Analysis of Large-scale Traffic Dynamics using Non-negative Tensor Factorization

Abstract : In this paper, we present our work on clustering and prediction of temporal dynamics of global congestion configurations in large-scale road networks. Instead of looking into temporal traffic state variation of individual links, or of small areas, we focus on spatial congestion configurations of the whole network. In our work, we aim at describing the typical temporal dynamic patterns of this network-level traffic state and achieving long-term prediction of the large-scale traffic dynamics, in a unified data-mining framework. To this end, we formulate this joint task using Non-negative Tensor Factorization (NTF), which has been shown to be a useful decomposition tools for multivariate data sequences. Clustering and prediction are performed based on the compact tensor factorization results. Experiments on large-scale simulated data illustrate the interest of our method with promising results for long-term forecast of traffic evolution.
Type de document :
Communication dans un congrès
ITS World Congress 2012, Oct 2012, Vienna, Austria. 2012
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00766702
Contributeur : Yufei Han <>
Soumis le : mardi 18 décembre 2012 - 16:39:43
Dernière modification le : vendredi 27 octobre 2017 - 17:30:01
Document(s) archivé(s) le : mardi 19 mars 2013 - 03:58:42

Fichier

PaperTemplateITSWS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00766702, version 1
  • ARXIV : 1212.4675

Collections

Citation

Yufei Han, Fabien Moutarde. Analysis of Large-scale Traffic Dynamics using Non-negative Tensor Factorization. ITS World Congress 2012, Oct 2012, Vienna, Austria. 2012. 〈hal-00766702〉

Partager

Métriques

Consultations de la notice

225

Téléchargements de fichiers

169