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Abstract—We consider two pairs of communicating users shar-
ing two bands of spectrum under a sum band power constraint.
Our earlier work proposed a natural spectrum sharing game
for this problem and characterized the Nash equilibria as a
function of the signal and interference distances, when the
positions of the four nodes were assumed fixed. In this work,
we derive i) the joint distribution of the interference distances
conditioned on the transmitter separation distance, as well as
ii) the unconditioned interference distance distribution when we
place one transmitter at the origin and the second uniformly at
random over a disk. This allows us to compute the distribution
of the random Nash equilibria and random prices of anarchy
and stability as a function of the random interference distances.
We leverage the analysis to give an asymptotic expression for the
coupling probability in a game where the transmitter positions
form a (low density) Poisson process, which may be interpreted
as the fraction of players essentially playing a two player game.

I. INTRODUCTION

In this paper, we analyze the dynamics among multiple

pairs of users that want to communicate sharing the same

portion of the spectrum. We model this interaction using

game theory, since, in general, the quality perceived by a

user strictly depends on the behavior of other entities. We

consider a Gaussian Interference Game (GIG) [1], where two

transmitter and receiver pairs have to decide how to split the

total power budget P across two orthogonal channels of the

spectrum with equal bandwidths B, maximizing the sum of the

Shannon rate achieved on each band. Non–cooperative game

theory is suitable in distributed networks, where control and

management are decentralized. For this reason, we model the

problem as a non–cooperative game, in which selfish users

aim to maximize their achieved throughput.

In our previous work [2], the game is characterized an-

alytically assuming that the positions of the two transmit-

ter/receiver couples are known. In this scenario, we derive

the quality/number of the Nash equilibria, highlighting the

dependence on the parameters that define the topology (in-

terference distances x1, x2 and signal distance d) and the

propagation model (pathloss exponent α and noise power η).

Since the wireless network performance is strongly influenced

by the spatial distribution of the communicating/interfering

nodes, a natural objective is to analyze the dependence of the

equilibria distribution on the node positions. Therefore, we fix

one transmitter at the origin and place the second transmitter

uniformly at random in a disk of radius L. The two receivers

are placed uniformly at random along the circles of radius d

centered at the corresponding transmitter. Basic stochastic

geometry is used to characterize the joint distribution of the

interference distances x1, x2, and to compute the distribution

of the random equilibria.

The stochastic characterization of the 2–player game can be

leveraged as a starting point to tackle the more general N–

player game. Namely, the analysis of large networks game

can be simplified, identifying couples of pairs in the N–

player game that play small 2–player sub–games. The key

result of this paper is to provide, for the low–density regime,

the fraction of nodes whose game can be characterized using

the stochastic analysis of the 2–player game. The complete

analysis of the N–player game is part of the ongoing work and

the results of this paper are fundamental in order to assess the

network performance of large networks with game theoretic

dynamics.

The paper is organized as follows: §II reviews prior work

on spectrum sharing games; §III sets the reference scenario

and recalls previous results for the spectrum sharing game;

§IV provides a stochastic analysis of the 2–player game; and

§V shows how these results can be used to evaluate the

performance in large N–player networks.

II. RELATED WORK

Spectrum sharing games have been widely studied in the

literature. In [1], the authors propose a spectrum sharing game

for multiple players that share the same portion of spectrum.

In particular, they introduce self-enforcing rules that allow

users to reach an efficient and fair solution. In [3], the authors

consider a power control problem with SINR as objective

function, in both the selfish and the cooperative scenario. In

contrast, non–cooperative games among operators that share

the spectrum are proposed in [4] and [5]. Both these papers

characterize the Nash equilibria of the system. Games based

on the water–filling algorithm are proposed in [6] and [7]. The

authors consider a scenario composed by two contending com-

municating systems and study the existence and uniqueness

of the Nash equilibrium. The water–filling algorithm is used

also in [8] and [9]. A unified view of main results presented

in the literature is proposed in [10]. This work shows how

the different approaches proposed in the literature can be

unified following a unique interpretation of the waterfilling

solution. Furthermore, a unified set of sufficient conditions

that guarantee the uniqueness of the equilibrium is derived.
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Power control games in the context of cognitive radio

networks are considered in [11] and [12]. Existence and

properties of the Nash equilibria are investigated assuming

the interference temperature model. Furthermore, the channel

competition is studied in [13] and [14]. The authors charac-

terize the equilbria of the game and assess their quality with

respect to the optimal solution. In [15], the power allocation

game is modeled as a potential game that is shown to possess

a unique equilibrium. When the channels are assumed to

fluctuate stochastically over time, stochastic approximation

theory is used to show convergence to equilibrium.

There exist other few works that propose a stochastic anal-

ysis of games in the context of wireless networks. In [16], the

authors propose a stochastic game that models the interactions

among users that compete for the available spectrum opportu-

nities. In particular, users make bids for the required resources.

A best–response algorithm is proposed in order to improve the

users’ bidding policy. A random access game is proposed also

in [17], where the authors characterize the Nash equilibria of

the random access game and analyze the asymptotic properties

of the system as the number of users goes to infinity. [18]

provides a useful tutorial on different techniques based on

stochastic geometry and the theory of random geometric

graphs. Different from previous work, we introduce the use

of stochastic geometry in order to characterize the equilibria

of the game in terms of probability distribution over the set

of possible equilibria.

III. REFERENCE SCENARIO

We consider the spectrum sharing game, where two trans-

mitter and receiver pairs (the players) have to decide how

to split the total power budgets over two available bands

(the actions), maximizing the sum of the achievable Shannon

rates over the two bands (the payoffs). Namely, the reference

topology is reported in Fig. 1. We label the distance between

the two transmitters t and assume that the corresponding

receivers are placed uniformly around the transmitters at a

fixed distance d, i.e., a and b are uniform angles in the range

[0, 2π]. (Note that in this section we assume a and b to be fixed,

whereas we will treat them as random variables in the next

section.) Let x1 and x2 be the distance between receiver 1
and transmitter 2 and the distance between receiver 2 and

transmitter 1, respectively. The strategy space of the generic

transmitter i is Pi ∈ [0, 1]. Namely, Pi is the fraction of P
that pair i uses in the left band and P̄i = 1 − Pi is the

fraction of power in the right band. The utility function of

each player is defined as the sum achievable Shannon rate over

the two bands when the interference from the other player

is treated as noise. We assume a channel model with pure

pathloss attenuation, where α > 2 is the pathloss exponent.

Assuming a noise power of η on each band, the utility function

of player 1 (and symmetrically of player 2) for transmission

powers P ≡ (P1, P2) ∈ [0, 1]2 is:

U1(P ) = log2

(

1 +
P1d

−α

η + P2x
−α
1

)

+log2

(

1 +
P̄1d

−α

η + P̄2x
−α
1

)

.

(1)

Fig. 1. 2–player topology.

The characterization of pure Nash equilibria derived in [2] is

reported in Fig. 2, where β±
i = 0.5

(

1± x−α
i /d−α

)

. Note that

there exist four regions. When x1x2 < d2, the game admits

three equilibria and the optimum is in (0, 1) and (1, 0). In

particular, when both x1 and x2 are smaller than d, the PoS is

one, since the best equilibrium and the optimum coincide. In

contrast, when x1 (or x2) is greater than d, the best equilibrium

is worse than the optimum, then the PoS is greater than one.

The PoA is in both the two cases greater than one. When

x1x2 > d2 and x−α
1 x−α

2 + ηx−α
1 + ηx−α

2 − ηd−α < 0 the

game admits a unique equilibrium, that does not coincide with

the optimum, then PoS and PoA coincide and are greater than

one. In contrast, when

x−α
1 x−α

2 + ηx−α
1 + ηx−α

2 − ηd−α > 0 (2)

the optimal solution and the unique equilibrium coincide.

Finally, along the curve x1x2 = d2 the two best responses

coincide and there exists an infinite number of equilibria.

Fig. 2. Nash equilibria and optimal allocations as a function of x1 and x2

(for d = 25).

From this analysis, we can conclude that the equilibrium

chosen by the two players (as well as the correspond-

ing PoS/PoA) depends upon the two interference distances

(x1, x2). When node positions are random, it follows that

(x1, x2) are random, and thus the equilibrium is random. In

short, we compute probabilities of being in the various regions

in Fig. 2.
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IV. STOCHASTIC ANALYSIS OF THE 2–PLAYER GAME

We use standard probabilistic notation: sans-serif letters

(e.g., x) denote random variables (RV) and italic characters

denote their corresponding value (e.g., x). The cumulative

distribution function (cdf), its complement (ccdf), and prob-

ability density function (pdf) are denoted Fx(x), F̄x(x) =
1 − Fx(x), fx(x), respectively, with the natural notational

extensions for conditional and joint distributions.

A. Conditional joint pdf of the interference distances

We suppose the two transmitters are placed at random and

we condition on the distance separating them t. We further

suppose each receiver is placed uniformly at random on the

circle of radius d centered at the corresponding transmitter. It

follows that the interference distances x1, x2 are conditionally

independent given t:

Fx1,x2|t(x1, x2|t) ≡ P(x1 ≤ x1, x2 ≤ x2|t) =
= P(x1 ≤ x1|t)P(x2 ≤ x2|t). (3)

Using the law of cosines x
2
1 = d2 + t2 − 2dt cos a:

P(x1 ≤ x1|t) = P(d2 + t2 − 2dt cos a ≤ x2
1|t) =

= P

(

cos a ≥ (d2 + t2)− x2
1

2dt

∣

∣

∣

∣

t

)

. (4)

The following proposition is elementary.

Proposition IV.1. The random variable w, cosine of a uni-

formly distributed angle, has the following distribution:

fw(w) =
1

π
√
1− w2

, Fw(w) =
1

2
+

1

π
sin−1 w, w ∈ [−1, 1].

Using this result, we can now state the following theorem.

Theorem IV.2. The joint cdf and pdf of x1, x2 conditioned

on t are given by Eq. (5) and Eq. (6) (reported on page 4),

respectively, where Fw(w) is given in Prop. IV.1.

Proof: For the sake of brevity, we only report some

mathematical steps. From Eq. (4) and Prop. IV.1:

P

(

cos a ≥ (d2 + t2)− x2
1

2dt

∣

∣

∣

∣

t

)

= F̄w

(

(d2 + t2)− x2
1

2dt

∣

∣

∣

∣

t

)

.

(7)

From Eq. (3):

Fx1,x2|t(x1, x2|t)=F̄w

(

(d2 + t2)− x2
1

2dt

)

F̄w

(

(d2 + t2)− x2
2

2dt

)

.

(8)

Eq. (5) follows by requiring the argument of the cdf Fw(w)
to be between −1 and 1. Eq. (6) follows directly from taking

the double partial derivative with respect to x1 and x2:

fx1,x2|t(x1, x2|t) =
∂2

∂x1∂x2
Fx1,x2|t(x1, x2|t). (9)

Fig. 3 shows the conditional joint pdf and cdf when d = 1
and t = 3. Note that we obtain a function different from zero

only in the region {(x1, x2) : |d − t| ≤ x1 ≤ d + t, |d −
t| ≤ x2 ≤ d + t}, consistent with the topology constraints

mentioned at the beginning of this section.

B. Joint pdf of the mutual interference distances

For any distribution on the random distance t separating the

transmitters, we obtain the joint (unconditioned) distribution

for (x1, x2) by the total probability theorem:

fx1,x2(x1, x2) =

∫ ∞

0

fx1,x2|t(x1, x2|t)ft(t)dt. (10)

We will henceforth assume the random transmitter separation

distance t is determined by placing one of the transmitters

at the origin of a disk of radius L, and placing the second

transmitter uniformly at random in the disk. We emphasize,

however, that Eq. (10) holds for any distribution on t, and our

assumption is merely for the purpose of concreteness. Under

this assumption, the RV t has cdf and pdf:

Ft(t) =

(

t

L

)2

, ft(t) =
2t

L2
, 0 ≤ t ≤ L. (11)

The RVs x1, x2 are not (unconditionally) independent. Due to

the geometry of the problem (the sum of any two sides of

a triangle must be greater than the third side), the following

inequalities must hold:

|d− t| ≤ x1 ≤ d+ t (12)

|d− t| ≤ x2 ≤ d+ t

max{|d− x1|, |d− x2|} ≤ t ≤ min{d+ x1, d+ x2}
We can now state the following theorem.

Theorem IV.3. Suppose the distance t between the two

transmitters has the distribution in Eq. (11). Then the joint

pdf of x1, x2 is given by Eq. (13) (reported on page 5) and the

support of (x1, x2) is given by Eq. (12).

Proof: Substitute Eq. (11) for ft(t) and Eq. (6) for

fx1,x2|t(x1, x2|t) in Eq. (10), using the constraints in Eq. (12).

Note that, in general, it is not possible to provide close form

expression of the integral in Eq. (13). Numerical evaluation,

however, is straightforward.

C. Distribution on the Nash equilibria

We can now use the joint distribution in Thm. IV.3 to

compute the distribution of the equilibria in Fig. 2. Each

equilibria’s probability can be evaluated via:
∫

P

fx1,x2(x1, x2)dx1dx2 (14)

where P is the set of points that defines that region. Table I

summaries the different cases, which are illustrated in Fig. 4.

Namely, unique refers to the probability that the equilibrium is

unique. When the equilibrium is not unique, we consider two

cases. The case in which the three equilibria are (0.5, 0.5),
(0, 1) and (1, 0), i.e., (0.5,0.5)-(0,1)-(1,0), and the case in

which the equilibria depend on the parameter β, (mixed). For

completeness, we also provide the probability that there is

an infinite number of equilibria (infinite). Finally, we evaluate

the probability that the unique equilibrium and the optimal

solution coincide (coincide w/opt).
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Fx1,x2|t(x1, x2|t) =

=



































0 x1 < |d− t| or x2 < |d− t|
[

1− Fw

(

(d2+t2)−x2
1

2dt

)] [

1− Fw

(

(d2+t2)−x2
2

2dt

)]

|d− t| ≤ x1 ≤ d+ t and |d− t| ≤ x2 ≤ d+ t
[

1− Fw

(

(d2+t2)−x2
1

2dt

)]

|d− t| ≤ x1 ≤ d+ t and x2 > d+ t
[

1− Fw

(

(d2+t2)−x2
2

2dt

)]

x1 > d+ t and |d− t| ≤ x2 ≤ d+ t

1 x1 > d+ t and x2 > d+ t

(5)

fx1,x2|t(x1, x2|t) =

=







x1x2

π2d2t2

√

[

1−

(

d2+t2−x2
1

2dt

)

2
][

1−

(

d2+t2−x2
2

2dt

)

2
]

|d− t| ≤ x1 ≤ d+ t and |d− t| ≤ x2 ≤ d+ t

0 else

(6)

Fig. 3. Conditional joint pdf (left) and cdf (right) of x1 and x2 when d = 1
and t = 3.

TABLE I
DIFFERENT EVENTS THAT ARE CONSIDERED IN THE STOCHASTIC

ANALYSIS OF THE GAME.

“event” P

unique x1x2 > d2

(0.5,0.5)-(0,1)-(1,0) x1 < d ∧ x2 < d

mixed x1x2 < d2 ∧ (x1 > d ∨ x2 > d)
infinite x1x2 = d2

coincide w/opt (x1x2)−α + η(x−α

1
+ x−α

2
− d−α) > 0

Numerical results for all these probabilities are reported in

Fig. 5. We consider four different values of d, with L varying

from 0.1 to 50. We assume η = 10−3 and α = 4. Clearly, the

probability of having a unique equilibrium, that corresponds

to the case in which players decide to use the whole spectrum,

increases with L. This is reasonable since increasing L, also

the average distance between the interfering pairs increases

(x1 and x2), then, for a fixed d, the probability of x1x2 > d2

increases. This corresponds to the case in which users share

the same spectrum since the interfere is small. In particular, we

can see that when L < d that probability is around 50% and

then starts increasing, approaching 1 when L ≃ 5d. Note that

the probability of having an infinite number of Nash equilibria

is very close to zero, as expected (sometimes it is slightly

different from zero for numerical issues in the evaluation of

the integral). Furthermore, the probability that the optimum

and the unique equilibrium coincide has a similar behavior of

the probability of uniqueness, but it is lower. This is obvious,

since when the equilibrium and the optimum coincide, the

equilibrium is also unique, but the opposite is not always true.

Moreover, when L = 0, the two transmitters coincide, then

x1 = x2 = d, that corresponds to the case in which there exists

an infinite number of Nash equilibria. In contrast, when L = ǫ,
for any small ǫ > 0, each x can be a little bit greater or a little

bit smaller than d (remember that x2 = d2 + ǫ2 − 2dǫ cos a).

We can see this in Fig. 6 (left).

In particular, the zoom reported in Fig. 6 (right) explains

why when L approaches zero, the probability of unique

equilibrium is equal to 0.5 (given by the probability that both

the xs are greater than d). Therefore, also the probability of

having three equilibria is 0.5. In particular, this is half split

between having {(0, 1), (1, 0), (0.5, 0.5)} (both x’s are less

than d and this happens with probability 0.25) and the mixed

case (when only one x is greater than d, but both below the

curve x1x2 = d2).

Finally, note that when L goes to zero the optimum never

coincides with the equilibrium in (0.5, 0.5). In fact, the optimal

solution always corresponds to split and use different portions

of the spectrum. The reason why, when L = ǫ, with ǫ small,

this probability approaches zero is clear also from Fig. 6

(right). In fact, when L = ǫ, the two x’s are both close to d
and they do not satisfy the condition given by Eq. (2).

V. COUPLING PROBABILITY

In the previous section we provided a stochastic character-

ization of the 2–player game. We now illustrate the value of

this analysis in the corresponding N -player game. Consider

the Binomial Point Process (BPP) ΠN = {u1, . . . , uN} where

N transmitters are positioned independently and uniformly

at random in a compact set A ⊂ R
2 with N/|A| = λ; we

refer to λ as the density. The N receivers {v1, . . . , vN} are

each positioned independently and uniformly at random on the

circle of radius d centered at the corresponding transmitter.

The sum and maximum (shot noise) interference processes

seen at receiver vj under BPP ΠN are:

ΣΠN
(vj) ≡

∑

ui∈ΠN\{uj}

‖ui−vj‖−α, MΠN
(vj) ≡ max

ui∈ΠN\{uj}
‖ui−vj‖−α.

(15)
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fx1,x2(x1, x2) =
2x1x2

π2d2L2

∫ min{d+x1,d+x2}

max{|d−x1|,|d−x2|}

1

t

√

[

1−
(

d2+t2−x2
1

2dt

)2
] [

1−
(

d2+t2−x2
2

2dt

)2
]

dt. (13)

unique (0.5,0.5)-(0,1)-(1,0)

mixed coincide w/opt

Fig. 4. Regions of Fig. 2 that we are considering in Table I .

As discussed in [19] (§2.5), the sum interference RV Σ is

subexponential, meaning

lim
z→∞

P(ΣΠN
(vj) > z)

P(MΠN
(vj) > z)

= 1. (16)

That is, the sum interference is large when the maximum

interference term is large, i.e., intuitively approximating the

sum interference by the maximum is a valid approximation.

The key insight is that under the approximation Σ ≈ M

the N -player game will decouple into subgames, described in

what follows. We introduce the following definition:

Definition V.1 (Coupled users). Users (ui, vi) and (uj , vj) are

coupled if the nearest interfering transmitter of receiver vj is

ui and the nearest interfering transmitter of receiver vi is uj .

Under the approximation Σ ≈ M, a pair of coupled users in

the N–player game are playing a 2–player game. We define

the probability of a typical user being coupled:

Definition V.2 (Coupling probability). The coupling probabil-

ity Pc(λ) is the probability that a typical user, say (ui, vi), is

coupled with the user whose transmitter, say uj , is the closest

interferer to vi, i.e., the probability that ui is in fact also the

closest interferer to vj:

Pc(λ) = P(i = argmin
k 6=j

‖uk − vj‖ | j = argmin
k 6=i

‖uk − vi‖).
(17)

Refer to Fig. 1. Assume that TX2 is the nearest interferer

for RX1. Note that this means that there is no other transmitter

in the circle (say, C1) of radius x1 with center RX1, i.e.,

ΠN (C1) = 0. The probability that TX1 is the nearest interferer

for RX2 is Pc(λ) = P(ΠN (C2) = 0|ΠN (C1) = 0), where

C2 is the circle of radius x2 with center RX2. Although

occupancy counts of disjoint regions are dependent in a BPP,

the dependence vanishes in the limit as the BPP becomes

a Poisson Point Process (PPP), i.e., as N, |A| → ∞ with

N/|A| → λ. Under this approximation we have

Pc(λ) ≈ P(Πλ(∆) = 0) = e−λ|∆|, (18)

i.e., the coupling probability is approximately the void proba-

bility for a PPP Πλ of intensity λ on the lune ∆ ≡ C2 \ C1.

Theorem V.3. The value for the coupling probability when λ
goes to 0 is the following constant:

lim
λ→0

Pc(λ) = Ccp ,
6π

3
√
3 + 8π

≈ 0.6215.

Proof: In the low density (small λ) regime the BPP

behaves like the PPP since |A| must be large. Recall that the

average distance to a nearest neighbor in a PPP with density

λ is 1/
√
λ, and thus for small λ the average distance is large.

To obtain the value of the coupling probability in the low

density regime, we can assume that x1 ≫ d and x2 ≫ d.

Thus as λ → 0, d can be neglected and we can assume that

x1 = x2. In this scenario, reported in Fig. 7, we have two

circles with the same radius, whose centers are separated by

a distance equal to the radius itself. Therefore, the area of the

lune depends only on the parameter x1. In particular, using

the formula of the area of the lune, we obtain that in this case

the area of the lune is the following:

∆ =

(

π

3
+

√
3

2

)

x2
1. (19)

Applying the total probability theorem:

Pc(λ) =

∫ ∞

0

Pc|x1(λ, x1)fx1(x1)dx1. (20)

The distribution of the nearest interferer is:

fx1(x1) = 2πλx1e
−πλx2

1 x1 ≥ 0. (21)

Substituting the expression for fx1(x1) in Eq. (21) and the

void probability over the area in Eq. (19), we obtain:

Pc(λ) =

∫ ∞

0

e
−λ

(

π
3
+

√

3

2

)

x2
12πλx1e

−πλx2
1dx1 = Ccp. (22)

Fig. 8 reports different curves for the coupling probability

Pc(λ) vs. λ. The black point is Ccp. Thus, in the low density

regime, under approximation that the sum interference equals

the max interference, 62% of the nodes play a 2–player game,

for which the analysis in §IV applies. Note the sum/max
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Fig. 5. Probability of having different Nash equilibria for the 2–player game, increasing L, for different values of d, assuming η = 10−3 and α = 4.

Fig. 6. Scenario that explains the limit as L that approaches zero.

Fig. 7. Reference scenario when λ goes to zero.

approximation is expected to hold in the low density regime.

Furthermore, the behavior of the nodes that are not coupled

can be analyzed as a reaction to the small coupled sub–games,

where non-coupled nodes are not playing a game, but instead

employ best response dynamics to their nearest interferers.

This is ongoing work to characterize the N–player game and

predict the performance in large networks.

Fig. 8. Simulated coupling probability for different values of d.
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