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Abstract In this paper, we present our work on clustering and prediction of temporal
dynamics of global congestion configurations in lasgaleroadnetworls. Instead of looking
into temporal traffic state variatiaof individual links, or of small areg, we focus orspatial
congestiorconfiguratiors of the wholenetwork. In our work, waim at describinghe typical
temporal dynamic patterns of ishnetworklevel traffic state and achiéwy longterm
prediction of thdarge scaletraffic dynamicsin a wified datamining framework. To this end,
we formulate this joint task using Naregative Tensor Factorization, which has been shown
to be a useful decomposition tools for multivariasé¢adsequence€lustering and prediction
are performed basemh the ompacttensorfactorizationresults Experimenton largescale
simulated data illustrate the interest our method with promising results for lorterm
forecast otraffic evolution

KEYWORDS: LARGE-SCALE TRAFFIC DYNAMICS, NON-NEGATIVE
TENSOR FACTORIZATION

1. Introduction

Floatingcar data has become an essential source to determine the speéit dbtrafon the
roads during recent years. This raale traffic information is formed based on the cdileas

of locations, speed and diremts of vehicles through multiple kinds of mobilensers, such

as GPSequipped vehiclesor driversO mobile phones. Compared with loop detectors or
surveillance cameras, floatiggr data needs no additional hardware and generate estimation
of variationsof traffic flows in near reatime. Using floatingcar datatraffic congestiorcan

be detected and quantifiedeasuredand travel timesanbe estimateckfficiently. Due to
these characteristicgjany currentesearch work and intelligent transportatsystems make

use of the floatingcar data to simulate, model and analyze temporal dynamics of traffic flows.



Most published researcmadraffic data analysis focus on temporal dynamics of indaid
roads or small groups of roads (in arterial networkir@eways). Various data analysis tools
are used to achieve this goal, which canche&goried either as modelriven [1][2] or
datadriven approaches [3][4]. Generallthe modeldriven approaches, like Celar
Automata and hydrdynamicsbased models, construct generative parametric modelig
physical rulesassumed fortraffic flows. By calibrating their paramegemwith structural
assumptionghe modeldriven based method can simulate dynamic behaviors of traffic flows,
which achievemodeling and prediction of traffic states at the same time. In cbntree
datadriven based methods relax the prior assumptions of traffic dynamics and extracts
statistical descriptions of traffic flows efficiently using the methodologieginated fran
machine learning and signal processing. For example, Kalman filter AdRBIA
(Autoregressive Moving Averag¢3|[4], are used to track and predict temporal vanetiof
traffic flows. Neural networkmproves the prediction performance bodelingwith the
nontlinearity fluctuation of traffic flows with its muliayer functional mapping structures.
Notably, in [5], spatial correlations between local links are considered during temporal
modeling of trafficflows using Markov Random FieldFollowing the sirple criterion OLet

the data speak for itselfO, the ddtimen method are more flexibléghanmodetdriven ones,

and cartrackwithout prior assumptions the spatemporal dependencies of traffic states

Interactions betweethe adjacentinks are considred in bothtypesof traffic data
analysis.However in a typical urbartraffic scerario, congestion statef a region hashigh
spatietemporal correlatons with its neighboring areasVajor improvementin estimating
traffic dynamicstherefore requires tmodel the dynamics of the whole netwofkose facts
motivate us to analyzthe global dynamic patterns of largeale networks. With a proper
temporal model of the global traffic dynamiege can estimate the spatial configurations of
congestions in thenetwork, which provides a global constraint in modeling the traffic
behaviors of the whole netwark

In our work, we propose to treat traffic states of all roads in a-Ergle network as
a whole and unveil temporal dynamic patterof the global traféi statesIn a previousstudy
[6], we had usedmatrix factorization to derive lowimensional representation of global
traffic state configuration, based on which ted achievel identification of typical spatial
congestion patterns. This method only foclise spatial configuration of traffic states, while
ignoring the temporal dependence between successieeperiods. In this paper, we extend
this idea and adopt Mon-negativeTensorFactorization(NTF) to describe spatitemporal
variations of taffic congestion in the networkVe present the technicalndamentalsbout
the NTF scheme in section 2luStering and longerm predictionof global traffic dynamics
based on NTF ardescribed respectively in sections 3 anth4ection5, we illustrate with
experimental resultsn a largescale synthetic traffic data the interestof our proposed
algorithm. Sectio® concludes the whole paper.
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2. Non-negative Tensor Factorization (NTF)
2.1 Basics about tensor

Figurel. Structure of the traffic data 3-way tensor

A tensor is defined as a multiay array ¥]. The order of a tensor, also knownigsnumber

of ways, is the number of indices necessary for labeling a component in the amay. F
example, a matrix, which is adimensional array, can be considered asnag or 2 order
tensor. Similarly, a vector and a scalar can be takendedas tk first order and zerth
order tensors respectively. Due to the rawllly structure, tensor provides a coherent
representation for the multivariate temporal sequefisea matter of fact, tensehave been
utilized popularly in video processing, chemornwostand psychometrics. Following this idea,
we make use of a 3rd order tensBE R to store temporal sequences of global traffic
states, as shown in Figute In our case, the numbers of elements along the three wa¥s of
are: n, m and [, respectivelycorresponding to the number of links in the network, the
number of time sampling steps in each dargffic sequenceand the number ofraffic
sequences the historic data. Each entry, ; (i =1.2.n,j=12..m,k =12..]) represents the
traffic state of the-th link captured at theth time sampling step of thetk traffic sequence

As we can seen Figurel, each column vector of the tensdr, defined as the column fiber,
concatenates local traffic states ofralinks of the networklt contains the information about
spatial configurations ofraffic congestion, and we name ihétworklevel traffic staté
hereafter. Each frontal slice of # tensor records the daily temporal variations of
networklevel traffic states, which is the main focus of tpheper. According to the tensor
structure, the three ways df illustrate separately the traffic behavioral patterns wispeet

to different links, time sampling steps and traffiqueencesDecouplingthe three factorg
largescale traffic dynamicsising tensor algebra will help us look intontribution of each
factor ingeneratinghe variations of global traffic states.

2.2 Nonnegative Tensor Factorization
Factorization of data into lower dimensional spaces provides a cobgmstto describe the
data and is sometimes also referred todimsensionality reductionPrinciple Component
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Analysis (PCA) andNon-negativeMatrix FactorizationNMF) [7] are the most popular data
factorization methods. Experimental results show that thenegativity constraint of NMF
leads to a paibased decomposition of the data and improves clustering and classifying
capabilities of mulvariate data when compared to PCA. NTF takes NMFep &irther by
adding a dimension to the®order tensor factorization (matrices) while inheriting it
characteristics

The basic ideaf NTF is to decompose one tensor to be a canonical cotrdnna
matrices.The factorization procedurgecouples the underlyinigctors along different ways
of the tensor. To be more intuitive, we tak®IF as an exampléNote thatNMF is a special
case of tensor factorization appliedtie 2ndorder tensorThe formua of NMF is writtenin
Eqg.1

Azz(u”ovl')=UVT(Uzo,Vzo) (1)

where A is a nxm matrix, U andV are the ith columns of then xr matrix U and
mxr matrix V  and, is the outer product between vectors. Entries in battricesU andV
areconstrainedo benonnegative. Eq.1 presents a ran&pproximation to A. As presented
in [7], treating each column ofA as a multivariate signal, ttemlumnspace of U andthe
row space ofV indicae correlatedsubsets of signal componerisd clustering membership
of the multivaria¢ signals in A respectively.U and V represenphysical characteristics
of the signaland differences between signal§he matrix factorization decouples the two
factors and represents them separaielthe factoization matricesBy extendingnotionsof
NMF into 3way tensor data, the NTF can be written as [Efj:2

Tz2uiovioqi u'=0v'=204q =20 (2)

u',v'and g'are the ith columrs of three nomegative matdes: U of size nxr, V of

size mxr, and Q with size /xr. Similarto NMF, the rows inU, V and Q refer to
r-dimensional OfingerprintsO or signatures of underlying traffic behavior patterns with respe
to different links,time sampling steps and temporal traffic sequemegzectively. Further
analysis performed othe r-dimensional representations could unveil the sptgiaporal
patterns of traffic behaviors in the netwohk.practice NTF solutionscan beobtainedusing

an alternative updates algorithm,[fixing all but one matdes amongU,V and Q, then
updating the othenssingKarushKuhn-Tucker (KKT) condition.

3. Clustering of large-scale traffic dynamics
Based on Eq.2, fixingU andV, we can represent each frontal slice of theay tensor T
as a generalized lineaadis expansion, as shown in Eq.3

T, ~ EQM X (u' ov') 3)



Q. is theentrylocatedat he kth row and ith columnof Q, andeach (u' ! v') is amatrix
with the same size as the frontal sliG®nsidering (' -1} (i = 1,2...) as abasisof matrices,

and each frontal slice, as a matrixform signal, Eq.3llustrates a linear expansion of the
matrix-form signaloverthe bass. {Q,.}(i =1.2..r) is the rdimensional vector of expansion
coefficientson the bags. Note that we borrow the notion of multivariate signal expansion and
extend them to the matrborm objects That provides an intuitive understanding of tesbr
algebra. Due to the nenegativity constraintthe linear expansion in E3jis a strictly additve
superpositiorof thebasis matriceso approximate7, . Each matrixof thebasiscan be viewed

as acomponent bthe frontal slice. In oucasg it leads to a patbased decomposition of the
largescale traffic dynamicsThe expansion coefficientQ, }(i =1,2..r) form a signature
feature oflargescale traffic dynamic pattern in the correspondistg traffic sequenceBased

on this poperty, we propose to perfa clustering ajorithmon the row space ofQ, in order

to find out the typical dynamic patterns of thetworklevel traffic state. For the clustering
task, we choose thparameterr in NTF to be 10 Higher r provides more accurate
approximation to the origal tensor, while increasing complexity of the model the
clustering proedure, we focus on classifyitige dynamic patterns rather than reconstruction
of the detds. Therefore, we tend to choosmaller r for clustering.

4. Prediction of large-scale traffic dynamics

The basic idea behinour work is a simple prindig: given similar precedent traffic dynamic
patterns,it is likely to observesimilar suosequentemporal evolution othe networklevel
traffic state. In urbamoad networks, the topological structure of the network is stable and
driversO behaviors atestorically consistent.Large historic data can covemost typical
demand patterns dfaffic resource, which provideomprehensive information about the
global traffic dynamicsBased on this characteristic, we ahievetemporal prediction of

the networklevel traffic states by heuristically searching for thest similar temporal
evolution in the historic observations.

We concatenate historic observations of traffic statesthetensor 7', following the
nations as Section 2AssumingM €R™" is apartially observedraffic sequenceonly the
first m, time sampling steps contain observationsr @ork focuses on predicting temporal
dynamicsrangingfrom the (m, +1)-th step until the endCompared with onstep forecasts,
the predicton task aims to cover a longer time period, thus naase@longerm predictionO
in this paper.

Our proposed method makes use of the historic daisstically. Firstly, we perform
NTF on T to learn the three factorization matricés, V and Q, as shown in Eq.XGiven
enoughhistoric data, M can beconsideredasa point lying on ther-dimensional manifold
spanned by theearned basis{u' ! vi}(i =1,2..r) . Therefore prediction of unobserved
networklevel traffic dynamics can be formalized as reconstruction ohtlssingcolumnsin
M based on the learned manifolthe cost functiomused for oureconstructiorprocedurdas
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givenin Eq.4

Obs K

+)LE S,

Fro J=1

J(") - HM - EQiM x (' ov) 0"-0,,| 0" =0) (4)

Here 0" is the r-dimensionalestimated expansion coefficieat M in the learnedasis
Q" is the ith entry of Q" . Weselect Knearest neighbors oM among all frontal slices of

T, indexed by{#;}(j =12..K). 5, is the similarity measure evaluated betwekh and
the nearest neighborinfyontal slice 7, , derived by calculating.2 distance between them

with respect to the firstm, observed columns{q, 3(j=12.k) are the expansion

coefficients of the knearest neighbors the learnedbasis | [ is the Frobenius norm
calculated with respect to the first, observed columnghe first term of the costfunction
evaluategeconstruction errobetween the observeptound truth oftraffic dynamicsand the
NTF based approximatiomhe second term performs a locality preserving constogithe
estimated0"”. By minimizing thisterm, the partially observedV is regularized to be
close b its nearest neighbors in thedimensional manifold spanned by the mafoxm
basis concatenating heuristic nearest neighbor information and suppresdifagts of
reconstructionBy adjusting the regularizing coefficienk, we achieve a tradeff between
the heuristic constraimdf the unknown traffic dynamics and approximating accuracthef
known observationsThe minimization pocedure is performed by iteratively updatin’
using KKT condition[8]. Each stepf the updatean be written a&g.5

% K (
! XWV' +#$ s, Q, , *

@Q)™=@Q")™ " S (®
;&(QN )P VWV +#QM) ™ $ s, ;
j=1 i

Q)™ and (@) are the values of theth entry in Q" before and after the current
updating step X is avector of (n x m) dimension containing elements oM arranged
in a columnwise order W is a diagonalsquarematrix with its side length equaling to
(n x m). Its diagonal vectois a binary mask that gives 1 to the observed entrie¥ oand 0
to the missing onesV €R"™™ is a matrix with each w storingthe kronecker product of
u' and v'. The missing traffic statesare then predictedby combining the estimated
expansion coefficient?" and thebasis ' °v'}(i =1.2..") following Eq.2. Different from
the clustering task, wehoosehigher r (r =50) to improve degreef-freedom of the model
to fit the data details



5. Experimental Results
5.1 Experimental settingand introduction of IAU-Paris database

(a) (b)
Figure 2. (a) The large-scale roads network in IAU-Paris database.

(b) Temporal trajectory of network-level traffic states in 3D-PCA space.

We test the proposed clustering and prediction atetin a synthetic traffic data set, named
as |IAU-ParisdatabaseThis benchmark database contains 108 simulated traffiesegs of
the largescaleParis roadsietwork generated wittMetropolis [9] Metropolis is a planning
software that is designed to model transportation systems. It containpketsoemvironment
to handle dynamic simulations of daily traffic ineospefic traffic network The networkis
composedf 13627 links in Paris and its suburegion, asshown in the Figur&(a) Each
traffic sequencecoves 8 consecutivehours of traffic data observations, including congestion
in morning rush hours. Different traffic situatiorend evolutionsare obtained by adding
random events anfiuctuatiors in the GD matrix (OriginDestination) There are48 time
samplingstepsin each squencecorresponding to XBinutes bins over which the network
traffic flow are aggregatedraffic index [1Q is used to represent traffic statteeach lirk at a
specific time, ranging if0;1] interval. The smaller the traffic index is, the more congesied
the corresponding linkTo visualizelargescale traffic dynamicéntuitively, we project the
observations othe networkevel traffic states into 3EPCA spacein Figure 2(b) Note that
3D-PCA is only used for visualization in the experimenibe three axis of the space
correspond to the top three prijpal component axis. &h green point in the figure
represents the 3PCA projection of onaetworklevel traffic state observatiorhe points
corresponding to the frebowing states concentrate within a small region in the PCA space.
The data pointscorresponding to moments whe&ongestions occur in certain links are
distributed sparsely and far from thegionof the freeflowing state. Patial configurations of
networklevel traffic statesresimilar if the whole network is almost frélewing everywhere.
On the contrary, congestion ocadng at different parts of the network chasgspatial
patterns btraffic states in different ways, which introduces large variatiottsdistributions

of networklevel traffic patternsWe use a red curve linking all netweldvel traffic states of
the whole 48 time sampling stepe bne simulated traffic sequenceh€elcurve presents a
circular and closed shaped trajectory in the 3D space. It indicatebenatworklevel traffic
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state evolves from morning free flowing, going througla peakhour congestion, and then
restoresto be free flowing again at the end of tlemulatedsequencelinterestingly the
evolution ofthe networkduring increasing congestion follows a segment of trajedtalyis
totally different fromthe subsequent evolutionf recovering tofreeflow. This implies
different temporatlynamicsof traffic flows, and different intermediate traffic patterns, during
increagng and decreasg of congestion.

5.2 Clustering of the largescale traffic dynamics

(a) (b)
Figure 3. Clustering results of large-scale traffic dynamics

(a) The number of clusters is 3. (b) The number of clusters is 5.

In the clustering task, we arrange all traffic index valunelAU-Paris database into a tensor

T € RP?71% - After performing spectralclustering on the tensor factorization result, we
obtain the clustering membership of eseimporal sequence of the netwdekel traffic states.
Different clusterrepresents different tygal largescaletraffic dynamic patternsWe set the
number of the derived clusters to be 3 and 5 respectively. Fgyilhestrates the derived
clustering structure. As shown Kigure 3(a), all 108 evolution trajectories are divided into
three clusters. Temporal sequescin different clusters indicate traffic congestions of
different degrees in the peak hour. The clusters labeled lgrébeandredlegends represent

the occurrences of light congestion and heavy coimyesver the network, named as OLight
Congestion@nd OHeavy CongestionO respectively. Since heavy congestion introduces more
diversity into the spatial cdigurations of traffic statesshe temporal sequences keavy
Congestion are distributed modaversely than those inLight Congestiondenoting more
variations in largescale traffic dynamics. The temporal sequences labeled by the blue legends
donOt havperiodic temporal behavioms the othersnamed as OUnclosed Trajectofyiiey
correspond to occurrences of the overwhelming congeatitite beginning of the seques

By increasing the number ofustersin Figure3(b), wecangetmore detailed structure of the
dynamic pattersi The Light Congestion cluster is divided infiwo subclusters,named as
OLight Congestion IO and OLight @astion [1Oin the figure. Trajectories in thetwo
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subclustersfollow different orientations in the 3PCA visualization.lt implies different
temporal evolutiorpatterns of global conggon configuration between the two scibisters
The Heavy Congestipclusteris split into two sukzlusters as denoted by OHeavy Congestion
IO and OHeavy Congestion. M@ajectories in Heavy Congestion Il are distributed more
diversely and garsely than Heavy Congestignindicating occurrences of more severe traffic
jam during the peaking hour$o provide more quantitative comparisonvbetn different
dynamic patternswe calculate the mean traffic index value over the whole networicht e
time sampling step along the trajectory. The sequericthe mean #affic index values
represents aitlustration oftemporally varied traffic behaviar&or each of the five obtained
clusters, we show thmean traffic indexsequence corresponding to the center of the cluster,
as seen in Figurd. Particularly, the duration of congestion, the tiperiod of the peak
congestion and the mean index value of pleak congestionvary a lot among diffeznt
average sequencegyoviding an intuitive knowledge about characteristics of different
largescale taffic dynamic patterns

Figure 4. Mean traffic index sequences for centroids of respective clusters

5.3 Experimental results of longerm prediction

In the IAU-Paris database, about 1/3 of the 13627 links in the netstaykfreeflow most of

the time, so should be ignored in metrics of congegti@diction To beevenmore specific,

we select only the most congested 3415 lifdesthe prediction taskBesidesduringthe first

10 steps and last 5 steplse networkstays almost globally fredlowing. Thereforewe only
focus on the time period starting from the 11th steps to the 43thistépes prediction task
Furthermore, n the left 31 time sampling steps, we choose the first 5 as the observed
subsequence, whicts the start of thepeakhour in eachraffic sequenceTemporal dynamics

of the other26 time steps are used for predictidve select randomly 89 of the 18Bnulated
sequencess the historic obseation records. The remaining 19 fothe testing set. Gen

each testedequencén the form ofa frontal slice of a-8vay tensor structurel™” € R**'>*°,

we calculate the average distancebetween the reconstructed entries and the corresponding



ground truth in each frontal slieef 7'“to measure predictioaccuracy. Larger average
distance meankarger prediction errofThe mean ofthe 19 distance measuseorresponding
to test sequences is used to evaldhagegeneral prediction performandesthe testing set,
named as OGeneRiediction ErrorO.

Table 1. Prediction accuracies for our proposed method,

with different settings of nearest neighbors

Numberof nearest neighbor General Prediction Errg
1 0.1789
3 0.1679
5 0.1695
7 0.1772
9 0.1835

Table 2. Comparison of General Prediction Error for three methods

Method General Prediction Errg
Historic-Average 0.2117
Historic-NN (with K=3) 0.1770
The proposed NTF based method 0.1679

We illustrate thevariation ofthe prediction performances by increasingribenber of
nearest neighbors used in the reconstrudtiantion (Eq.4)in Tablel. As we can find, in the
testing set of IAUParis database, the number of nearest neighberpialing to 3 is the best
choice br predicting the unobserved traffic dynamiBy. increasingthe nearest neighbors
from 1 to 3, the prediction performance increases gradually. On thergofiréher increase
of the nearest neighbotsads to decline of the prediction accura®n one land, nore
neighbors provide more heuristic information about the tendency of unobserved temporal
dynamics On the other hand, we should notice thaire nearest neighbors do not assure
better prediction. Neighboring historic data at the enth@KNN list might be deviated from
the test traffic dynamics, whidhtroduces noise into reconstructiandleads to the decline.

We compare the prediction performances of the praposethod with the other two
basdine methods.The first one onlycalculats the averagenetworklevel traffic statesof
corresponding time stepn all sequences dfistoric data. They are used as the prémfict
resultsdirectly, named as OHistorfverageO. In the second one, we make use of thistieur
information ly calculating the historic average only t¢ime K-nearest neighbors of each
testing sequencelabeled by OHistodNO. The comparisoof prediction performancess
listedin Table2. Figure5 illustrates the man traffic index value of thetal 26 time sapling
sters involved in prediction in one testirgequencéfrom the &' time sampling step to the
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31% stepin the whole 36 stepsThe mean traffic index values are derived from the ground
truth and the prediction results of the three methedpectivelyln HistoriccNN and the NTF
based method, we choose 3 nearest neighbors for prediction, according to resulte.in Tabl
HistoriccNN outperforns HistoriccAverageto a large extent. The Historkverage doesn't
make use of any heuristic infoation about temporal dynamics of traffic states. Purely
average operation with respect to all historic data ignores the diffeletaeen traffic
behaviors in different trafficsequences Compared with Historic-NN, the proposed
nonnegative tensor fact@ation based methaachievedurther improvementThe proposed
methodis build by not only concatenatindpe heuristic neighboring informatipibut also
extracting a representative model for largeale traffic dynamicgrom the historic data
through theénsor factorizatiorintroducingmore prior information aboutaffic dynamics

Figure 5. Comparisons of the prediction performances

6. Conclusions

We present anovel methodologyfor analyzing largescale traffic dynamigsbasedon
Non-negativeTensorFactorization. Our work contributes in three aspects. Firstly, we propose
to use 3way tensor as the basic level representation of ¢rdféhaviors over the whole
largescale network. By arranging the data into-a&/ tensor, we aim tgseparate the link
related time intervalrelatedand daily traffic equence relateéactors in largescale traffic
temporal behaviors. Nenegative tensor factorization scheme is then adopted to achieve this
goal. Furthermore, by regarding the tensordazation procedure as a matform signal
expansion, we derive a representative subspace based model for the globalytnafhics of
different traffic quences. Using tis compact model, we catonvenientlyperform statistical
analysis on temporal eiutions of the global traffic states. Finally, we propose to combine the
tensor factorization and KNN based heuristic inforrmatid the historic traffic data together

in a tensor reconstruction framewoith the proposed methp@ve can reconstruct misg
detailsof global traffic state configurations accurately.

Selecton of the nearest neighbors playskey role inour heuristic tensor reconstruction
procedure so most of our current improvement efforts relate to that part. It appeéars tha
optimal sdting of the number ofnearest neighbordepends on the design of the distance

11



metric between traffic dynamics based on the partiallyedesl entries.Also, the

computation cost ofelectig thosenearest neighbargurrently usng L2 distancs, can
become an issue on very lamngetworls. We are thereforevorking ona more efficient way to
selectthe nearest neighbors of largeale traffic dynamicgrinally, our applicationis not

limited to only longterm prediction the proposed tensor recbruction methodologygould

be further extended to estimation of missing observations of traffic state® daelts of

sensorsand noise in the GPS signals.
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