalities
between the renamed variables and the original ones to the rule’s condition. Recall the last two
rules from the original IMP semantics (Fig. 4). These rules are non-linear because variable X
appears twice in the left-hand side, once in the 〈...〉k cell and once in the 〈...〉env cell. To linearise
them we just add a new variable, say X ′, and a condition, X = X ′:

〈〈X ···〉k〈X ′ 7→ I ···〉env ···〉cfg ∧∧∧X = X ′⇒⇒⇒ 〈〈I ···〉k〈X 7→ I ···〉env ···〉cfg
〈〈X := I ···〉k〈X ′ 7→ _ ···〉env ···〉cfg ∧∧∧X = X ′⇒⇒⇒ 〈〈 ···〉k〈X 7→ I ···〉env ···〉cfg

This process is entirely automatic. Of course, there are other ways of linearising rules, e.g., the
rules transformed using lookup() and update() also shown above.

4.3.2 2. Replacing Constants by Variables

Let Cpos(l) be the set of positions ω5 of the term l such that lω is a constant of a symbolically
extensible sort. The next step of our rule transformation consists in replacing all the constants of
symbolically extensible sorts by fresh variables. The purpose of this step is to make rules match
any configuration, including the symbolic ones.

Thus, we transform each rule l∧∧∧ b⇒⇒⇒ r into the rule
[lω/Xω]ω∈Cpos(l) ∧∧∧ b ∧

∧
ω∈Cpos(l)(Xω = lω)⇒⇒⇒ r,

where each Xω is a new variable of same sort as lω
Example Consider the following rule for if from the IMP semantics:

〈〈if true then S1 else S2 ···〉k ···〉cfg⇒⇒⇒ 〈〈S1 ···〉k ···〉cfg

Assuming Boolean is a symbolically extensible sort, we replace the constant true with a
Boolean variable B, and add the condition B = true:

〈〈if B then S1 else S2 ···〉k ···〉cfg ∧∧∧B = true ⇒⇒⇒ 〈〈S1 ···〉k ···〉cfg

4.3.3 3. Adding Formulas to Configurations and Rules

Let unsat be the unsatisfiability predicate in Σsym . The last transformation step consists in
transforming each rule l∧∧∧ b⇒⇒⇒ r in S obtained after the previous steps, into the following one:

〈l, ψ〉 ∧∧∧¬¬¬ unsat(ψ ∧∧∧ b)⇒⇒⇒ 〈r, ψ ∧∧∧ b〉 (2)

where ψ ∈ Var is a variable of sort Fol and 〈_,_〉 is the operation in Σsym . Intuitively, this
means that a symbolic transition if performed on a symbolic configuration is the conjunction of
the symbolic configuration’s path condition and the concrete rule’s condition is not unsatisfiable.
Indeed, this is what happens in the transition system since we chose to interpret unsat as a
sound predicate. Example The last rule for if from the (already transformed) IMP semantics
is further transformed into the following rule in Ssym :

〈〈ifB then S1 else S2···〉k〈ψ〉cnd···〉cfg ∧∧∧¬¬¬ unsat(ψ∧∧∧B)⇒⇒⇒ 〈〈S1···〉k〈ψ∧∧∧B〉cnd···〉cfg

5For the notion of position in a term and other rewriting-related notions, see, e.g., [1].

RR n° 8189

12 Arusoaie, Lucanu & Rusu

4.4 Defining the Symbolic Transition System (T sym
Cfgsym ,⇒T

sym

Ssym)

The triple (Σsym , T sym , Ssym) defines a language Lsym . Then, the transition system (T sym
Cfgsym ,⇒T

sym

Ssym

) can be defined using Definitions 1 and 2 applied to Lsym .
For this, we note that the left-hand sides of the rules of Lsym , of the form 〈l, ψ〉, are terms

in TΣsym ,Cfgsym (Var), and that the conditions of the rules of Lsym , of the form ¬¬¬ unsat(ψ ∧ b),
are terms in TΣsym ,Bool(Var) - remember that Var has been extended to include variables of
sort Fol. Since l ∧∧∧ b is a pattern of L, using Definition 1 applied to L we get var(b) ⊆ var(l),
and then var(ψ ∧ b) = var(b) ∪ {ψ} ⊆ var(l) ∪ {ψ} = var(〈l, ψ〉). It follows, according to
Definition 1 applied to Lsym , that the expression 〈l, ψ〉 ∧∧∧ ¬¬¬ unsat(ψ ∧ b) is a pattern of Lsym ,
and then Definition 2 for Lsym gives us the transition system (T sym

Cfgsym ,⇒T
sym

Ssym).

5 Relating the Concrete and Symbolic Semantics of L
We now relate the concrete and symbolic semantics of L, i.e., the transition systems (TCfg ,⇒TS
) and (T sym

Cfgsym ,⇒T
sym

Ssym). We prove certain simulation relations between them and obtain the
coverage and precision properties as corollaries.

The following technical lemma is essential for obtaining a match betwen the left-land side
l of a rule and a symbolic configuration, provided there is a match between l and a concrete
configuration that satisfies that symbolic configuration.

We denote by f |A′ the restriction of a function f : A→ B to A′ ⊆ A.

Lemma 1 Let l ∈ TΣ,Cfg(Var) be the left-hand side of a rule in S, ρ : Var → T a valuation, and
γs ∈ T sym

Cfg . If ϑ : SymVal → T satisfies ϑ(γs) = ρ(l) then there is a valuation ρs : Var → T sym

such that γs = ρs(l) and ρ = ϑ ◦ ρs.

Proof: Note first that by notation abuse we are using the valuation ϑ : SymVal → T in ϑ(γs) =
ρ(l) and ρ = ϑ ◦ ρs, where we should be using ϑs, the homomorphical extension of ϑ to terms
in T sym . (Remember that, by definition, T sym consists of ground terms over a signature of the
form (1) where Dsym replaces D).

We also make the following remark: (♠) for all n, n′ ∈ N, for all operation symbols f, f ′
such that the result sort of f is not a data sort, and all elements τ1, . . . , τn, τ ′1, . . . , τ ′n′ ∈ T , if
Tf (τ1, . . . , τn) = Tf ′(τ ′1, . . . , τ

′
n′) then f = f ′, n = n′, and τi = τ ′i for all i = 1, . . . , n. This is

because Tf (τ1, . . . , τn) is the interpretation of some ground term of a non-data sort, and such
terms are interpreted as ground terms over a certain signature (of the form (1)). Hence, the only
way such a term can be equal to some other term is by being syntactically equal to it. We also
assume without loss of generality that for each variable y ∈ Var \var(l) there is a symbolic value
ys that does not occur in γ′s, such that ρ(y) = ϑ(ys).

We prove the lemma by establishing a more general result, where l can be any subterm of a
left-hand side of a rule in S. The proof goes by structural induction. There are three cases:

1. l is a variable x. Then we take ρs such that ρs(x) = γs, and ρs(y) = ys for y 6= x. First,
ρs(x) = γs is just ρs(l) = γs, which proves the first conclusion of the lemma in this case.
Moreover ρ(x) = ρ(l) = ϑ(γs) = ϑ(ρs(x)), and for all y ∈ Var \ {x}, ρ(y) = ϑ(ys) =
ϑ(ρs(y)), which proves the second conclusion.

2. l is a constant c. Since the sort of c is not symbolically extensible, ρ(c)= Tc=T symc =ϑ(γs).
Let γ′s=f ′(γ′s1 , . . . , γ

′s
n′), thus, ϑ(γ′s)=Tf ′(ϑ(γ′s1), . . . , ϑ(γ′sn′)). Using the remark (♠), this

means f ′ = c and n′ = 0, and then ϑ(γ′s) = γ′s = Tc. We take ρs such that ρs(y) = ys

for any y. Then, ρs(l) = ρs(c) = Tc = γ′s, and for all y ∈ Var , ρ(y) = ϑ(ys) = (ϑ ◦ ρs)(y),
which proves this case as well.

Inria

A Generic Framework for Symbolic Execution 13

SymVal Dsym

D

T sym

T

ιDsym

ϑs
D

ϑD

ιT sym

ιT

ϑ ϑs

Figure 6: Diagram Characterising ϑs : T sym → T . Contains Fig. 5 as subdiagram.

3. l = f(t1, . . . , tn). Let γ′s = f ′(γ′s1 , . . . , γ
′s
n′). Thus, we have ρ(t) = Tf (ρ(t1), . . . , ρ(tn))

= Tf ′(ϑ(γ′s1), . . . , ϑ(γ′sn′)) = ϑ(γ′s) that implies f = f ′, n = n′, and ρ(t1) = ϑ(γ′s1), . . . ,
ρ(tn) = ϑ(γ′sn) by the remark (♠). There are ρsi : Var → T sym with ρsi (ti) = γ′si and
ρi = ϑ◦ρsi by the inductive hypothesis. Since t is linear, it follows that var(t1), . . . , var(tn)
are pairwise disjoint and we can build a valuation ρs : Var → T sym with the following
properties: (1) ρs|var(ti) = ρsi |var(ti) for each i = 1, . . ., and (2) ρs equals some arbitrarily
chosen ρsi in the rest. We have ρs(t) = f(ρs(t1), . . . , ρs(tn)) = f(ρs1(t1), . . . , ρsn(tn)) =
f(γ′s1 , . . . , γ

′s
n) = γ′s. The equality ρ = ϑ ◦ ρs follows by the construction of ρs and the

inductive hypotheses.

Corollary 1 ρs|var(l) , for ρs given by Lemma 1, is unique for given γs and l.

Proof: By structural induction over l and using the observation (♠) from above. Lemma 1 gives
us the formal ground for relating our symbolic execution with symbolic execution via unification
as done in related works, e.g., [6]. The main idea is that the substitution ρs from Lemma 1,
which depends essentially only on γs and l, generates a symbolic unifier that subsumes all their
concrete unifiers.

We first note that, as stated at the beginning of the proof of Lemma 1, the actual last
statement of Lemma 1 is ρ = ϑs ◦ ρs, where ϑs is the unique morphism from T sym to T making
the outermost diagram in Figure 6 commute. Note that this diagram contains as a subdiagram
the one in Figure 5 (top left corner).

Next, we need to adapt some definitions regarding unification. For γs ∈ T sym
Cfg and l ∈

TΣ,Cfg(Var), we say that ϑ] ρ : SymVal] var(l) → T is a concrete unifier of γs and l if
ϑ(γs) =T ρ(l), and that ϑs] ρs : SymVal] var(l) → T sym is a symbolic unifier of γs and l if
ϑs(γs) =T sym ρs(l). Note that the former equality holds in T , while the latter holds in T sym ,
as emphasised by the subscripts. Note also that (for simplicity) the domains of ρ and ρs were
chosen to be var(l) since the values to which they evaluate the variables outside var(l) do not
matter.

SymVal] var(l) T sym

T

ϑs] ρs

ηϑ] ρ

Figure 7: Subsumption Relation.

RR n° 8189

14 Arusoaie, Lucanu & Rusu

We say that a symbolic unifier ϑs]ρs subsumes a concrete unifier ϑ]ρ if there is η : T sym → T
such that θ = η◦θs and ρ = η◦ρs. This is illustrated by the diagram in Figure 7. What Lemma 1
tells us is that the symbolic unifier (ιT sym ◦ ιDsym)] ρs : SymVal] var(l) → T sym , where ιT sym

and ιDsym are the injections shown in the diagram in Figure 6, subsumes the concrete unifier
ϑ] ρ from which ρs can be obtained by using Lemma 1.

Indeed, we have ϑ = ϑs ◦ (ιT sym ◦ ιDsym), which is given by the diagram in Figure 6, and
ρ = ϑs ◦ ρs, which is implied by Lemma 1, thus, (ιT sym ◦ ιDsym)] ρs subsumes ϑ] ρ. But by
Corollary 1, ρs = ρs|var(l) is unique for given l and γs, thus, the above reasoning could be made
for any concrete unifier of l and γs, and still obtain the same symbolic unifier (ιT sym ◦ ιDsym)]ρs
to subsume it. Hence, this symbolic unifier of γs and l subsumes all concrete unifiers of γs and l.

Thus, we do not need to compute those concrete unifiers, or most general unifiers that subsume
all of them as [6] do, which is an advantage for us, since there are few theories with adequate (i.e.,
finitary and complete) unification algorithms. On the other hand, we rely on SMT solvers for
checking parts of the rule’s conditions that unification algoritms check directly - namely, those
parts introduced by transformations of S into Ssym described earlier in this section. The bottom
line is: we postpone inherent incompleteness issues to SMT solving.

The next lemma shows that the symbolic transition system forward-simulates the concrete
transition system. The notion of forward simulation (and of backwards simulation, used later)
is borrowed from Lynch and Vandraager [15]. We denote by αsym ∈ Ssym the rule obtained by
transforming α ∈ S (Section 4.3).

Lemma 2 ((T sym
Cfgsym ,⇒T

sym

Ssym) forward simulates (TCfg ,⇒TS)) For all configurations γ, symbolic

configurations 〈γs, φ〉 and rules α ∈ S, if γ |= 〈γs, φ〉 and γ α
=⇒TS γ′ then 〈γs, φ〉

αsym

=⇒T
sym

Ssym 〈γ′s, φ′〉
and γ′ |= 〈γ′s, φ′〉, for some 〈γ′s, φ′〉.

Proof: Let α , l ∧∧∧ b ⇒⇒⇒ r. The transition γ
α

=⇒TS γ′ implies there is ρ : Var → T such that
(γ, ρ) |= l∧∧∧ b and (γ′, ρ) |= r. The satisfaction γ |= 〈γs, φ〉 implies there is ϑ : SymVal → T such
that γ = ϑ(γs) and ϑ |= φ. By Lemma 1 there is ρs : Var → T sym such that γs = ρs(l) and
ρ = ϑ ◦ ρs. We have two cases:

1. unsat(φ ∧∧∧ ρs(b)) = false. Then, the rule αsym , (〈l, ψ〉 ∧∧∧ ¬¬¬ unsat(ψ ∧∧∧ b) ⇒⇒⇒ 〈r, ψ ∧∧∧ b〉) can

be applied to the symbolic configuration 〈γs, φ〉, yielding the transition 〈γs, φ〉 α
sym

=⇒ T
sym

Ssym

〈ρs(r), φ∧∧∧ ρs(b)〉. Let γ′s , ρs(r), φ′ , φ∧∧∧ ρs(b).
We prove γ′ |= 〈γ′s, φ′〉. From the hypothesis, γ′ = ρ(r), but ρ(r) = (ϑ◦ρs)(r) = ϑ(ρs(r)) =
ϑ(γ′s) which means γ′ = ϑ(γ′s). On the other hand, ρ |= bmeans ρ(b) = true, which implies
(ϑ◦ρs)(b) = true. Thus, ϑ(ρs(b)) = true, i.e., ϑ |= ρs(b). Using ϑ |= φ, we get ϑ |= φ∧∧∧ρs(b),
i.e., ϑ |= φ′. By Definition 3 this means γ′ |= 〈γ′s, φ′〉. This proves the lemma in this case.

2. unsat(φ∧∧∧ρs(b)) = true. This is impossible, since the soundness of unsat implies φ∧∧∧ρs(b)
is unsatisfiable, in contradiction with ϑ |= φ∧∧∧ρs(b) that we deduce as above from the
hypotheses of the lemma. This concludes the proof.

Remark 1 Note that only the soundness of unsat was used in this proof. This is important for
implementation purposes, since satisfaction in FOL is undecidable, thus, sound and complete
unsatisfiability predicates cannot be implemented; whereas sound ones are implemented in SMT
provers such as Z3 that we use.

For β , β1 · · ·βn ∈ S∗ we write γ0
β

=⇒TS γn for γi
βi+1
=⇒TS γi+1 for all i = 0, . . . , n − 1, and

use a similar notation for sequences of transitions in the symbolic transition system, where we
denote βsym the sequence βsym

1 · · ·βsym
n ∈ Ssym ∗.

Inria

A Generic Framework for Symbolic Execution 15

We can now state the coverage theorem as a corollary to the above lemma:

Corollary 2 (Coverage) With the above notations, if γ β
=⇒TS γ′ and γ |= 〈γs, φ〉 then there

exists 〈γ′s, φ′〉 such that γ′ |= 〈γ′s, φ′〉 and 〈γs, φ〉β
sym

=⇒T
sym

Ssym〈γ′s, φ′〉.

Proof: By induction on the length of β, using Lemma 2 for the induction step. The coverage
corollary says that if a sequence β of rewrite rules can be executed starting in some initial
configuration, the corresponding sequence of symbolic rules can be fired as well. That is, if a
program can execute a certain control-flow path concretely, then it can also execute that path
symbolically.

We would like, naturally, to prove the converse result (precision) based on a simulation result
similar to Lemma 2: for all configurations γ and symbolic configuration 〈γs, φ〉, if γ |= 〈γs, φ〉 and
〈γs, φ〉 α

sym

=⇒T
sym

Ssym 〈γ′s, φ′〉 then there is a configuration γ′ such that γ α
=⇒TS γ′ and γ′ |= 〈γ′s, φ′〉.

But this is false.
Example Consider the following (symbolic) configurations and (symbolic) rules:

γ , 〈〈if true then x:=1 else skip〉k〈y 7→ 5〉env〉cfg,
〈γs, φ〉 , 〈〈if ys >Int 3 then x:=1 else skip〉k〈y 7→ys〉env〈ys >Int 0〉cnd〉cfg,
〈γ′s, φ′〉 , 〈〈skip〉k〈y 7→ ys〉env〈ys >Int 0 ∧ ¬(ys >Int 3)〉cnd〉cfg,
α , 〈〈if B then S1 else S2 ···〉k ···〉cfg ∧∧∧ ¬B⇒⇒⇒ 〈〈S2 ···〉k ···〉cfg, and αsym ,

〈〈ifB thenS1 elseS2···〉k〈ψ〉cnd···〉cfg ∧∧∧ ¬unsat(ψ ∧ ¬B)⇒⇒⇒ 〈〈S2···〉k〈ψ∧¬B〉cnd···〉cfg

Then, γ |= 〈γs, φ〉 with ys 7→ 5, 〈γs, φ〉 α
sym

=⇒T
sym

Ssym 〈γ′s, φ′〉 since ¬(ys >Int 3) ∧ ys >Int 0 is

satisfiable (e.g., ys 7→ 2), but the only transition starting from γ is γ α′

=⇒TS 〈x := 1〉k〈y 7→ 5〉env,
whose destination clearly does not satisfy 〈γ′s, φ′〉.

Thus, we need another way of proving the precision result. The next lemma says that the
concrete semantics backwards-simulates the symbolic one:

Lemma 3 ((TCfg ,⇒TS) backward simulates (T sym
Cfgsym ,⇒T

sym

Ssym)) For all (symbolic) configurations

γ′, 〈γs, φ〉 and 〈γ′s, φ′〉, if 〈γs, φ〉 α
sym

=⇒T
sym

Ssym 〈γ′s, φ′〉 and γ′ |= 〈γ′s, φ′〉 then there exists γ ∈ TCfg

such that γ |= 〈γs, φ〉 and γ α
=⇒TS γ′.

Proof: The transition 〈γs, φ〉 α
sym

=⇒T
sym

Ssym 〈γ′s, φ′〉 is obtained by applying the rule αsym , (〈l, ψ〉 ∧∧∧
¬¬¬ unsat(ψ∧∧∧b)⇒⇒⇒ 〈r, ψ∧b〉). Thus, there are: a valuation ρs : V ar → T sym such that ρs(l) = γs,
ρs |= ¬¬¬ unsat(ψ ∧∧∧ b), ρs(ψ) = φ, ρs(ψ ∧∧∧ b) = φ′, ρs(r) = γ′

s; and a valuation ϑ : SymV al → T
such that ϑ(γ′

s
) = γ′,ϑ |= φ′.

From the previous statement, we have φ′ = ρs(ψ∧∧∧b) = ρs(ψ)∧∧∧ρs(b). Since ϑ |= φ′ we deduce
ϑ |= ρs(ψ), thus, ϑ |= φ. Let us consider γ , ϑ(ρs(l)) = ϑ(γs). The last two statements ensure
γ |= 〈γs, φ〉. There remains to prove γ α

=⇒TS γ′.
For this, consider the valuation ρ , ϑ ◦ ρs. From ϑ |= φ′ we obtain ϑ |= ρs(b), which is

(ϑ ◦ ρs)(b) = true, i.e., ρ(b) = true. Finally, ρ(r) = (ϑ ◦ ρs)(r) = ϑ(ρs(r)) = ϑ(γ′
s
) = γ′, which

proves γ α
=⇒TS γ′ and completes the proof.

The corollary to this lemma is called weak precision; it says that if a sequence βsym of
symbolic rules can be executed starting in some initial symbolic configuration and the final
symbolic configuration that the sequence reaches is satisfiable (by some concrete configuration),
then the corresponding sequence of concrete rules can be fired as well. A strong version of
precision is proved after this one.

RR n° 8189

16 Arusoaie, Lucanu & Rusu

Corollary 3 (Weak Precision) With the above notations, 〈γs,φ〉β
sym

=⇒T
sym

Ssym〈γ′s,φ′〉 and γ′ |= 〈γ′s, φ′〉
implies that there exists γ such that γ β

=⇒TS γ′ and γ |= 〈γs, φ〉.

Proof: By induction on the length of βsym , using Lemma 3 in the induction step. The strong
version of precision (simply called precision), shown below, is based on the following lemma,
which assumes the completeness of the unsat predicate.

Lemma 4 If 〈γs, φ〉 α
sym

=⇒T
sym

Ssym 〈γ′s, φ′〉 then there are concrete configurations γ, γ′ such that γ |=
〈γs, φ〉, γ′ |=〈γ′s, φ′〉 and γ α

=⇒TS γ′.

Proof: The transition 〈γs, φ〉 α
sym

=⇒T
sym

Ssym 〈γ′s, φ′〉 is obtained by applying the rule αsym , (〈l, ψ〉 ∧∧∧
¬¬¬ unsat(ψ ∧∧∧ b) ⇒⇒⇒ 〈r, ψ ∧∧∧ b〉). Thus, there is ρs : V ar → T sym such that ρs(l) = γs, ρs |=
¬¬¬ unsat(ψ ∧∧∧ b), ρs(ψ)=φ, ρs(ψ ∧∧∧ b)=φ′, ρs(r)=γ′

s. From the above we get unsat(φ∧∧∧ ρs(b)) =
false, and by completeness of unsat, φ∧∧∧ ρs(b) is satisfiable, thus, there is ϑ :SymVal→T such
that ϑ |= φ ∧∧∧ ρs(b). With γ , (ϑ ◦ ρs)(l), γ′ , (ϑ ◦ ρs)(r) we get γ |= 〈γs, φ〉, γ′ |= 〈γ′s, φ′〉,
γ

α
=⇒TS γ′.

Corollary 4 (Precision) 〈γs,φ〉β
sym

=⇒T
sym

Ssym〈γ′s,φ′〉 implies that there exist concrete configurations
γ, γ′ such that γ β

=⇒TS γ′ and γ |= 〈γs, φ〉 and γ′ |= 〈γ′s, φ′〉.

Proof: By induction on the length of βsym,using Lemmas 3,4 in the induction step. The above
precision corollary now captures the intuition of what precision means, informally: each sym-
bolically executable path can also be executed concretely. It is essentially a theoretical result
since it assumes an oracle to decide unsatisfiability in FOL, but it is nonotheless important since
it shows that symbolic execution may only "diverge" from concrete execution only because of
intrinsic undecidability results, (i.e., not because of how we have defined it in this paper).

6 Implementation

In this section present a prototype implementation of our approach in the K framework. We
start with a short description of the support for symbolic artifacts already present in K. Then,
we show how a symbolic version of the IMP language (presented in Section 2) is obtained by
applying the transformations from Section 4. Finally, we use resulting symbolic execution on
the program shown in Figure 2 in order to prove that a certain property of it is violated. This
illustrates the fact that symbolic execution is a good basis for developing symbolic analysers and
verifiers grounded in the formal semantics of language.

6.1 Support for Symbolic Artifacts in the K Framework

For every sort, say, S, of a given K specification, the K tool provides users with a corresponding
symbolic sort SymbolicS, together with a constructor symS(Id) for values in SymbolicS. For
example, symInt(a) is a symbolic integer value, and symBool(b) is symbolic Boolean value.
The K framework also has an interface to the Z3 SMT solver, which consists of a function
checkSat that takes as input a formula in a certain combination of theories (we currently use
the theories for Booleans and integers, but more theories are available, for example, arrays).
The function returns sat if the solver finds the formula satisfiable, unsat if it finds the formula
unsatisfiable, and unknown if it cannot decide the (un)satisfiability.

Inria

A Generic Framework for Symbolic Execution 17

6.2 Transforming IMP into IMPsym

The IMP language, introduced in Section 2, is transformed into the symbolic language IMPsym

by following the transformation rules discussed in Section 4. We focus here on the transformation
of the semantics (Section 4.3). The semantics of IMP language is shown in Figure 4 and is
transformed as follows:

1. Linearising rules. The semantics of IMP has only two non-linear rules - the two last ones
in Figure 4, which correspond to variable lookup and store. Their linearisation and the
resulting rules were presented in Section 4.3.1.

2. Replacing constants by variables. This step concerns the rules that contain Boolean or
integer constants in their left hand side, i.e., the following ones:

〈〈true and B ···〉k ···〉cfg ⇒ 〈〈B ···〉k ···〉cfg
〈〈false and B ···〉k ···〉cfg ⇒ 〈〈false ···〉k ···〉cfg
〈〈if true then S1 else S2 ···〉k ···〉cfg ⇒ 〈〈S1〉k ···〉cfg
〈〈if false then S1 else S2〉k ···〉cfg ⇒ 〈〈S2〉k ···〉cfg

Each occurrence of a constant is replaced by a fresh variable of the same sort (i.e., making
sure that the linearity of the left-hand sides is preserved), and an equality is added to rule’s
condition. This generates the following rules:

〈〈B′ and B ···〉k ···〉cfg ∧B′ = true ⇒ 〈〈B ···〉k ···〉cfg
〈〈B′ and B ···〉k ···〉cfg ∧B′ = false ⇒ 〈〈false ···〉k ···〉cfg
〈〈if B then S1 else S2 ···〉k ···〉cfg ∧B = true ⇒ 〈〈S1〉k ···〉cfg
〈〈if B then S1 else S2〉k ···〉cfg ∧B = false ⇒ 〈〈S2〉k ···〉cfg

3. Adding formulas to configuration and rules. This step consists to modifying the configu-
ration by adding a cell for path conditions. The original configuration structure of IMP,
shown in Figure 3, becomes after this step:

Cfgsym ::= 〈〈Code〉k〈MapId,Int〉env〈Fol〉cnd〉cfg

We proceed by modifying the semantic rules of IMP into symbolic rules, which have the
form (2) (Page 11). We first note that unconditional rules - which can be written as l∧∧∧b⇒⇒⇒ r
with b , true - do not need to be transformed. Indeed, the transformation would generate
the following rule:

〈l, ψ〉 ∧∧∧¬¬¬ unsat(ψ)⇒⇒⇒ 〈r, ψ〉 (3)

Now, when such a rule is executed on a given symbolic configuration 〈γs, φ〉:

• if the rule (3) is the first one being executed then ¬unsat(φ)= true (since it does not
make sense to start execution in unsatisfiable configurations);

• otherwise, a rule was applied earlier in the execution, ensuring ¬unsat(φ) = true (or
else 〈γs, φ〉 would not have been generated in the first place).

In both cases, ¬unsat(φ) = true, hence, the transformation of our unconditional rule l⇒⇒⇒ r
would also produce an unconditional rule 〈l, ψ〉 ⇒⇒⇒ 〈r, ψ〉. And finally, users do not have
to write the 〈〉cnd cell (holding the ψ component in Cfgsym) thanks to a nice feature of K

RR n° 8189

18 Arusoaie, Lucanu & Rusu

called configuration abstraction, which, here, automatically completes rules operating over
the configurations Cfg with the cells needed for operating over extended configurations
Cfgsym.

Thus, the only rules concerned by transformation are the conditional ones:

〈〈I1 / I2 ···〉k ···〉cfg ∧ I2 6= 0⇒ 〈〈I1/IntI2 ···〉k ···〉cfg
〈〈B′ and B ···〉k ···〉cfg ∧B′ = true ⇒ 〈〈B ···〉k ···〉cfg
〈〈B′ and B ···〉k ···〉cfg ∧B′ = false ⇒ 〈〈false ···〉k ···〉cfg
〈〈if B then S1 else S2 ···〉k ···〉cfg ∧B = true ⇒ 〈〈S1〉k ···〉cfg
〈〈if B then S1 else S2〉k ···〉cfg ∧B = false ⇒ 〈〈S2〉k ···〉cfg

Every rule shown above is replaced by a rule of the form (2):

〈〈I1 / I2 ···〉k〈ψ〉cnd ···〉cfg ∧ ¬unsat(ψ ∧ I2 6= 0)⇒
〈〈I1/IntI2 ···〉k〈ψ ∧ I2 6= 0〉cnd ···〉cfg

〈〈B′ and B ···〉k〈ψ〉cnd ···〉cfg ∧ ¬unsat(ψ ∧B′ = true)⇒
〈〈B ···〉k〈ψ ∧B′ = true〉cnd ···〉cfg

〈〈B′ and B ···〉k〈ψ〉cnd ···〉cfg ∧ ¬unsat(ψ ∧B′ = false)⇒
〈〈false ···〉k〈ψ ∧B′ = false〉cnd ···〉cfg

〈〈if B then S1 else S2 ···〉k〈ψ〉cnd ···〉cfg ∧ ¬unsat(ψ ∧B = true)⇒
〈〈S1〉k〈ψ ∧B = true〉cnd ···〉cfg

〈〈if B then S1 else S2〉k〈ψ〉cnd ···〉cfg ∧ ¬unsat(ψ ∧B = false)⇒
〈〈S2〉k〈ψ ∧B = false〉cnd ···〉cfg

6.3 Symbolic execution of IMP programs

We now illustrate the symbolic execution of the program shown in Figure 2. The program returns
the wrong minimum when a<=b and a>c, as it sets min to b instead of c. We first extend the
language with an asssert statement, which blocks execution if the Boolean expression given to
is as argument does not hold.

We use symbolic execution to explore all possible paths of program from Figure 2 and check
whether min is really less or equal than a, b, and c using assert. For this, we execute the
following symbolic configuration (in ASCII K):

<k>
if (a <= b)

then if (a <= c)
then min := a
else min := b

else if (b <= c)
then min := b
else min := c;

assert(min <= a);
assert(min <= b);
assert(min <= c);
</k>
<env> a -> symInt(a), b -> symInt(b), c -> symInt(c) </env>
<cnd> true </cnd>

Inria

A Generic Framework for Symbolic Execution 19

In the initial configuration the path condition is true and the variables a, b, c are mapped to
the symbolic values symInt(a), symInt(b), symInt(c) respectively. When the execution reaches
the first if statement, the K running tool (with the search option for full state-space explo-
ration) generates both branches determined by the condition of the stamenent, which evaluates
to true or false depending on whether symInt(a) ≤ symInt(b) or symInt(a) > symInt(b).
The same process happens for the other if statements. When the program reaches assert(min
<= c) on the execution branch that generated the path condition symInt(a) ≤ symInt(b) ∧
symInt(a) > symInt(c) ∧ min = symInt(b), the execution gets stuck because the assertion
contradicts the path condition. Moreover, the top of the k cell contains the failed assertion,
which users can examine and compare with the path condition for debugging purposes. The
complete IMP definition together with this example and instructions for running it are available
at https://fmse.info.uaic.ro/tools/Symbolic-IMP/.

7 Conclusion and Future Work

We have presented a generic framework for the symbolic execution of programs in languages
having operational semantics defined by term-rewriting. Starting from the formal definition of a
language L, the symbolic version Lsym of the language is automatically constructed, by extending
(some of) the datatypes used in L with symbolic values, and by modifying the semantical rules
of L in order to make them operate on symbolic values appropriately. The symbolic semantics of
L is then the (usual) semantics of Lsum, and symbolic execution of programs in L is the (usual)
execution of the corresponding programs in Lsym, which is the application of the rewrite rules
of the semantics of Lsym to programs.

Assuming a sound unsatisfiability predicate for first-order logic, our symbolic execution has
the expected properties of coverage, meaning that to each concrete execution there is a symbolic
one that corresponds to it, and of weak precision, meaning that to each symbolic execution that
ends in a satisfiable symbolic configuration has a concrete execution that corresponds to it. Here,
correspondence means executing the same path in the control flow of the program. By assuming
also a complete unsatisfiability predicate for first-order logic one also gets the theoretical precision
result, meaning that each symbolic execution has a concrete execution that corresponds to it.
The latter result is essentially theoretical since first-order logic is undecidable, but it means
that any "imprecision" is not due to the way we defined symbolic simulation but to inherent
undecidability results.

The results obtained are the expected ones; however, they were obtained thanks to carefully
constructed definitions of what the essentials of a programming language are, in an algebraic and
term-rewriting based setting. The crucial observation that led us to the appropriate definitions
is that datatypes are used by, but are not part of, a language definition, and thus should be
treated differently. Finally, we have illustrated the framework on a simple imperative language
defined in the K framework and have implemented a prototype of it also in K.

Future Work We are planning to use symbolic execution as the basic mechanism on the deduc-
tive systems of program logics also developped in the K framework (such as reachability logic [21]
and our own circular equivalence logic [14]) are built. More generally, our symbolic execution
can be used for program testing, debugging, and verification, following the ideas presented in
related work, but with the added value of being grounded in formal operational semantics.

RR n° 8189

20 Arusoaie, Lucanu & Rusu

References
[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,

New York, NY, USA, 1998.

[2] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic Execution with Sepa-
ration Logic. In Yi [28], pages 52–68.

[3] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. En-
gler. EXE: Automatically generating inputs of death. In In Proceedings of the 13th ACM
Conference on Computer and Communications Security (CCS, 2006.

[4] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer, 2008.

[5] Laura K. Dillon. Verifying General Safety Properties of Ada Tasking Programs. IEEE
Trans. Softw. Eng., 16(1):51–63, January 1990.

[6] Santiago Escobar, José Meseguer, and Ralf Sasse. Variant Narrowing and Equational Uni-
fication. Electr. Notes Theor. Comput. Sci., 238(3):103–119, 2009.

[7] PEX: Automated exploratory testing for .NET.

[8] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random
testing. In Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’05, pages 213–223, New York, NY, USA, 2005. ACM.

[9] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random
testing. SIGPLAN Not., 40(6):213–223, June 2005.

[10] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized Symbolic Execution
for Model Checking and Testing, 2003.

[11] James C. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385–394,
1976.

[12] Nam Hee Lee and Sung Deok Cha. Generating test sequences using symbolic execution for
event-driven real-time systems. Microprocessors and Microsystems, 27(10):523 – 531, 2003.

[13] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. KLOVER: A Symbolic Execution
and Automatic Test Generation Tool for C++ Programs.

[14] Dorel Lucanu and Vlad Rusu. Program Equivalence by Circular Reasoning. Rapport de
recherche RR-8116, INRIA, October 2012.

[15] Nancy A. Lynch and Frits W. Vaandrager. Forward and Backward Simulations: I. Untimed
Systems. Inf. Comput., 121(2):214–233, 1995.

[16] José Meseguer. Rewriting logic and maude: Concepts and applications. In Leo Bachmair,
editor, RTA, volume 1833 of Lecture Notes in Computer Science, pages 1–26. Springer, 2000.

[17] José Meseguer and Prasanna Thati. Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Higher-Order and Symbolic Compu-
tation, 20(1-2):123–160, 2007.

Inria

A Generic Framework for Symbolic Execution 21

[18] Corina S. Păsăreanu and Willem Visser. Verification of Java Programs Using Symbolic
Execution and Invariant Generation. In SPIN, pages 164–181, 2004.

[19] Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto, editors. ASE 2010, 25th
IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Bel-
gium, September 20-24, 2010. ACM, 2010.

[20] Grigore Roşu and Traian Florin Şerbănuţă. An Overview of the K Semantic Framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

[21] Grigore Roşu and Andrei Ştefănescu. Checking Reachability using Matching Logic. In
Proceedings of the 27th Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’12). ACM, 2012. To appear.

[22] Peter H. Schmitt and Benjamin Weiss. Inferring Invariants by Symbolic Execution. In
Conference on Automated Deduction, 2007.

[23] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine for C. In
Proceedings of the 10th European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engineering, ESEC/FSE-13,
pages 263–272, New York, NY, USA, 2005. ACM.

[24] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine for C.
SIGSOFT Softw. Eng. Notes, 30(5):263–272, September 2005.

[25] Traian-Florin Şerbănuţă, Grigore Roşu, and José Meseguer. A rewriting logic approach to
operational semantics. Inf. Comput., 207(2):305–340, 2009.

[26] Stephen F. Siegel, Anastasia Mironova, George S. Avrunin, and Lori A. Clarke. Using model
checking with symbolic execution to verify parallel numerical programs. In Proceedings of the
2006 international symposium on Software testing and analysis, ISSTA ’06, pages 157–168,
New York, NY, USA, 2006. ACM.

[27] Matt Staats and Corina Pǎsǎreanu. Parallel symbolic execution for structural test genera-
tion. In Proceedings of the 19th international symposium on Software testing and analysis,
ISSTA ’10, pages 183–194, New York, NY, USA, 2010. ACM.

[28] Kwangkeun Yi, editor. Programming Languages and Systems, Third Asian Symposium,
APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings, volume 3780 of Lecture
Notes in Computer Science. Springer, 2005.

RR n° 8189

RESEARCH CENTRE
LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bât A - Park Plaza
59650 Villeneuve d’Ascq

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Our approach

	A Simple Imperative Language and its Definition in K
	The Ingredients of a Language Definition
	Symbolic Semantics by Data Extension
	Extending the Signature to a Symbolic Signature sym
	Extending the Model T to a Symbolic Model Tsym
	Turning the Concrete Rules S into Symbolic Rules Ssym
	1. Linearising Rules
	2. Replacing Constants by Variables
	3. Adding Formulas to Configurations and Rules

	Defining the Symbolic Transition System (Cfgsym,Ssym)

	Relating the Concrete and Symbolic Semantics of L
	Implementation
	Support for Symbolic Artifacts in the K Framework
	Transforming IMP into IMPsym
	Symbolic execution of IMP programs

	Conclusion and Future Work

